Advertisement

Abstract

There are in general two kinds of articles which have to do with sedimentation behavior. In the one the subject matter is descriptive of the theory and practice of the use of the ultracentrifuge in analysis; in the other consideration is given to the application of the methods so provided in the solution of problems in biology and medicine. This time the author has felt that an attempt to review some selected topics, both as to the main outlines of the theory and the applications of the technique, might be of interest. Because of limitations of space it could not be a balanced, objective account of the subject, so that of choice we have written principally about those aspects of the subject in which we are currently interested and supposedly better informed.

Keywords

Apparent Diffusion Coefficient Infinite Dilution Sedimentation Coefficient Sedimentation Experiment Sedimentation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akeley, D. F. and L. J. Gosting: Studies of the Diffusion of Mixed Solutes with the Gouy Diffusiometer. J. Amer. Chem. Soc. 75, 5685 (1953).Google Scholar
  2. 2.
    Alberty, R. A. and H. H. Marvin, Jr.: Protein-Ion Interaction by the Moving Boundary Method. Theory of the Method. J. Physic. Coll. Chem. 54, 47 (1950).Google Scholar
  3. 3.
    Anfinsen, C. B., R. R. Redfield, W. L. Choate, J. Page and W. R. Carroll: Studies on the Gross Structure, Cross-Linkages, and Terminal Sequences in Ribonuclease. J. Biol. Chem. 207, 201 (1954).Google Scholar
  4. 4.
    Archibald, W. J.: The Process of Diffusion in a Centrifugal Field of Force. Physic. Rev. 53, 746 (1938).Google Scholar
  5. 5.
    Archibald, W. J.: The Process of Diffusion in a Centrifugal Field of Force. II. Physic. Rev. 54, 371 (1938).Google Scholar
  6. 6.
    Aschaffenburg, R. and J. Drewry: Occurrence of Different β-Lactoglobulins in Cow Milk. Nature (London) 176, 218 (1955).Google Scholar
  7. 7.
    Baldwin, R. L.: The Neurotoxin of Shigella Shigae. II. Examination of the Toxin in the Oil-Turbine Ultracentrifuge. Brit. J. exp. Pathol. 34, 217 (1953).Google Scholar
  8. 8.
    Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. II. The Correction of Sedimentation Coefficient Distributions for the Dependence of Sedimentation Coefficient on Concentration. J. Amer. Chem. Soc. 76, 402 (1954).Google Scholar
  9. 9.
    Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. III. Effects of Diffusion on the Measurement of Heterogeneity when Concentration Dependence is Absent. J. Physic. Chem. 58, 1081 (1954).Google Scholar
  10. 10.
    Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. 5. Measurement of the Diffusion Coefficient of Bovine Albumin by Fujita’s Equation. Biochemic. J. 65, 503 (1957).Google Scholar
  11. 11.
    Baldwin, R. L.: Molecular Weights from Studies of Sedimentation and Diffusion in Three-Component Systems. J. Amer. Chem. Soc. 80, 496 (1958).Google Scholar
  12. 12.
    Baldwin, R. L.: Equilibrium Sedimentation in a Density Gradient of Materials Having a Continuous Distribution of Effective Densities. Proc. Nat. Acad. Sci. (USA) 45, 939 (1959).Google Scholar
  13. 13.
    Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. VI. A Better Method for Finding Distributions of Sedimentation Coefficient when the Effects of Diffusion are Large. J. Physic. Chem. 63, 1570 (1959).Google Scholar
  14. 14.
    Baldwin, R. L., L. J. Gosting, J. W. Williams and R. A. Alberty: Transport Processes and the Heterogeneity of Proteins. Discuss. Faraday Soc. 20, 13 (1955).Google Scholar
  15. 15.
    Baldwin, R. L. and A. G. Ogston: The Diffusion and Sedimentation Coefficients of a Liquid Two-Component System in Terms of Macroscopic Properties of the System. Trans. Faraday Soc. 50, 749 (1954).Google Scholar
  16. 16.
    Baldwin, R. L. and J. W. Williams: Boundary Spreading in Sedimentation Velocity Experiments. J. Amer. Chem. Soc. 72, 4325 (1950).Google Scholar
  17. 17.
    Banovitz, J., S. J. Singer and H. R. Wolfe: Precipitin Production in Chickens. XVIII. Physical Chemical Studies on Complexes of Bovine Serum Albumin and its Chicken Antibodies. J. Immunology 82, 481 (1959).Google Scholar
  18. 18.
    Bell, D. J., H. Gutfreund, R. Cecil and A. G. Ogston: Physicochemical Observations of Some Glycogens. Biochemie. J. 42, 405 (1948).Google Scholar
  19. 19.
