Skip to main content

Selected Subjects in Sedimentation Analysis, with Some Applications to Biochemistry

  • Chapter

Abstract

There are in general two kinds of articles which have to do with sedimentation behavior. In the one the subject matter is descriptive of the theory and practice of the use of the ultracentrifuge in analysis; in the other consideration is given to the application of the methods so provided in the solution of problems in biology and medicine. This time the author has felt that an attempt to review some selected topics, both as to the main outlines of the theory and the applications of the technique, might be of interest. Because of limitations of space it could not be a balanced, objective account of the subject, so that of choice we have written principally about those aspects of the subject in which we are currently interested and supposedly better informed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akeley, D. F. and L. J. Gosting: Studies of the Diffusion of Mixed Solutes with the Gouy Diffusiometer. J. Amer. Chem. Soc. 75, 5685 (1953).

    CAS  Google Scholar 

  2. Alberty, R. A. and H. H. Marvin, Jr.: Protein-Ion Interaction by the Moving Boundary Method. Theory of the Method. J. Physic. Coll. Chem. 54, 47 (1950).

    CAS  Google Scholar 

  3. Anfinsen, C. B., R. R. Redfield, W. L. Choate, J. Page and W. R. Carroll: Studies on the Gross Structure, Cross-Linkages, and Terminal Sequences in Ribonuclease. J. Biol. Chem. 207, 201 (1954).

    CAS  Google Scholar 

  4. Archibald, W. J.: The Process of Diffusion in a Centrifugal Field of Force. Physic. Rev. 53, 746 (1938).

    CAS  Google Scholar 

  5. Archibald, W. J.: The Process of Diffusion in a Centrifugal Field of Force. II. Physic. Rev. 54, 371 (1938).

    CAS  Google Scholar 

  6. Aschaffenburg, R. and J. Drewry: Occurrence of Different β-Lactoglobulins in Cow Milk. Nature (London) 176, 218 (1955).

    CAS  Google Scholar 

  7. Baldwin, R. L.: The Neurotoxin of Shigella Shigae. II. Examination of the Toxin in the Oil-Turbine Ultracentrifuge. Brit. J. exp. Pathol. 34, 217 (1953).

    CAS  Google Scholar 

  8. Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. II. The Correction of Sedimentation Coefficient Distributions for the Dependence of Sedimentation Coefficient on Concentration. J. Amer. Chem. Soc. 76, 402 (1954).

    CAS  Google Scholar 

  9. Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. III. Effects of Diffusion on the Measurement of Heterogeneity when Concentration Dependence is Absent. J. Physic. Chem. 58, 1081 (1954).

    CAS  Google Scholar 

  10. Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. 5. Measurement of the Diffusion Coefficient of Bovine Albumin by Fujita’s Equation. Biochemic. J. 65, 503 (1957).

    CAS  Google Scholar 

  11. Baldwin, R. L.: Molecular Weights from Studies of Sedimentation and Diffusion in Three-Component Systems. J. Amer. Chem. Soc. 80, 496 (1958).

    CAS  Google Scholar 

  12. Baldwin, R. L.: Equilibrium Sedimentation in a Density Gradient of Materials Having a Continuous Distribution of Effective Densities. Proc. Nat. Acad. Sci. (USA) 45, 939 (1959).

    CAS  Google Scholar 

  13. Baldwin, R. L.: Boundary Spreading in Sedimentation Velocity Experiments. VI. A Better Method for Finding Distributions of Sedimentation Coefficient when the Effects of Diffusion are Large. J. Physic. Chem. 63, 1570 (1959).

    CAS  Google Scholar 

  14. Baldwin, R. L., L. J. Gosting, J. W. Williams and R. A. Alberty: Transport Processes and the Heterogeneity of Proteins. Discuss. Faraday Soc. 20, 13 (1955).

    Google Scholar 

  15. Baldwin, R. L. and A. G. Ogston: The Diffusion and Sedimentation Coefficients of a Liquid Two-Component System in Terms of Macroscopic Properties of the System. Trans. Faraday Soc. 50, 749 (1954).

    CAS  Google Scholar 

  16. Baldwin, R. L. and J. W. Williams: Boundary Spreading in Sedimentation Velocity Experiments. J. Amer. Chem. Soc. 72, 4325 (1950).

    CAS  Google Scholar 

  17. Banovitz, J., S. J. Singer and H. R. Wolfe: Precipitin Production in Chickens. XVIII. Physical Chemical Studies on Complexes of Bovine Serum Albumin and its Chicken Antibodies. J. Immunology 82, 481 (1959).

    CAS  Google Scholar 

  18. Bell, D. J., H. Gutfreund, R. Cecil and A. G. Ogston: Physicochemical Observations of Some Glycogens. Biochemie. J. 42, 405 (1948).