    Boedtker, H. and P. Doty: On the Nature of the Structural Element of Collagen. J. Amer. Chem. Soc. 77, 248 (1955).Google Scholar
  20. 20.
    Boedtker, H. and P. Doty: The Native and Denatured States of Soluble Collagen. J. Amer. Chem. Soc. 78, 4267 (1956).Google Scholar
  21. 21.
    Bridgman, W. B.: Some Physical Chemical Characteristics of Glycogen. J. Amer. Chem. Soc. 64, 2349 (1942).Google Scholar
  22. 22.
    Bridgman, W. B. and J. W. Williams: Optical Problems of the Ultracentrifuge. Ann. New York Acad. Sci. 43, 195 (1942).Google Scholar
  23. 23.
    Brown, R. A. and S. N. Timasheff: Applications of Moving Boundary Electrophoresis to Protein Systems. In: M. Bier, Electrophoresis. Theory, Methods, and Applications, p. 317. New York and London: Academic Press. 1959.Google Scholar
  24. 24.
    Butler, J. A. V., D. J. R. Laurence, A. B. Robins and K. V. Shooter: Molecular Weights and Physical Properties of Deoxyribonucleic Acid. Nature (London) 180, 1340 (1957).Google Scholar
  25. 25.
    Butler, J. A. V., D. M. Phillips and K. V. Shooter: Influence of Protein Heterogeneity of Deoxyribonucleic Acid (DNA). Arch. Biochem. Biophys. 71, 423 (1957).Google Scholar
  26. 26.
    Buzzell, J. G. and C. Tanford: The Effect of Charge and Ionic Strength on the Viscosity of Ribonuclease. J. Physic. Chem. 60, 1204 (1956).Google Scholar
  27. 27.
    Cann, J. R., J. G. Kirkwood and R. A. Brown: Theory of Isomerization Equilibrium in Electrophoresis. I. Arch. Biochem. Biophys. 72, 37 (1957).Google Scholar
  28. 28.
    Cecil, R. and A. G. Ogston: The Accuracy of the Svedberg Oil-Turbine Ultracentrifuge. Biochemic. J. 43, 592 (1948).Google Scholar
  29. 29.
    Cecil, R. and A. G. Ogston: The Sedimentation Constant, Diffusion Constant and Molecular Weight of Lactoglobulin. Biochemie. J. 44, 33 (1949).Google Scholar
  30. 30.
    Charlwood, P. A.: Partial Specific Volumes of Proteins in Relation to Composition and Environment. J. Amer. Chem. Soc. 79, 776 (1957).Google Scholar
  31. 31.
    Creeth, J. M.: Studies of Free Diffusion in Liquids with the Rayleigh Method. III. The Analysis of Known Mixtures and Some Preliminary Investigations with Proteins. J. Physic. Chem. 62, 66 (1958).Google Scholar
  32. 32.
    Crick, F. H. C. and J. D. Watson: The Complementary Structure of Deoxyribonucleic Acid (DNA). Proc. Roy. Soc. (London) A 223, 80 (1954).Google Scholar
  33. 33.
    Davison, P. F.: The Effect of Hydrodynamic Shear on the Deoxyribonucleic Acid from T2 and T4 Bacteriophages. Proc. Nat. Acad. Sci. (USA) 45, 1560 (1959).Google Scholar
  34. 34.
    Dayhoff, M. O., G. E. Perlmann and D. A. MacInnes: The Partial Specific Volumes, in Aqueous Solution, of Three Proteins. J. Amer. Chem. Soc. 74, 2515 (1952).Google Scholar
  35. 35.
    de Groot, S. R., P. Mazur and J. T. G. Overbeek: Nonequilibrium Thermodynamics of the Sedimentation Potential and Electrophoresis. J. Chem. Physics 20, 1825 (1952).Google Scholar
  36. 36.
    de Lalla, O. F. and J. W. Gofman: Ultracentrifugal Analysis of Serum Lipoproteins. In: D. Glick, Methods of Biochemical Analysis, Vol. 1, p. 459. New York: Interscience Publ., Inc. 1954.Google Scholar
  37. 37.
    Doty, P., B. B. McGill and S. A. Rice: The Properties of Sonic Fragments of Deoxyribose Nucleic Acid. Proc. Nat. Acad. Sci. (USA) 44, 432 (1958).Google Scholar
  38. 38.
    Duclaux, J.: Centrifuges et ultracentrifuges. Traité de Chimie Physique, No. 1228. Paris: Hermann et Cie. 1955.Google Scholar
  39. 39.
    Edsall, J. T.: The Size, Shape and Hydration of Protein Molecules. In: H. Neurath and K. Bailey, The Proteins, Vol. I, Part B, p. 549. New York: Academic Press. 1953.Google Scholar
  40. 40.
    Edsall, J. T.: Aspects actuels de la biochimie des acides aminés et des protéines. Actualités Biochimiques, No. 20. Paris: Masson et Cie. 1958.Google Scholar
  41. 41.
    Eriksson, A. F. V.: Mass Distribution of Unfractionated and Fractionated Polymethyl Methacrylates Determined by Ultracentrifugation and Fractional Precipitation. Acta Chem. Scand. 10, 360 (1956).Google Scholar
  42. 42.
    Faxen, H.: Über eine Differentialgleichung aus der physikalischen Chemie. Ark. Mat. Astron. Fysik 21 B, Nr. 3 (1929).Google Scholar
  43. 43.
    Field, E. O. and A. G. Ogston: Boundary Spreading in the Migration of a Solute in Rapid Dissociation Equilibrium. Theory and its Application to the Case of Human Hemoglobin. Biochemic. J. 60, 661 (1955).Google Scholar
  44. 44.
    Flory, P. J.: Principles of Polymer Chemistry. Ithaca: Cornell Univ. Press. 1953.Google Scholar
  45. 45.
    Fujita, H.: Effects of a Concentration Dependence of the Sedimentation Coefficient in Velocity Ultracentrifugation. J. Chem. Physics 24, 1084 (1956).Google Scholar
  46. 46.
    Fujita, H.: Evaluation of Diffusion Coefficients from Sedimentation Velocity Measurements. J. Physic. Chem. 63, 1092 (1959).Google Scholar
  47. 47.
    Gilbert, G. A.: General Discussion. Discuss. Faraday Soc. 20, 68 (1955).Google Scholar
  48. 48.
    Gilbert, G. A.: Sedimentation and Electrophoresis of Interacting Substances. I. Idealized Boundary Shape for a Single Substance Aggregating Reversibly. Proc. Roy. Soc. (London) A 250, 377 (1959).Google Scholar
  49. 49.
    Gilbert, G. A. and R. C. L. Jenkins: Boundary Problems in the Sedimentation and Electrophoresis of Complex Systems in Rapid Reversible Equilibrium. Nature (London) 177, 853 (1956).Google Scholar
  50. 49a.
    Gilbert, G. A. and R. C. L. Jenkins: Sedimentation and Electrophoresis Interacting Systems. II. Proc. Roy. Soc. (London) A 253, 420 (1959).Google Scholar
  51. 50.
    Gofman, J. W.: What We Do Know about Heart Attacks. New York: G. P. Putnam’s Sons. 1958.Google Scholar
  52. 51.
    Gofman, J. W., M. A. Lauffer, I. H. Page, F. J. Stare, et al.: Evaluation of Serum Lipoprotein and Cholesterol Measurements as Predictors of Clinical Complications of Atherosclerosis. Circulation 14, 691 (1956).Google Scholar
  53. 52.
    Goldberg, R. J.: A Theory of Antibody-Antigen Reactions. I. Theory for Reactions of Multivalent Antigen with Bivalent and Univalent Antibody. J. Amer. Chem. Soc. 74, 5715 (1952).Google Scholar
  54. 53.
    Goldberg, R. J.: Sedimentation in the Ultracentrifuge. J. Physic. Chem. 57, 194 (1953).Google Scholar
  55. 54.
    Goldberg, R. J. and J. W. Williams: Antigen-Antibody Reactions in Theory and Practice. Discuss. Faraday Soc. 13, 224 (1953).Google Scholar
  56. 55.
    Gosting, L. J.: Solution of Boundary Spreading Equations for Electrophoresis and the Velocity Ultracentrifuge. J. Amer. Chem. Soc. 74, 1548 (1952).Google Scholar
  57. 56.
    Gosting, L. J.: Measurement and Interpretation of Diffusion Coefficients of Proteins. Adv. Protein Chem. 11, 429 (1956).Google Scholar
  58. 57.
    Harrington, W. F., P. Johnson and R. H. Ottewill: Bovine Serum Albumin and its Behavior in Acid Solution. Biochemic. J. 62, 569 (1956).Google Scholar
  59. 58.
    Harrington, W. F. and J. A. Schellman: Evidence for the Instability of Hydrogen-Bonded Peptide Structures in Water, Based on Studies of Ribo-nuclease and Oxidized Ribonuclease. C. R. Trav. Lab. Carlsberg, Sér. chim. 30, 21 (1956).Google Scholar
  60. 59.