    CAS  Google Scholar 

  19. Boedtker, H. and P. Doty: On the Nature of the Structural Element of Collagen. J. Amer. Chem. Soc. 77, 248 (1955).

    CAS  Google Scholar 

  20. Boedtker, H. and P. Doty: The Native and Denatured States of Soluble Collagen. J. Amer. Chem. Soc. 78, 4267 (1956).

    CAS  Google Scholar 

  21. Bridgman, W. B.: Some Physical Chemical Characteristics of Glycogen. J. Amer. Chem. Soc. 64, 2349 (1942).

    CAS  Google Scholar 

  22. Bridgman, W. B. and J. W. Williams: Optical Problems of the Ultracentrifuge. Ann. New York Acad. Sci. 43, 195 (1942).

    CAS  Google Scholar 

  23. Brown, R. A. and S. N. Timasheff: Applications of Moving Boundary Electrophoresis to Protein Systems. In: M. Bier, Electrophoresis. Theory, Methods, and Applications, p. 317. New York and London: Academic Press. 1959.

    Google Scholar 

  24. Butler, J. A. V., D. J. R. Laurence, A. B. Robins and K. V. Shooter: Molecular Weights and Physical Properties of Deoxyribonucleic Acid. Nature (London) 180, 1340 (1957).

    CAS  Google Scholar 

  25. Butler, J. A. V., D. M. Phillips and K. V. Shooter: Influence of Protein Heterogeneity of Deoxyribonucleic Acid (DNA). Arch. Biochem. Biophys. 71, 423 (1957).

    CAS  Google Scholar 

  26. Buzzell, J. G. and C. Tanford: The Effect of Charge and Ionic Strength on the Viscosity of Ribonuclease. J. Physic. Chem. 60, 1204 (1956).

    CAS  Google Scholar 

  27. Cann, J. R., J. G. Kirkwood and R. A. Brown: Theory of Isomerization Equilibrium in Electrophoresis. I. Arch. Biochem. Biophys. 72, 37 (1957).

    CAS  Google Scholar 

  28. Cecil, R. and A. G. Ogston: The Accuracy of the Svedberg Oil-Turbine Ultracentrifuge. Biochemic. J. 43, 592 (1948).

    CAS  Google Scholar 

  29. Cecil, R. and A. G. Ogston: The Sedimentation Constant, Diffusion Constant and Molecular Weight of Lactoglobulin. Biochemie. J. 44, 33 (1949).

    CAS  Google Scholar 

  30. Charlwood, P. A.: Partial Specific Volumes of Proteins in Relation to Composition and Environment. J. Amer. Chem. Soc. 79, 776 (1957).

    CAS  Google Scholar 

  31. Creeth, J. M.: Studies of Free Diffusion in Liquids with the Rayleigh Method. III. The Analysis of Known Mixtures and Some Preliminary Investigations with Proteins. J. Physic. Chem. 62, 66 (1958).

    CAS  Google Scholar 

  32. Crick, F. H. C. and J. D. Watson: The Complementary Structure of Deoxyribonucleic Acid (DNA). Proc. Roy. Soc. (London) A 223, 80 (1954).

    CAS  Google Scholar 

  33. Davison, P. F.: The Effect of Hydrodynamic Shear on the Deoxyribonucleic Acid from T2 and T4 Bacteriophages. Proc. Nat. Acad. Sci. (USA) 45, 1560 (1959).

    CAS  Google Scholar 

  34. Dayhoff, M. O., G. E. Perlmann and D. A. MacInnes: The Partial Specific Volumes, in Aqueous Solution, of Three Proteins. J. Amer. Chem. Soc. 74, 2515 (1952).

    CAS  Google Scholar 

  35. de Groot, S. R., P. Mazur and J. T. G. Overbeek: Nonequilibrium Thermodynamics of the Sedimentation Potential and Electrophoresis. J. Chem. Physics 20, 1825 (1952).

    Google Scholar 

  36. de Lalla, O. F. and J. W. Gofman: Ultracentrifugal Analysis of Serum Lipoproteins. In: D. Glick, Methods of Biochemical Analysis, Vol. 1, p. 459. New York: Interscience Publ., Inc. 1954.

    Google Scholar 

  37. Doty, P., B. B. McGill and S. A. Rice: The Properties of Sonic Fragments of Deoxyribose Nucleic Acid. Proc. Nat. Acad. Sci. (USA) 44, 432 (1958).

    CAS  Google Scholar 

  38. Duclaux, J.: Centrifuges et ultracentrifuges. Traité de Chimie Physique, No. 1228. Paris: Hermann et Cie. 1955.

    Google Scholar 

  39. Edsall, J. T.: The Size, Shape and Hydration of Protein Molecules. In: H. Neurath and K. Bailey, The Proteins, Vol. I, Part B, p. 549. New York: Academic Press. 1953.