    Heidelberger, M. and K. O. Pedersen: Molecular Weight of Antibodies. J. exp. Medicine 65, 393 (1937).Google Scholar
  61. 60.
    Herzog, R. O., R. Illig und H. Kudar: Über die Diffusion in molekulardispersen Lösungen. Z. physik. Chem. A 167, 329 (1934).Google Scholar
  62. 61.
    Hirs, C. H. W., W. H. Stein and S. Moore: Peptides Obtained by Chymotryptic Hydrolysis of Performic Acid-Oxidized Ribonuclease. A Partial Structural Formula for the Oxidized Protein. J. Biol. Chem. 221, 151 (1956).Google Scholar
  63. 62.
    Hooyman, G. J.: Thermodynamics in Sedimentation of Paucidisperse Systems. Physica 22, 761 (1956).Google Scholar
  64. 63.
    Hooyman, G. J., H. Holtan, Jr., P. Mazur and S. R. de Groot: Thermodynamics of Irreversible Processes in Rotating Systems. Physica 19, 1095 (1953).Google Scholar
  65. 64.
    Johnson, J. S., K. A. Kraus and G. Scatchard: Distribution of Charged Polymers at Equilibrium in a Centrifugal Field. J. Physic. Chem. 58, 1034 (1954).Google Scholar
  66. 65.
    Johnston, J. P. and A. G. Ogston: A Boundary Anomaly Found in the Ultracentrifugal Sedimentation of Mixtures. Trans. Faraday Soc. 42, 789 (1946).Google Scholar
  67. 66.
    Jullander, I.: Studies on Nitrocellulose Including the Construction of an Osmotic Balance. Ark. Kemi, Mineral. Geol. 21 A, No. 8 (1945).Google Scholar
  68. 67.
    Kegeles, G. and F. J. Gutter: The Determination of Sedimentation Constants from Fresnel Diffraction Patterns. J. Amer. Chem. Soc. 73, 3770 (1951).Google Scholar
  69. 68.
    Kinell, P. O. and B. G. Ranby: Ultracentrifugal Sedimentation of Polymolecular Substances. Adv. Colloid Sci. 3, 161 (1950).Google Scholar
  70. 69.
    Kraemer, E. O.: In: T. Svedberg and K. O. Pedersen, The Ultracentrifuge, p. 327. Oxford: Clarendon Press. 1940.Google Scholar
  71. 70.
    Lamm, O.: Messung und Berechnung von Sedimentations-gleichgewichten an hochmolekularen Metaphosphaten. Ark. Kemi, Mineral. Geol. 17 A, No. 25 (1944).Google Scholar
  72. 71.
    Lansing, W. D. and E. O. Kraemer: Molecular Weight Analysis of Mixtures by Sedimentation. J. Amer. Chem. Soc. 57, 1369 (1935).Google Scholar
  73. 72.
    Lansing, W. D. and E. O. Kraemer: Solvation and the Determination of Molecular Weights by Means of the Svedberg Ultracentrifuge. J. Amer. Chem. Soc. 58, 1471 (1936).Google Scholar
  74. 73.
    Larner, J., B. R. Ray and H. F. Crandall: Pattern of Action of Crystalline Muscle Phosphorylase on Glycogen as Determined from Molecular Size Distribution Studies. J. Amer. Chem. Soc. 78, 5890 (1956).Google Scholar
  75. 74.
    Lauffer, M. A. and I. J. Bendet: The Hydration of Viruses. Adv. Virus Research 2, 241 (1954).Google Scholar
  76. 75.
    Levinthal, C.: The Mechanism of DNA Replication and Genetic Recombination in Phage. Proc. Nat. Acad. Sci. (USA) 42, 394 (1956).Google Scholar
  77. 76.
    Linderström-Lang, K. U.: Structure and Enzymatic Breakdown of Proteins. Cold Spring Harbor Sympos. Quant. Biol. 14, 117 (1950).Google Scholar
  78. 77.
    Linderström-Lang, K. U.: Proteins and Enzymes. Stanford Univ. Publ., Univ. Ser., Med. Sci., Lane Medical Lectures, Vol. VI, 1952.Google Scholar
  79. 78.
    Lindgren, F. T., H. A. Elliott and J. W. Gofman: The Ultracentrifugal Characterization and Isolation of Human Blood Lipids and Lipoproteins, with Applications to the Study of Atherosclerosis. J. Physic. Coll. Chem. 55, 80 (1951).Google Scholar
  80. 79.