    Google Scholar 

  40. Edsall, J. T.: Aspects actuels de la biochimie des acides aminés et des protéines. Actualités Biochimiques, No. 20. Paris: Masson et Cie. 1958.

    Google Scholar 

  41. Eriksson, A. F. V.: Mass Distribution of Unfractionated and Fractionated Polymethyl Methacrylates Determined by Ultracentrifugation and Fractional Precipitation. Acta Chem. Scand. 10, 360 (1956).

    CAS  Google Scholar 

  42. Faxen, H.: Über eine Differentialgleichung aus der physikalischen Chemie. Ark. Mat. Astron. Fysik 21 B, Nr. 3 (1929).

    Google Scholar 

  43. Field, E. O. and A. G. Ogston: Boundary Spreading in the Migration of a Solute in Rapid Dissociation Equilibrium. Theory and its Application to the Case of Human Hemoglobin. Biochemic. J. 60, 661 (1955).

    CAS  Google Scholar 

  44. Flory, P. J.: Principles of Polymer Chemistry. Ithaca: Cornell Univ. Press. 1953.

    Google Scholar 

  45. Fujita, H.: Effects of a Concentration Dependence of the Sedimentation Coefficient in Velocity Ultracentrifugation. J. Chem. Physics 24, 1084 (1956).

    CAS  Google Scholar 

  46. Fujita, H.: Evaluation of Diffusion Coefficients from Sedimentation Velocity Measurements. J. Physic. Chem. 63, 1092 (1959).

    CAS  Google Scholar 

  47. Gilbert, G. A.: General Discussion. Discuss. Faraday Soc. 20, 68 (1955).

    Google Scholar 

  48. Gilbert, G. A.: Sedimentation and Electrophoresis of Interacting Substances. I. Idealized Boundary Shape for a Single Substance Aggregating Reversibly. Proc. Roy. Soc. (London) A 250, 377 (1959).

    CAS  Google Scholar 

  49. Gilbert, G. A. and R. C. L. Jenkins: Boundary Problems in the Sedimentation and Electrophoresis of Complex Systems in Rapid Reversible Equilibrium. Nature (London) 177, 853 (1956).

    CAS  Google Scholar 

  50. Gilbert, G. A. and R. C. L. Jenkins: Sedimentation and Electrophoresis Interacting Systems. II. Proc. Roy. Soc. (London) A 253, 420 (1959).

    CAS  Google Scholar 

  51. Gofman, J. W.: What We Do Know about Heart Attacks. New York: G. P. Putnam’s Sons. 1958.

    Google Scholar 

  52. Gofman, J. W., M. A. Lauffer, I. H. Page, F. J. Stare, et al.: Evaluation of Serum Lipoprotein and Cholesterol Measurements as Predictors of Clinical Complications of Atherosclerosis. Circulation 14, 691 (1956).

    CAS  Google Scholar 

  53. Goldberg, R. J.: A Theory of Antibody-Antigen Reactions. I. Theory for Reactions of Multivalent Antigen with Bivalent and Univalent Antibody. J. Amer. Chem. Soc. 74, 5715 (1952).

    CAS  Google Scholar 

  54. Goldberg, R. J.: Sedimentation in the Ultracentrifuge. J. Physic. Chem. 57, 194 (1953).

    CAS  Google Scholar 

  55. Goldberg, R. J. and J. W. Williams: Antigen-Antibody Reactions in Theory and Practice. Discuss. Faraday Soc. 13, 224 (1953).

    Google Scholar 

  56. Gosting, L. J.: Solution of Boundary Spreading Equations for Electrophoresis and the Velocity Ultracentrifuge. J. Amer. Chem. Soc. 74, 1548 (1952).

    CAS  Google Scholar 

  57. Gosting, L. J.: Measurement and Interpretation of Diffusion Coefficients of Proteins. Adv. Protein Chem. 11, 429 (1956).

    CAS  Google Scholar 

  58. Harrington, W. F., P. Johnson and R. H. Ottewill: Bovine Serum Albumin and its Behavior in Acid Solution. Biochemic. J. 62, 569 (1956).

    CAS  Google Scholar 

  59. Harrington, W. F. and J. A. Schellman: Evidence for the Instability of Hydrogen-Bonded Peptide Structures in Water, Based on Studies of Ribo-nuclease and Oxidized Ribonuclease. C. R. Trav. Lab. Carlsberg, Sér. chim. 30, 21 (1956).

    CAS  Google Scholar 

  60. Heidelberger, M. and K. O. Pedersen: Molecular Weight of Antibodies. J. exp. Medicine 65, 393 (1937).

    CAS  Google Scholar 

  61. Herzog, R. O., R. Illig und H. Kudar: Über die Diffusion in molekulardispersen Lösungen. Z. physik. Chem. A 167, 329 (1934).

    Google Scholar 

  62. Hirs, C. H. W., W. H. Stein and S. Moore: Peptides Obtained by Chymotryptic Hydrolysis of Performic Acid-Oxidized Ribonuclease. A Partial Structural Formula for the Oxidized Protein. J. Biol. Chem. 221, 151 (1956).

    CAS  Google Scholar 

  63. Hooyman, G. J.: Thermodynamics in Sedimentation of Paucidisperse Systems. Physica 22, 761 (1956).

    CAS  Google Scholar 

  64. Hooyman, G. J., H. Holtan, Jr., P. Mazur and S. R. de Groot: Thermodynamics of Irreversible Processes in Rotating Systems. Physica 19, 1095 (1953).

    CAS  Google Scholar 

  65. Johnson, J. S., K. A. Kraus and G. Scatchard: Distribution of Charged Polymers at Equilibrium in a Centrifugal Field. J. Physic. Chem. 58, 1034 (1954).

    CAS  Google Scholar 

  66. Johnston, J. P. and A. G. Ogston: A Boundary Anomaly Found in the Ultracentrifugal Sedimentation of Mixtures. Trans. Faraday Soc. 42, 789 (1946).

    CAS  Google Scholar 

  67. Jullander, I.: Studies on Nitrocellulose Including the Construction of an Osmotic Balance. Ark. Kemi, Mineral. Geol. 21 A, No. 8 (1945).

    Google Scholar 

  68. Kegeles, G. and F. J. Gutter: The Determination of Sedimentation Constants from Fresnel Diffraction Patterns. J. Amer. Chem. Soc. 73, 3770 (1951).

    CAS  Google Scholar 

  69. Kinell, P. O. and B. G. Ranby: Ultracentrifugal Sedimentation of Polymolecular Substances. Adv. Colloid Sci. 3, 161 (1950).

    Google Scholar 

  70. Kraemer, E. O.: In: T. Svedberg and K. O. Pedersen, The Ultracentrifuge, p. 327. Oxford: Clarendon Press. 1940.

    Google Scholar 

  71. Lamm, O.: Messung und Berechnung von Sedimentations-gleichgewichten an hochmolekularen Metaphosphaten. Ark. Kemi, Mineral. Geol. 17 A, No. 25 (1944).

    Google Scholar 

  72. Lansing, W. D. and E. O. Kraemer: Molecular Weight Analysis of Mixtures by Sedimentation. J. Amer. Chem. Soc. 57, 1369 (1935).

    CAS  Google Scholar 

  73. Lansing, W. D. and E. O. Kraemer: Solvation and the Determination of Molecular Weights by Means of the Svedberg Ultracentrifuge. J. Amer. Chem. Soc. 58, 1471 (1936).

    CAS  Google Scholar 

  74. Larner, J., B. R. Ray and H. F. Crandall: Pattern of Action of Crystalline Muscle Phosphorylase on Glycogen as Determined from Molecular Size Distribution Studies. J. Amer. Chem. Soc. 78, 5890 (1956).

    CAS  Google Scholar 

  75. Lauffer, M. A. and I. J. Bendet: The Hydration of Viruses. Adv. Virus Research 2, 241 (1954).

    CAS  Google Scholar 

  76. Levinthal, C.: The Mechanism of DNA Replication and Genetic Recombination in Phage. Proc. Nat. Acad. Sci. (USA) 42, 394 (1956).

    CAS  Google Scholar 

  77. Linderström-Lang, K. U.: Structure and Enzymatic Breakdown of Proteins. Cold Spring Harbor Sympos. Quant. Biol. 14, 117 (1950).

    Google Scholar 

  78. Linderström-Lang, K. U.: Proteins and Enzymes. Stanford Univ. Publ., Univ. Ser., Med. Sci., Lane Medical Lectures, Vol. VI, 1952.

    Google Scholar 

  79. Lindgren, F. T., H. A. Elliott and J. W. Gofman: The Ultracentrifugal Characterization and Isolation of Human Blood Lipids and Lipoproteins, with Applications to the Study of Atherosclerosis. J. Physic. Coll. Chem. 55, 80 (1951).

    CAS  Google Scholar 

  80. Loeb, G. I. and H. A. Scheraga: Hydrodynamic and Thermodynamic Properties of Bovine Serum Albumin at Low pH. J. Physic. Chem. 60, 1633 (1956).