    Loeb, G. I. and H. A. Scheraga: Hydrodynamic and Thermodynamic Properties of Bovine Serum Albumin at Low pH. J. Physic. Chem. 60, 1633 (1956).Google Scholar
  81. 80.
    Longsworth, L. G.: National Academy of Sciences Conference on the Ultra-centrifuge. Proc. Nat. Acad. Sci. (USA) 36, 502 (1950).Google Scholar
  82. 81.
    Longsworth, L. G.: Temperature Dependence of Diffusion in Aqueous Solutions. J. Physic. Chem. 58, 770 (1954).Google Scholar
  83. 82.
    Longsworth, L. G.: Moving Boundary Electrophoresis—Theory. In: M. Bier, Electrophoresis. Theory, Methods, and Applications, p. 91. New York and London: Academic Press. 1959.Google Scholar
  84. 83.
    Longsworth, L. G. and C. F. Jacobsen: An Electrophoretic Study of the Binding of Salt Ions by β-Lactoglobulin and Bovine Serum Albumin. J. Physic. Coll. Chem. 53, 126 (1949).Google Scholar
  85. 84.
    Lundgren, H. P. and W. H. Ward: Molecular Size of Proteins. In: D. M. Greenberg, Amino Acids and Proteins, p. 312. Springfield: Charles C. Thomas. 1951.Google Scholar
  86. 85.
    Madsen, N. B. and C. F. Cori: The Binding of Glycogen and Phosphorylase. J. Biol. Chem. 233, 1251 (1958).Google Scholar
  87. 86.
    Makinodan, T., N. Gengozian and R. E. Canning: Demonstration of a Normal Serum Microglobulin Coprecipitating with the Bovine Serum Albumin (BSA)-Chicken Anti-BSA Aggregate. Science (Washington) 130, 1419 (1959).Google Scholar
  88. 87.
    Mandelkern, L. and P. J. Flory: The Frictional Coefficient for Flexible Chain Molecules in Dilute Solution. J. Chem. Physics 20, 212 (1952).Google Scholar
  89. 88.
    Mandelkern, L., W. R. Krigbaum, H. A. Scheraga and P. J. Flory: Sedimentation Behavior of Flexible Chain Molecules: Polyisobutylene. J. Chem. Physics 20, 1392 (1952).Google Scholar
  90. 89.
    Marrack, J. R., H. Hoch and R. G. S. Johns: The Valency of Antibodies. Brit. J. exp. Pathol. 32, 212 (1951).Google Scholar
  91. 90.
    Massey, V., W. F. Harrington and B. S. Hartley: Physical Properties of Chymotrypsin and Chymotrypsinogen Using the Depolarization of Fluorescence Technique. Discuss. Faraday Soc. 20, 24 (1955).Google Scholar
  92. 91.
    McBain, J. W.: The Determination of Bound Water by Means of the Ultra-centrifuge. J. Amer. Chem. Soc. 58, 315 (1936).Google Scholar
  93. 92.
    McMeekin, T. L. and K. Marshall: Specific Volumes of Proteins and the Relationship to their Amino Acid Contents. Science (Washington) 116, 142 (1952).Google Scholar
  94. 93.
    Meselson, M. and F. W. Stahl: The Replication of DNA in Escherichia Coli. Proc. Nat. Acad. Sci. (USA) 44, 671 (1958).Google Scholar
  95. 94.
    Meselson, M., F. W. Stahl and J. Vinograd: Equilibrium Sedimentation of Macromolecules in Density Gradients. Proc. Nat. Acad. Sci. (USA) 43, 581 (1957).Google Scholar
  96. 95.
    Miller, L. E. and F. A. Hamm: Macromolecular Properties of Polyvinylpyrrolidone: Molecular Weight Distribution. J. Physic. Chem. 57, 110 (1953).Google Scholar
  97. 96.
    Moody, L. S.: II. The Molecular Behavior of Insulin in Acid Solution. Dissert., University of Wisconsin, 1944.Google Scholar
  98. 97.
    Neurath, H. and W. J. Dreyer: Mechanism of Activation of Trypsinogen and Chymotrypsinogen. Discuss. Faraday Soc. 20, 32 (1955).Google Scholar
  99. 98.
    Nichols, J. B. and E. D. Bailey: Determinations with the Ultracentrifuge. In: A. Weissberger, Physical Methods of Organic Chemistry, 2nd ed., p. 621. New York: Interscience Publ. Inc. 1949.Google Scholar
  100. 99.
    Nishihara, T. and P. Doty: The Sonic Fragmentation of Collagen Macro-molecules. Proc. Nat. Acad. Sci. (USA) 44, 411 (1958).Google Scholar
  101. 100.