    CAS  Google Scholar 

  81. Longsworth, L. G.: National Academy of Sciences Conference on the Ultra-centrifuge. Proc. Nat. Acad. Sci. (USA) 36, 502 (1950).

    Google Scholar 

  82. Longsworth, L. G.: Temperature Dependence of Diffusion in Aqueous Solutions. J. Physic. Chem. 58, 770 (1954).

    CAS  Google Scholar 

  83. Longsworth, L. G.: Moving Boundary Electrophoresis—Theory. In: M. Bier, Electrophoresis. Theory, Methods, and Applications, p. 91. New York and London: Academic Press. 1959.

    Google Scholar 

  84. Longsworth, L. G. and C. F. Jacobsen: An Electrophoretic Study of the Binding of Salt Ions by β-Lactoglobulin and Bovine Serum Albumin. J. Physic. Coll. Chem. 53, 126 (1949).

    CAS  Google Scholar 

  85. Lundgren, H. P. and W. H. Ward: Molecular Size of Proteins. In: D. M. Greenberg, Amino Acids and Proteins, p. 312. Springfield: Charles C. Thomas. 1951.

    Google Scholar 

  86. Madsen, N. B. and C. F. Cori: The Binding of Glycogen and Phosphorylase. J. Biol. Chem. 233, 1251 (1958).

    CAS  Google Scholar 

  87. Makinodan, T., N. Gengozian and R. E. Canning: Demonstration of a Normal Serum Microglobulin Coprecipitating with the Bovine Serum Albumin (BSA)-Chicken Anti-BSA Aggregate. Science (Washington) 130, 1419 (1959).

    Google Scholar 

  88. Mandelkern, L. and P. J. Flory: The Frictional Coefficient for Flexible Chain Molecules in Dilute Solution. J. Chem. Physics 20, 212 (1952).

    CAS  Google Scholar 

  89. Mandelkern, L., W. R. Krigbaum, H. A. Scheraga and P. J. Flory: Sedimentation Behavior of Flexible Chain Molecules: Polyisobutylene. J. Chem. Physics 20, 1392 (1952).

    CAS  Google Scholar 

  90. Marrack, J. R., H. Hoch and R. G. S. Johns: The Valency of Antibodies. Brit. J. exp. Pathol. 32, 212 (1951).

    CAS  Google Scholar 

  91. Massey, V., W. F. Harrington and B. S. Hartley: Physical Properties of Chymotrypsin and Chymotrypsinogen Using the Depolarization of Fluorescence Technique. Discuss. Faraday Soc. 20, 24 (1955).

    Google Scholar 

  92. McBain, J. W.: The Determination of Bound Water by Means of the Ultra-centrifuge. J. Amer. Chem. Soc. 58, 315 (1936).

    CAS  Google Scholar 

  93. McMeekin, T. L. and K. Marshall: Specific Volumes of Proteins and the Relationship to their Amino Acid Contents. Science (Washington) 116, 142 (1952).

    CAS  Google Scholar 

  94. Meselson, M. and F. W. Stahl: The Replication of DNA in Escherichia Coli. Proc. Nat. Acad. Sci. (USA) 44, 671 (1958).

    CAS  Google Scholar 

  95. Meselson, M., F. W. Stahl and J. Vinograd: Equilibrium Sedimentation of Macromolecules in Density Gradients. Proc. Nat. Acad. Sci. (USA) 43, 581 (1957).

    CAS  Google Scholar 

  96. Miller, L. E. and F. A. Hamm: Macromolecular Properties of Polyvinylpyrrolidone: Molecular Weight Distribution. J. Physic. Chem. 57, 110 (1953).

    CAS  Google Scholar 

  97. Moody, L. S.: II. The Molecular Behavior of Insulin in Acid Solution. Dissert., University of Wisconsin, 1944.

    Google Scholar 

  98. Neurath, H. and W. J. Dreyer: Mechanism of Activation of Trypsinogen and Chymotrypsinogen. Discuss. Faraday Soc. 20, 32 (1955).

    Google Scholar 

  99. Nichols, J. B. and E. D. Bailey: Determinations with the Ultracentrifuge. In: A. Weissberger, Physical Methods of Organic Chemistry, 2nd ed., p. 621. New York: Interscience Publ. Inc. 1949.

    Google Scholar 

  100. Nishihara, T. and P. Doty: The Sonic Fragmentation of Collagen Macro-molecules. Proc. Nat. Acad. Sci. (USA) 44, 411 (1958).

    CAS  Google Scholar 

  101. O’Donnell, I. J., R. L. Baldwin and J. W. Williams: Correlation of the N ⇋α Reaction of Thyroglobulin with the Type of Breakdown Produced by Papain. Biochim. Biophys. Acta 28, 294 (1958).

    Google Scholar 

  102. O’Donnell, I. J. and L. J. Gosting: The Concentration Dependence of the Four Diffusion Coefficients of the System NaCl-KCl-H2O at 25° C. In: W. J. Hamer, The Structure of Electrolytic Solutions, p. 160. New York: J. Wiley and Sons, Inc. 1959.

    Google Scholar 

  103. Ogston, A. G.: Dimensions of Solute Particles from Dynamic Properties of their Solutions. Trans. Faraday Soc. 49, 1481 (1953).

    CAS  Google Scholar 

  104. Ogston, A. G. and J. M. A. Tilley: Studies on the Heterogeneity of Crystallized β-Lactoglobulin. Biochemic. J. 59, 644 (1955).

    CAS  Google Scholar 

  105. Ogston, A. G. and M. P. Tombs: Heterogeneity of Bovine β-Lactoglobulin. Biochemic. J. 66, 399 (1957).

    CAS  Google Scholar 

  106. Ogston, A. G. and E. F. Woods: Sedimentation of Some Fractions of Degraded Dextran. Trans. Faraday Soc. 50, 635 (1954).

    CAS  Google Scholar 

  107. Oncle y, J. L.: private communication.

    Google Scholar 

  108. Oncley, J. L., E. Ellenbogen, D. Gitlin and F. R. N. Gurt: Protein-Protein Interactions. J. Physic. Chem. 56, 85 (1952).

    CAS  Google Scholar 

  109. Oncley, J. L., K. W. Walton and D. G. Cornwell: A Rapid Method for the Bulk Isolation of β-Lipoproteins from Human Plasma. J. Amer. Chem. Soc. 79, 4666 (1957).

    CAS  Google Scholar 

  110. Pappenheimer, A. M., Jr., H. P. Lundgren and J. W. Williams: Studies on the Molecular Weight of Diphtheria Toxin, Antitoxin, and their Reaction Products. J. exp. Medicine 71, 247 (1940).

    CAS  Google Scholar 

  111. Pedersen, K. O.: Über das Sedimentationsgleichgewicht von anorganischen Salzen in der Ultrazentrifuge. Z. physik. Chem. A 170, 41 (1934).

    Google Scholar 

  112. Pedersen, K. O.: Ultracentrifugal and Electrophoretic Studies on the Milk Proteins. II. The Lactoglobulin of Palmer. Biochemic. J. 30, 961 (1936).

    CAS  Google Scholar 

  113. Pedersen, K. O.: On Charge and Specific Ion Effects on Sedimentation in the Ultracentrifuge. J. Physic. Chem. 62, 1282 (1958).

    CAS  Google Scholar 

  114. Peller, L.: Sedimentation in Multicomponent Systems. J. Chem. Physics 29, 415 (1958).

    CAS  Google Scholar 

  115. Perrin, F.: Mouvement brownien d’un ellipsoïde. II. Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales. J. phys., Radium [7] 7, 1 (1936).

    CAS  Google Scholar 

  116. Polglase, W. J., D. M. Brown and E. L. Smith: Studies on Human Glycogen. II. Sedimentation in the Ultracentrifuge. J. Biol. Chem. 199, 105 (1952).

    CAS  Google Scholar 

  117. Reichmann, M. E., S. A. Rice, C. A. Thomas and P. Doty: Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Amer. Chem. Soc. 76, 3047 (1954).

    CAS  Google Scholar 

  118. Rich, A. and F. H. C. Crick: Structure of Collagen. Nature (London) 176, 915 (1955).

    CAS  Google Scholar 

  119. Rolfe, R. and M. Meselson: The Relative Homogeneity of Microbial DNA. Proc. Nat. Acad. Sci. (USA) 45, 1039 (1959).

    CAS  Google Scholar 

  120. Rosenkranz, H. S. and A. Bendich: Sedimentation Studies of Fractions of Deoxyribonucleic Acid. J. Amer. Chem. Soc. 81, 902 (1959).

    CAS  Google Scholar 

  121. Rosenkranz, H. S. and A. Bendich: Studies on the Sedimentation Behavior of Artificial Mixtures of Deoxyribonucleic Acid. J. Amer. Chem. Soc. 81, 2842 (1959).

    CAS  Google Scholar 

  122. Rosenkranz, H. S. and A. Bendich: Studies on the Effect of Heat on Deoxyribonucleic Acid. J. Amer. Chem. Soc. 81, 6255 (1959).

    CAS  Google Scholar 

  123. Rothen, A.: Molecular Weight and Electrophoresis of Crystalline Ribonuclease. J. Gen. Physiol. 24, 203 (1940).

    CAS  Google Scholar 

  124. Sadron, C.: Methods of Determining the Form and Dimensions of Particles in Solution: a Critical Survey. Progr. Biophys. Biophys. Chem. 3, 237 (1953).