    O’Donnell, I. J., R. L. Baldwin and J. W. Williams: Correlation of the N ⇋α Reaction of Thyroglobulin with the Type of Breakdown Produced by Papain. Biochim. Biophys. Acta 28, 294 (1958).Google Scholar
  102. 101.
    O’Donnell, I. J. and L. J. Gosting: The Concentration Dependence of the Four Diffusion Coefficients of the System NaCl-KCl-H2O at 25° C. In: W. J. Hamer, The Structure of Electrolytic Solutions, p. 160. New York: J. Wiley and Sons, Inc. 1959.Google Scholar
  103. 102.
    Ogston, A. G.: Dimensions of Solute Particles from Dynamic Properties of their Solutions. Trans. Faraday Soc. 49, 1481 (1953).Google Scholar
  104. 103.
    Ogston, A. G. and J. M. A. Tilley: Studies on the Heterogeneity of Crystallized β-Lactoglobulin. Biochemic. J. 59, 644 (1955).Google Scholar
  105. 104.
    Ogston, A. G. and M. P. Tombs: Heterogeneity of Bovine β-Lactoglobulin. Biochemic. J. 66, 399 (1957).Google Scholar
  106. 105.
    Ogston, A. G. and E. F. Woods: Sedimentation of Some Fractions of Degraded Dextran. Trans. Faraday Soc. 50, 635 (1954).Google Scholar
  107. 106.
    Oncle y, J. L.: private communication.Google Scholar
  108. 107.
    Oncley, J. L., E. Ellenbogen, D. Gitlin and F. R. N. Gurt: Protein-Protein Interactions. J. Physic. Chem. 56, 85 (1952).Google Scholar
  109. 108.
    Oncley, J. L., K. W. Walton and D. G. Cornwell: A Rapid Method for the Bulk Isolation of β-Lipoproteins from Human Plasma. J. Amer. Chem. Soc. 79, 4666 (1957).Google Scholar
  110. 109.
    Pappenheimer, A. M., Jr., H. P. Lundgren and J. W. Williams: Studies on the Molecular Weight of Diphtheria Toxin, Antitoxin, and their Reaction Products. J. exp. Medicine 71, 247 (1940).Google Scholar
  111. 110.
    Pedersen, K. O.: Über das Sedimentationsgleichgewicht von anorganischen Salzen in der Ultrazentrifuge. Z. physik. Chem. A 170, 41 (1934).Google Scholar
  112. 111.
    Pedersen, K. O.: Ultracentrifugal and Electrophoretic Studies on the Milk Proteins. II. The Lactoglobulin of Palmer. Biochemic. J. 30, 961 (1936).Google Scholar
  113. 112.
    Pedersen, K. O.: On Charge and Specific Ion Effects on Sedimentation in the Ultracentrifuge. J. Physic. Chem. 62, 1282 (1958).Google Scholar
  114. 113.
    Peller, L.: Sedimentation in Multicomponent Systems. J. Chem. Physics 29, 415 (1958).Google Scholar
  115. 114.
    Perrin, F.: Mouvement brownien d’un ellipsoïde. II. Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales. J. phys., Radium [7] 7, 1 (1936).Google Scholar
  116. 115.
    Polglase, W. J., D. M. Brown and E. L. Smith: Studies on Human Glycogen. II. Sedimentation in the Ultracentrifuge. J. Biol. Chem. 199, 105 (1952).Google Scholar
  117. 116.
    Reichmann, M. E., S. A. Rice, C. A. Thomas and P. Doty: Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Amer. Chem. Soc. 76, 3047 (1954).Google Scholar
  118. 117.
    Rich, A. and F. H. C. Crick: Structure of Collagen. Nature (London) 176, 915 (1955).Google Scholar
  119. 118.
    Rolfe, R. and M. Meselson: The Relative Homogeneity of Microbial DNA. Proc. Nat. Acad. Sci. (USA) 45, 1039 (1959).Google Scholar
  120. 119.
    Rosenkranz, H. S. and A. Bendich: Sedimentation Studies of Fractions of Deoxyribonucleic Acid. J. Amer. Chem. Soc. 81, 902 (1959).Google Scholar
  121. 120.
    Rosenkranz, H. S. and A. Bendich: Studies on the Sedimentation Behavior of Artificial Mixtures of Deoxyribonucleic Acid. J. Amer. Chem. Soc. 81, 2842 (1959).Google Scholar
  122. 121.
    Rosenkranz, H. S. and A. Bendich: Studies on the Effect of Heat on Deoxyribonucleic Acid. J. Amer. Chem. Soc. 81, 6255 (1959).Google Scholar
  123. 122.
    Rothen, A.: Molecular Weight and Electrophoresis of Crystalline Ribonuclease. J. Gen. Physiol. 24, 203 (1940).Google Scholar
  124. 123.
    Sadron, C.: Methods of Determining the Form and Dimensions of Particles in Solution: a Critical Survey. Progr. Biophys. Biophys. Chem. 3, 237 (1953).Google Scholar
  125. 124.
    Schachman, H. K.: Ultracentrifugation in Biochemistry. New York and London: Academic Press. 1959.Google Scholar
  126. 125.
    Schachman, H. K. and M. A. Lauffer: The Hydration, Size and Shape of Tobacco Mosaic Virus. J. Amer. Chem. Soc. 71, 536 (1949).Google Scholar
  127. 126.
    Schachman, H. K. and M. A. Lauffer: The Density Correction of Sedimentation Constants. J. Amer. Chem. Soc. 72, 4266 (1950).Google Scholar
  128. 127.
    Scheraga, H. A. and L. Mandelkern: Consideration of the Hydrodynamic Properties of Proteins. J. Amer. Chem. Soc. 75, 179 (1953).Google Scholar
  129. 128.
    Schumaker, V. N. and H. K. Schachman: Ultracentrifugal Analysis of Dilute Solutions. Biochim. Biophys. Acta 23, 628 (1957).Google Scholar
  130. 129.
    Shooter, K. V. and J. A. V. Butler: Sedimentation of Deoxyribonucleic Acid at Low Concentrations. Trans. Faraday Soc. 52, 734 (1956).Google Scholar
  131. 130.
    Signer, R. and H. Gross: Ultrazentrifugale Polydispersitätsbestimmungen an hochpolymeren Stoffen. 95. Mitt, über hochpolymere Verbindungen. Helv. Chim. Acta 17, 726 (1934).Google Scholar
  132. 131.
    Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. I. The Valence of Precipitating Rabbit Antibody. J. Amer. Chem. Soc. 74, 1794 (1952).Google Scholar
  133. 132.
    Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. II. Equilibrium Properties. J. Amer. Chem. Soc. 75, 5577 (1953).Google Scholar
  134. 133.
    Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. III. Thermodynamics of the Reaction between Bovine Serum Albumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 3499 (1955).Google Scholar
  135. 134.
    Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. IV. The Effect of pH on the Reaction between Bovine Serum Albumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 3504 (1955).Google Scholar
  136. 135.
    Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. V. Thermodynamics of the Reaction between Ovalbumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 4851 (1955).Google Scholar
  137. 136.
    Singer, S. J., L. Eggman and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. VI. The Effect of pH on the Reaction between Ovalbumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 4855 (1955).Google Scholar
  138. 137.
    Smith, R. F. and D. R. Briggs: Electrophoretic Analysis of Protein Interaction. I. Interaction of Bovine Serum Albumin and Methyl Orange. J. Physic. Coll. Chem. 54, 33 (1950).Google Scholar
  139. 138.
    Smithies, O.: The Application of Four Methods for Assessing Protein Homogeneity to Crystalline β-Lactoglobulin: an Anomaly in Phase Rule Solubility Tests. Biochemic. J. 58, 31 (1954).Google Scholar
  140. 139.
    Steiner, R. F.: Reversible Association Processes of Globular Proteins. V. The Study of Associating Systems by the Methods of Macromolecular Physics. Arch. Biochem. Biophys. 49, 400 (1954).Google Scholar
  141. 140.
    Sueoka, N.: A Statistical Analysis of Deoxyribonucleic Acid Distribution in Density Gradient Centrifugation. Proc. Nat. Acad. Sci. (USA) 45, 1480 (1959).Google Scholar
  142. 141.
    Sueoka, N., J. Marmur and P. Doty: Heterogeneity of Deoxyribonucleic Acids. II. Dependence of the Density of Deoxyribonucleic Acids on Guanine-Cytosine Content. Nature (London) 183, 1429 (1959).Google Scholar
  143. 142.
    Svedberg, T.: Zentrifugierung, Diffusion und Sedimentationsgleichgewicht von Kolloiden und hochmolekularen Stoffen. Kolloid-Z. 36, Erg.-Bd., 53 (1925).Google Scholar
  144. 143.
    Svedberg, T. and J. B. Nichols: Determination of Size and Distribution of Size of Particle by Centrifugal Methods. J. Amer. Chem. Soc. 45, 2910 (1923).Google Scholar
  145. 144.
    Svedberg, T. and K. O. Pedersen: The Ultracentrifuge. Oxford: Clarendon Press. 1940.Google Scholar
  146. 145.
    Svedberg, T. and H. Rinde: Determination of the Distribution of Size of Particles in Disperse Systems. J. Amer. Chem. Soc. 45, 943 (1923).Google Scholar
  147. 146.
    Svedberg, T. and H. Rinde: The Ultra-centrifuge, a New Instrument for the Determination of Size and Distribution of Size of Particle in Amicroscopic Colloids. J. Amer. Chem. Soc. 46, 2677 (1924).Google Scholar
  148. 147.
    Taylor, J. H., P. S. Woods and W. L. Hughes: The Organization and Duplication of Chromosomes as Revealed by Autoradiographic Studies Using Tritium-Labeled Thymidine. Proc. Nat. Acad. Sci. (USA) 43, 122 (1957).Google Scholar
  149. 148.
    Timasheff, S. N. and J. G. Kirkwood: Electrophoresis-Convection Applied to the Complexed Insulin-Protamine System. J. Amer. Chem. Soc. 75, 3124 (1953).Google Scholar
  150. 149.
    Timasheff, S. N. and R. Townend: The Association Behavior of β-Lacto-globulins A and B. J. Amer. Chem. Soc. 80, 4433 (1958).Google Scholar
  151. 150.
    Tiselius, A.: Über die Berechnung thermodynamischer Eigenschaften von kolloiden Lösungen aus Messungen mit der Ultrazentrifuge. Z. physik. Chem. 124, 449 (1926).Google Scholar
  152. 151.
    Tiselius, A.: Study of the Electrophoresis of Proteins by the Moving-Boundary Method. Nova Acta Regiae Soc. Sci. Upsaliensis 7, No. 4 (1930).Google Scholar
  153. 152.
    Tiselius, A.: Über den Einfluß der Ladung auf die Sedimentationsgeschwindigkeit von Kolloiden, besonders in der Ultrazentrifuge. Kolloid-Z. 59, 306 (1932).Google Scholar
  154. 153.
    Townend, R. and S. N. Timasheff: The pH Dependence of the Association of β-Lactoglobulin. Arch. Biochem. Biophys. 63, 482 (1956).Google Scholar
  155. 154.
    Townend, R. and S. N. Timasheff: The Molecular Weight of β-Lactoglobulin. J. Amer. Chem. Soc. 79, 3613 (1957).Google Scholar
  156. 155.
    Trautman, R., V. N. Schumaker, W. F. Harrington and H. K. Schachman: The Determination of Concentrations in the Ultracentrifugation of Two-Component Systems. J. Chem. Physics 22, 555 (1954).Google Scholar
  157. 156.
    Van Holde, K. E. and R. L. Baldwin: Rapid Attainment of Sedimentation Equilibrium. J. Physic. Chem. 62, 734 (1958).Google Scholar
  158. 157.
    Wales, M. and J. W. Williams: Effect of Solvation on Sedimentation Experiments. J. Polymer Sci. 8, 449 (1952).Google Scholar
  159. 158.
    Williams, J. W.: Sedimentation Analysis and Some Related Problems. J. Polymer Sci. 12, 351 (1954).Google Scholar
  160. 159.
    Williams, J. W., R. L. Baldwin, W. M. Saunders and P. G. Squire: Boundary Spreading in Sedimentation Velocity Experiments. I. The Enzymatic Degradation of Serum Globulins. J. Amer. Chem. Soc. 74, 1542 (1952).Google Scholar
  161. 160.
    Williams, J. W. and W. M. Saunders: Size Distribution Analysis in Plasma Extender Systems. II. Dextran. J. Physic. Chem. 58, 854 (1954).Google Scholar
  162. 161.
    Williams, J. W., W. M. Saunders and J. S. Cicirelli: Size Distribution Analysis in Plasma Extender Systems. I. Gelatin. J. Physic. Chem. 58, 774 (1954).Google Scholar
  163. 162.
    Williams, J. W., K. E. Van Holde, R. L. Baldwin and H. Fujita: The Theory of Sedimentation Analysis. Chem. Rev. 58, 715 (1958).Google Scholar
  164. 163.
    Yeandle, S.: Effect of Electric Field on Equilibrium Sedimentation of Macromolecules in a Density Gradient of Cesium Chloride. Proc. Nat. Acad. Sci. (USA) 45, 184 (1959).Google Scholar

Copyright information

© Springer-Verlag in Vienna 1960

Authors and Affiliations

  • J. W. Williams
    • 1
  1. 1.MadisonUSA

Personalised recommendations