    CAS  Google Scholar 

  125. Schachman, H. K.: Ultracentrifugation in Biochemistry. New York and London: Academic Press. 1959.

    Google Scholar 

  126. Schachman, H. K. and M. A. Lauffer: The Hydration, Size and Shape of Tobacco Mosaic Virus. J. Amer. Chem. Soc. 71, 536 (1949).

    CAS  Google Scholar 

  127. Schachman, H. K. and M. A. Lauffer: The Density Correction of Sedimentation Constants. J. Amer. Chem. Soc. 72, 4266 (1950).

    CAS  Google Scholar 

  128. Scheraga, H. A. and L. Mandelkern: Consideration of the Hydrodynamic Properties of Proteins. J. Amer. Chem. Soc. 75, 179 (1953).

    CAS  Google Scholar 

  129. Schumaker, V. N. and H. K. Schachman: Ultracentrifugal Analysis of Dilute Solutions. Biochim. Biophys. Acta 23, 628 (1957).

    CAS  Google Scholar 

  130. Shooter, K. V. and J. A. V. Butler: Sedimentation of Deoxyribonucleic Acid at Low Concentrations. Trans. Faraday Soc. 52, 734 (1956).

    CAS  Google Scholar 

  131. Signer, R. and H. Gross: Ultrazentrifugale Polydispersitätsbestimmungen an hochpolymeren Stoffen. 95. Mitt, über hochpolymere Verbindungen. Helv. Chim. Acta 17, 726 (1934).

    CAS  Google Scholar 

  132. Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. I. The Valence of Precipitating Rabbit Antibody. J. Amer. Chem. Soc. 74, 1794 (1952).

    CAS  Google Scholar 

  133. Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. II. Equilibrium Properties. J. Amer. Chem. Soc. 75, 5577 (1953).

    CAS  Google Scholar 

  134. Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. III. Thermodynamics of the Reaction between Bovine Serum Albumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 3499 (1955).

    CAS  Google Scholar 

  135. Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. IV. The Effect of pH on the Reaction between Bovine Serum Albumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 3504 (1955).

    CAS  Google Scholar 

  136. Singer, S. J. and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. V. Thermodynamics of the Reaction between Ovalbumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 4851 (1955).

    CAS  Google Scholar 

  137. Singer, S. J., L. Eggman and D. H. Campbell: Physical Chemical Studies of Soluble Antigen-Antibody Complexes. VI. The Effect of pH on the Reaction between Ovalbumin and its Rabbit Antibodies. J. Amer. Chem. Soc. 77, 4855 (1955).

    CAS  Google Scholar 

  138. Smith, R. F. and D. R. Briggs: Electrophoretic Analysis of Protein Interaction. I. Interaction of Bovine Serum Albumin and Methyl Orange. J. Physic. Coll. Chem. 54, 33 (1950).

    CAS  Google Scholar 

  139. Smithies, O.: The Application of Four Methods for Assessing Protein Homogeneity to Crystalline β-Lactoglobulin: an Anomaly in Phase Rule Solubility Tests. Biochemic. J. 58, 31 (1954).

    CAS  Google Scholar 

  140. Steiner, R. F.: Reversible Association Processes of Globular Proteins. V. The Study of Associating Systems by the Methods of Macromolecular Physics. Arch. Biochem. Biophys. 49, 400 (1954).

    CAS  Google Scholar 

  141. Sueoka, N.: A Statistical Analysis of Deoxyribonucleic Acid Distribution in Density Gradient Centrifugation. Proc. Nat. Acad. Sci. (USA) 45, 1480 (1959).

    CAS  Google Scholar 

  142. Sueoka, N., J. Marmur and P. Doty: Heterogeneity of Deoxyribonucleic Acids. II. Dependence of the Density of Deoxyribonucleic Acids on Guanine-Cytosine Content. Nature (London) 183, 1429 (1959).

    CAS  Google Scholar 

  143. Svedberg, T.: Zentrifugierung, Diffusion und Sedimentationsgleichgewicht von Kolloiden und hochmolekularen Stoffen. Kolloid-Z. 36, Erg.-Bd., 53 (1925).

    Google Scholar 

  144. Svedberg, T. and J. B. Nichols: Determination of Size and Distribution of Size of Particle by Centrifugal Methods. J. Amer. Chem. Soc. 45, 2910 (1923).

    Google Scholar 

  145. Svedberg, T. and K. O. Pedersen: The Ultracentrifuge. Oxford: Clarendon Press. 1940.

    Google Scholar 

  146. Svedberg, T. and H. Rinde: Determination of the Distribution of Size of Particles in Disperse Systems. J. Amer. Chem. Soc. 45, 943 (1923).

    Google Scholar 

  147. Svedberg, T. and H. Rinde: The Ultra-centrifuge, a New Instrument for the Determination of Size and Distribution of Size of Particle in Amicroscopic Colloids. J. Amer. Chem. Soc. 46, 2677 (1924).

    Google Scholar 

  148. Taylor, J. H., P. S. Woods and W. L. Hughes: The Organization and Duplication of Chromosomes as Revealed by Autoradiographic Studies Using Tritium-Labeled Thymidine. Proc. Nat. Acad. Sci. (USA) 43, 122 (1957).

    CAS  Google Scholar 

  149. Timasheff, S. N. and J. G. Kirkwood: Electrophoresis-Convection Applied to the Complexed Insulin-Protamine System. J. Amer. Chem. Soc. 75, 3124 (1953).

    CAS  Google Scholar 

  150. Timasheff, S. N. and R. Townend: The Association Behavior of β-Lacto-globulins A and B. J. Amer. Chem. Soc. 80, 4433 (1958).

    CAS  Google Scholar 

  151. Tiselius, A.: Über die Berechnung thermodynamischer Eigenschaften von kolloiden Lösungen aus Messungen mit der Ultrazentrifuge. Z. physik. Chem. 124, 449 (1926).

    CAS  Google Scholar 

  152. Tiselius, A.: Study of the Electrophoresis of Proteins by the Moving-Boundary Method. Nova Acta Regiae Soc. Sci. Upsaliensis 7, No. 4 (1930).

    Google Scholar 

  153. Tiselius, A.: Über den Einfluß der Ladung auf die Sedimentationsgeschwindigkeit von Kolloiden, besonders in der Ultrazentrifuge. Kolloid-Z. 59, 306 (1932).

    CAS  Google Scholar 

  154. Townend, R. and S. N. Timasheff: The pH Dependence of the Association of β-Lactoglobulin. Arch. Biochem. Biophys. 63, 482 (1956).

    CAS  Google Scholar 

  155. Townend, R. and S. N. Timasheff: The Molecular Weight of β-Lactoglobulin. J. Amer. Chem. Soc. 79, 3613 (1957).

    Google Scholar 

  156. Trautman, R., V. N. Schumaker, W. F. Harrington and H. K. Schachman: The Determination of Concentrations in the Ultracentrifugation of Two-Component Systems. J. Chem. Physics 22, 555 (1954).

    CAS  Google Scholar 

  157. Van Holde, K. E. and R. L. Baldwin: Rapid Attainment of Sedimentation Equilibrium. J. Physic. Chem. 62, 734 (1958).

    Google Scholar 

  158. Wales, M. and J. W. Williams: Effect of Solvation on Sedimentation Experiments. J. Polymer Sci. 8, 449 (1952).

    CAS  Google Scholar 

  159. Williams, J. W.: Sedimentation Analysis and Some Related Problems. J. Polymer Sci. 12, 351 (1954).

    CAS  Google Scholar 

  160. Williams, J. W., R. L. Baldwin, W. M. Saunders and P. G. Squire: Boundary Spreading in Sedimentation Velocity Experiments. I. The Enzymatic Degradation of Serum Globulins. J. Amer. Chem. Soc. 74, 1542 (1952).

    CAS  Google Scholar 

  161. Williams, J. W. and W. M. Saunders: Size Distribution Analysis in Plasma Extender Systems. II. Dextran. J. Physic. Chem. 58, 854 (1954).

    CAS  Google Scholar 

  162. Williams, J. W., W. M. Saunders and J. S. Cicirelli: Size Distribution Analysis in Plasma Extender Systems. I. Gelatin. J. Physic. Chem. 58, 774 (1954).

    CAS  Google Scholar 

  163. Williams, J. W., K. E. Van Holde, R. L. Baldwin and H. Fujita: The Theory of Sedimentation Analysis. Chem. Rev. 58, 715 (1958).

    CAS  Google Scholar 

  164. Yeandle, S.: Effect of Electric Field on Equilibrium Sedimentation of Macromolecules in a Density Gradient of Cesium Chloride. Proc. Nat. Acad. Sci. (USA) 45, 184 (1959).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag in Vienna

About this chapter

Cite this chapter

Williams, J.W. (1960). Selected Subjects in Sedimentation Analysis, with Some Applications to Biochemistry. In: Zechmeister, L. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progrés Dans la Chimie des Substances Organiques Naturelles. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progrés Dans la Chimie des Substances Organiques Naturelles, vol 18. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7159-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7159-2_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7161-5

  • Online ISBN: 978-3-7091-7159-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics