Advertisement

Abstract

The flowers of the herbaceous perennial Chrysanthemum cinerariaefolium Vis. (synonym, Pyrethrum cinerariaefolium Trev.), a member of the Compositae family, are valued for their insecticidal properties: the history of their employment has been discussed by Gnadinger (77,78). Commercial supplies were originally obtained from Dalmatia and Japan, but to-day the principal world source is Kenya where a rationally administered industry provides standardised products. Other Compositae flowers have insecticidal activity but of these only Chrysanthemum coccineum Willd. (synonyms, C. carneum Steud and C. roseum Adam) has commercial value, though it is cultivated on a restricted scale. The active insecticidal principles, the Pyrethrins, are contained mostly in the achenes of C. cinerariaefolium (19–21). Harvesting the crop requires much hand labour as maximum yields are obtained by gathering the flower (Fig. I) when four or five rows of disc florets are open. The flowers are artificially dried and baled and are known commercially as “pyrethrum”. As insecticides, the Pyrethrins have the advantage of low mammalian toxicity and so far insects have not easily developed resistance towards them. They are also well known for their rapid “knock-down” or paralytic properties which are valuable in dealing with flying insects.

Keywords

Food Agric Insecticidal Activity Absolute Configuration Displacement Chromatography Cyclopropane Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acree, F., Jr. and F. B. Laforge: Constituents of Pyrethrum Flowers. X. Identification of the Fatty Acids Combined with Pyrethrolone. J. Organ. Chem. (USA) 2, 308 (1937).CrossRefGoogle Scholar
  2. 2.
    Acree, F., Jr., C. C. Roan and F. H. Babers: The Synthesis and Chromatographic Purification of Radioactive Allethrin. J. econ. Entomol. 47, 1066 (1954).Google Scholar
  3. 3.
    Allen, C. F. H.: Carbonyl Bridge Compounds and Related Substances. Chem. Rev. 37, 209 (1945).CrossRefGoogle Scholar
  4. 4.
    Barthel, W. F. and H. L. Haller: Purification of Pyrethrum Extract with Nitromethane. U.S. Patent 2372183 (1945).Google Scholar
  5. 5.
    Barthel, W. F., H. L. Haller and F. B. Laforge: Pyrethrins for Aerosols. Soap 20,(7), 121 (1944).Google Scholar
  6. 6.
    Barton, D. H. R., O. C. BöCokman and P. de Mayo: Sesquiterpenoids. Part XII. Further Investigations on the Chemistry of Pyrethrosin. J. Chem. Soc. (London) 1960, 2263.Google Scholar
  7. 7.
    Bavley, A. and E. C. Schreiber: Process for the Manufacture of 2,5-Diketo-nonen-3-ol. U. S. Patent 2768967 (1956).Google Scholar
  8. 8.
    Beroza, M.: Pyrethrum Synergists in Sesame Oil. Sesamolin, a Potent Synergist. J. Amer. Oil Chem. Soc. 31, 302 (1954).CrossRefGoogle Scholar
  9. 9.
    —: Sesamolin and Related Compounds as Synergists for Pyrethrum. Soap 32,(7), 128 (1956).Google Scholar
  10. 10.
    Beroza, M. and W. F. Barthel: Chemical Structure and Activity of Pyrethrin and Allethrin Synergists for Control of the Housefly. J. Agric. Food Chem. 5, 855 (1957).CrossRefGoogle Scholar
  11. 11.
    Boon, W. R. and F. Hall: Ethyl Chrysanthemate. Brit. Patent 740014 (1955).Google Scholar
  12. 12.
    Brown, N. C., D. T. Hollinshead, R. F. Phipers and M. C. Wood: New Isomers of the Pyrethrins Formed by the Action of Heat. Pyrethrum Post 4, No. 2, 13 (1957).Google Scholar
  13. 13.
    R. F. Phipers and M. C. Wood —: Application of Chromatography to Analysis of Pyrethrins. Soap 33,(9), 87, (10), 91 (1957).Google Scholar
  14. 14.
    Brown, N. C. and R. F. Phipers: The Analysis of Pyrethrins. Errors Arising During the Examination of Partially Degraded Materials. Pyrethrum Post 3, No. 4, 23 (1955).Google Scholar
  15. 15.
    Busvine, J. R. and R. Nash: The Potency and Persistence of Some New Synthetic Insecticides. Bull, entom. Res. 44, 371 (1953).CrossRefGoogle Scholar
  16. 16.
    Cahn, R. S., C. K. Ingold and V. Prelog: The Specification of Asymmetric Configuration in Organic Chemistry. Experientia 12, 81 (1956).CrossRefGoogle Scholar
  17. 17.
    Campbell, I. G. M. and S. H. Harper: Experiments on the Synthesis of the Pyrethrins. Part I. Synthesis of Chrysanthemum Monocarboxylic Acid. J. Chem. Soc. (London) 1945, 283.Google Scholar
  18. 18.
    —: The Chrysanthemumcarboxylic Acids. IV. Optical Resolution of the Chrysanthemic Acids. J. Sci. Food Agric. 3, 189 (1952).CrossRefGoogle Scholar
  19. 19.
    Chandler, S. E.: Botanical Aspects of Pyrethrum. General Considerations; the Seat of the Active Principles. Pyrethrum Post 2, No. 3, 1 (1951).Google Scholar
  20. 20.
    —: Botanical Aspects of Pyrethrum. II. Further Observations. Pyrethrum Post 3, No. 3, 6 (1954).Google Scholar
  21. 21.
    —: Botanical Aspects of Pyrethrum. III. The Natural History of the Secretory Organs; the Pyrethrins Content of the Fertile Achenes (“Seed”). Pyrethrum Post 4, No. I, 10 (1956).Google Scholar
  22. 22.
    Cornelius, J. A.: A Chromatographic Procedure for the Determination of Pyrethrins in Pyrethrum Extracts. Analyst 79, 458 (1954).Google Scholar
  23. 23.
    Crombie, L. and J. Crossley: Unpublished work.Google Scholar
  24. 24.
    Crombie, L., A. J. B. Edgar, S. H. Harper, M. W. Lowe and D. Thompson: Experiments on the Synthesis of the Pyrethrins. Part V. Synthesis of Side-chain Isomers and Analogues of Cinerone, Cinerolone, and Cinerin-I. J. Chem. Soc. (London) 1950, 3552.Google Scholar
  25. 25.
    Crombie, L., M. Elliott and S. H. Harper: Experiments on the Synthesis of the Pyrethrins. Part III. Synthesis of Dihydrocinerin-I and Tetrahydro-pyrethrin-I; a Study of the Action of N-Bromosuccinimide on 3-Methyl-2-n-alkyl (and alkenyl)-cyclopent-2-en-I-ones. J. Chem. Soc. (London) 1950, 971.Google Scholar
  26. 26.
    Crombie, L., M. Elliott, S. H. Harper and H. W. B. Reed: Total Synthesis of Some Pyrethrins. Nature (London) 162, 222 (1948).CrossRefGoogle Scholar
  27. 27.
    Crombie, L. and S. H. Harper: Synthesis of Cinerone, Cinerolone and Cinerin-I. Nature (London) 164, 534 (1949).CrossRefGoogle Scholar
  28. 28.
    —“Leaf Alcohol” and the Stereochemistry of the cis-and the trans-n-Hex-3-en-I-ols and n-Pent-3-en-I-ols. J. Chem. Soc. (London) 1950, 873.Google Scholar
  29. 29.
    —Experiments on the Synthesis of the Pyrethrins. Part IV. Synthesis of Cinerone, Cinerolone, and Cinerin-I. J. Chem. Soc. (London) 1950, 1152.Google Scholar
  30. 30.
    —Experiments on the Synthesis of the Pyrethrins. Part VIII. Stereochemistry of Jasmone and Identity of Dihydropyrethrone. J. Chem. Soc. (London) 1952, 869.Google Scholar
  31. 31.
    —The Chrysanthemumcarboxylic Acids. Part VI. The Configurations of the Chrysanthemic Acids. J. Chem. Soc. (London) 1954, 470.Google Scholar
  32. 32.
    —Spectroscopic Assignment of Geometrical Configuration to Rethrins-I. Chem. and Ind. 1958, 1001.Google Scholar
  33. 33.
    Crombie, L., S. H. Harper and K. Mackenzie: Unpublished work.Google Scholar
  34. 34.
    Crombie, L., S. H. Harper and F. C. Newman: Experiments on the Synthesis of the Pyrethrins. Part XI. Synthesis of czs-Pyrethrolone and Pyrethrin I: Introduction of the cis-Penta-2,4-dienyl System by Selective Hydrogenation. J. Chem. Soc. (London) 1956, 3963.Google Scholar
  35. 35.
    Crombie, L., S. H. Harper, F. C. Newman, D. Thompson and R. J. D. Smith: Experiments on the Synthesis of the Pyrethrins. Part X. Intermediates for the Synthesis of cis-Pyrethrolone. J. Chem. Soc. (London) 1956, 126.Google Scholar
  36. 36.
    Crombie, L., S. H. Harper and K. C. Sleep: Synthesis of the Naturally Derived Geometrical Isomer of Chrysanthemum Dicarboxylic Acid. Chem. and Ind. 1954, 1538.Google Scholar
  37. 37.
    —Experiments on the Synthesis of the Pyrethrins. Part XIII. Total Synthesis of (±)-cis-and trans-Chrysanthemumdicarboxylic Acid, (±)-cis-and trans-Pyrethric Acid, and Rethrins II. J. Chem. Soc. (London) 1957, 2743.Google Scholar
  38. 38.
    Crombie, L., S. H. Harper, R. E. Stedman and D. Thompson: Experiments on the Synthesis of the Pyrethrins. Part VI. New Syntheses of the Cinerolones. J. Chem. Soc. (London) 1951, 2445.Google Scholar
  39. 39.
    Crombie, L., S. H. Harper and D. Thompson: Experiments on the Synthesis of the Pyrethrins. Part VII. Synthesis of traws-Pyrethrone, trans-Pyrethrolone and a Pyrethrin-I. J. Chem. Soc. (London) 1951, 2906.Google Scholar
  40. 40.
    Crombie, L., S. H. Harper and R. A. Thompson: The Chrysanthemum-carboxylic Acids. III. Lactonisation of the Chrysanthemic Acids. J. Sci. Food Agric. 2, 421 (1951).CrossRefGoogle Scholar
  41. 41.
    Crowley, M. P., H. S. Inglis, M. Snarey and E. M. Thain: Personal communication.Google Scholar
  42. 42.
    Cupples, H. L.: Infrared Spectra of Cinerolone and Synthetic traws-(2-Butenyl)-4-hydroxy-3-methyl-2-cyclopenten-I-one. J. Amer. Chem. Soc. 72, 4522 (1950).CrossRefGoogle Scholar
  43. 43.
    Dauben, H. J., Jr. and E. Wenkert: Synthesis and Structure of Tetra-hydropyrethrolone. J. Amer. Chem. Soc. 69, 2074 (1947).CrossRefGoogle Scholar
  44. 44.
    de Mayo, P.: The Chemistry of Natural Products, Vol. II. Mono-and Sesquiterpenoids. New York: Interscience Publ. 1959.Google Scholar
  45. 45.
    Elliott, M.: Unpublished work.Google Scholar
  46. 46.
    —: The Insecticidal Activity of the Pyrethrins and Related Compounds. Pyrethrum Post 2(3), 18 (1951).Google Scholar
  47. 47.
    —: Allethrin. J. Sci. Food Agric. 5, 505 (1954).CrossRefGoogle Scholar
  48. 48.
    — The Preparation of cycloPentenones from the Products of Stobbe Condensations with Aliphatic Ketones. J. Chem. Soc. (London) 1956, 2231.Google Scholar
  49. 49.
    — Isolation and Purification Of (+)-Pyrethrolone From Pyrethrum Extract: Reconstitution of Pyrethrins I and II. Chem. and Ind. 1958, 685.Google Scholar
  50. 50.
    — Pyrethrolone and Related Compounds. Chem. and Ind. 1960, 1142.Google Scholar
  51. 51.
    — The Structures of the Enols of Pyrethrolone. Proc. Chem. Soc. (London) 1960, 406.Google Scholar
  52. 52.
    —: The Pyrethrins and Related Compounds. Part II. Infra-red Spectra of the Pyrethrins and of Other Constituents of Pyrethrum Extract. J. Applied Chem. (London) 11, 19 (1961).CrossRefGoogle Scholar
  53. 53.
    Elliott, M. and P. H. Needham: Unpublished work.Google Scholar
  54. 54.
    Elliott, M., P. H. Needham and C. Potter: The Insecticidal Activity of Substances Related to the Pyrethrins. I. Toxicities of Two Synthetic Pyrethrin-like Esters Relative to that of the Natural Pyrethrins and the Significance of the Results in the Bioassay of Closely Related Compounds. Ann. appl. Biol. 37, 490 (1950).CrossRefGoogle Scholar
  55. 55.
    Elliott, M., J. S. Olejniczak and J. J. Garner: Laboratory-Scale Molecular Distillation of the Pyrethrins. Pyrethrum Post 5(2), 8 (1959).Google Scholar
  56. 56.
    Ettlinger, M. G., S. H. Harper and F. Kennedy: The Addition of Ethyl Diazoaeetate to Sorbic Esters: A Correction. J. Chem. Soc. (London) 1957, 922.Google Scholar
  57. 57.
    Fales, J. H., O. F. Bodenstein and M. Beroza: New Pyrethrum Synergist. Soap 33,(2) 79 (1957).Google Scholar
  58. 58.
    Farkaš, J., H. Komrsová, J. KrupičKa und J. J. K. Novák: Beziehung zwischen chemischem Bau und Insektizid-Aktivität in der Reihe der Pyrethrum-Verbindungen. IV. Über den Einflu ß der Substituenten in der Scitenkette auf den Verlauf der LaForge-Cyclisierung. Coll. Czech. Chem. Comm. 25, 1824 (1960).Google Scholar
  59. 58A.
    Feinstein, L. and M. Jacobson: Insecticides Occurring in Higher Plants. Fortschr. Chem. organ. Naturstoffe 10, 423 (1953).Google Scholar
  60. 59.
    Feldman, A.: Stereo Numbers: A Short Designation for Stereoisomers. J. Organ. Chem. (USA) 24, 1556 (1959).CrossRefGoogle Scholar
  61. 60.
    Frank, R. L., R. Armstrong, J. Kwiatek and H. A. Price: The Preparation of Cyclopentenones from Lactones. J. Amer. Chem. Soc. 70, 1379 (1948).CrossRefGoogle Scholar
  62. 61.
    Fredga, A.: Optically Active Forms of Terebic Acid. Svensk Papperstidn. 50, No. 11 B, 91 (1947).Google Scholar
  63. 62.
    Fredga, A. und E. Leskinen: Konfiguration einiger Terpene. Ark. Kemi, Mineral. Geol. 19 B, No. 1 (1945).Google Scholar
  64. 63.
    Freeman, S. K.: Infra-red Spectrophotometric Determination of Allethrin. Analyt. Chemistry 27, 1268 (1955).CrossRefGoogle Scholar
  65. 64.
    Freudenberg, K. und G. S. Sidhu: Die absolute Konfiguration des Sesamins und Pinoresinols. Tetrahedron Letters 1960, No. 20, 3.Google Scholar
  66. 65.
    Fujitani, J.: Chemistry and Pharmacology of Insect Powder. Arch. exp. Pathol. Pharmakol. 61, 47 (1909).CrossRefGoogle Scholar
  67. 66.
    Fukushi, S.: The Components of the Unsaponifiable Matter of the Wax of Chrysanthemum cinerariaefolium. J. Agric. Chem. Soc. Japan 26, 1 (1952).Google Scholar
  68. 67.
    Gersdorff, W. A.: Toxicity to Houseflies of the Pyrethrins and Cinerins, and Derivatives, in Relation to Chemical Structure. J. econ. Entomol. 40, 878 (1947).Google Scholar
  69. 68.
    Gersdorff, W. A. and N. Mitlin: A Bioassay of some Stereoisomeric Constituents of Allethrin. J. Washington Acad. Sci. 42, 313 (1952).Google Scholar
  70. 69.
    —: The Relative Toxicity to House Flies of the Methyl and Ethyl Analogues of Allethrin. J. econ. Entomol. 46, 945 (1953).Google Scholar
  71. 70.
    Gersdorff, W. A., N. Mitlin and M. Beroza: Comparative Effects of Sesamolin, Sesamin and Sesamol in Pyrethrum and Allethrin Mixtures as House-Fly Sprays. J. econ. Entomol. 47, 839 (1954).Google Scholar
  72. 71.
    Gersdorff, W. A. and P. G. Piquett: Comparative Effect of Piperetine in Pyrethrum and Allethrin Mixtures as Housefly Sprays. J. econ. Entomol. 50, 164 (1957).Google Scholar
  73. 72.
    —: Effect of Molecular Configuration on Relative Toxicity to House Flies as Demonstrated with the Four cis-Isomers of Allethrin. J. econ. Entomol. 51, 181 (1958).Google Scholar
  74. 73.
    Gersdorff, W. A., P. G. Piquett and M. Beroza: Comparative Effects of the Optical Forms of Epiasarinin, Asarinin and Sesamin in Pyrethrum Mists as Housefly Sprays. J. econ. Entomol. 50, 409 (1957).Google Scholar
  75. 74.
    Gillam, A. E. and T. F. West: Observations on the Absorption Spectra of Terpenoid Compounds. Part IV. Five-Atom-Ring Unsaturated Ketones. J. Chem. Soc. (London) 1942, 486.Google Scholar
  76. 75.
    —Absorption Spectra and the Structure of Pyrethrins I and II. J. Chem. Soc. (London) 1942, 671.Google Scholar
  77. 76.
    Gillam, A. E. and T. F. West: Absorption Spectra and the Structure of Pyrethrins I and II. Part II. J. Chem. Soc. (London) 1944, 49.Google Scholar
  78. 77.
    Gnadinger, C. B.: Pyrethrum Flowers, 2nd Ed. Minneapolis, Minn.: Mc-Laughlin Gormley King Co. 1936.Google Scholar
  79. 78.
    —: Pyrethrum Flowers. Suppl. To 2Nd Ed. (1936–1945). Minneapolis, Minn.: McLaughlin Gormley King Co. 1945.Google Scholar
  80. 79.
    Haller, H. L. and F. B. Laforge: Constituents of Pyrethrum Flowers. IV. The Semicarbazones of Pyrethrins I and II and of Pyrethrolone. J. Organ. Chem. (USA) I, 38 (1936).CrossRefGoogle Scholar
  81. 80.
    —: Constituents of Pyrethrum Flowers. VII. The Behavior of the Pyrethrins on Hydrogénation. J. Organ. Chem. (USA) 2, 49 (1937).CrossRefGoogle Scholar
  82. 81.
    —: Constituents of Pyrethrum Flowers. IX. The Optical Rotation of Pyrethrolone and the Partial Synthesis of Pyrethrins. J. Amer. Chem. Soc. 59, 1678 (1937).CrossRefGoogle Scholar
  83. 82.
    —: Constituents of Pyrethrum Flowers. XIV. The Structures of the Enols of Pyrethrolone. J. Organ. Chem. (USA) 3, 543 (1939).CrossRefGoogle Scholar
  84. 83.
    Haller, H. L., F. B. Laforge and W. N. Sullivan: Some Compounds Related to Sesamin: Their Structures and Their Synergistic Effect with Pyrethrum Insecticides. J. Organ. Chem. (USA) 7, 185 (1942).CrossRefGoogle Scholar
  85. 84.
    Harper, S. H.: Experiments on the Synthesis of the Pyrethrins. Part II. The Structure of Cinerone. J. Chem. Soc. (London) 1946, 892.Google Scholar
  86. 85.
    — A Nomenclature for the Pyrethrins. Chem. and Ind. 1949, 636; Pyrethrum Post 2, (I) 20 (1950).Google Scholar
  87. 86.
    —: The Chrysanthemumcarboxylic Acids. VII. Catalytic Hydrogenation of the Chrysanthemic Acids. J. Sci. Food Agric. 5, 529 (1954).CrossRefGoogle Scholar
  88. 87.
    Harper, S. H. and M. A. Kazi: Unpublished work.Google Scholar
  89. 88.
    Harper, S. H. and H. W. B. Reed: The Chrysanthemumcarboxylic Acids. II. Esterification of the Chrysanthemic Acids. J. Sci. Food Agric. 2, 414 (1951).CrossRefGoogle Scholar
  90. 89.
    — Experiments on the Synthesis of the Pyrethrins. Part IX. The Addition of Ethyl Diazoacetate to Sorbic Esters. J. Chem. Soc. (London) 1955 779.Google Scholar
  91. 90.
    Harper, S. H., H. W. B. Reed and R. A. Thompson: The Chrysanthemumcarboxylic Acids. I. Preparation of the Chrysanthemic Acids. J. Sci. Food Agric. 2, 94 (1951).CrossRefGoogle Scholar
  92. 91.
    Harper, S. H. and K. C. Sleep: The Chrysanthemumcarboxylic Acids. VIII. A Modified Route to the Chrysanthemic Acids. J. Sci. Food Agric. 6, 116 (1955).CrossRefGoogle Scholar
  93. 92.
    Harper, S. H. and R. A. Thompson: The Chrysanthemumcarboxylic Acids. V. Hydration of the Chrysanthemic Acids. J. Sci. Food Agric. 3, 230 (1952).CrossRefGoogle Scholar
  94. 93.
    Harvill, E. K., A. Hartzell and J. M. Arthur: Toxicity of Piperine Solutions to Houseflies. Contrib. Boyce Thompson Inst. 13, 87 (1943).Google Scholar
  95. 94.
    Haynes, H. L., H. R. Guest and H. A. Stansbury Et Al.: Cyclethrin. Soap 31,(2) 141 (1955).Google Scholar
  96. 85.
    Hedenburg, O. F. and H. Wachs: Methylenedioxyphenyl Cyclohexenones. J. Amer. Chem. Soc. 70, 2216 (1948).CrossRefGoogle Scholar
  97. 96.
    Henne, A. L. and H. H. Chanan: Conjugated Diolefins by Double Bond Displacement. II. J. Amer. Chem. Soc. 66, 395 (1944).CrossRefGoogle Scholar
  98. 97.
    Hunsdiecker, H.: Über das Verhalten der γ-Diketone. II. Mitt. Der Cyclo-pentenon-Ringschluß der γ-Diketone vom Typus CH3 · CO·CH2 · CH2 · CO · · CH2 · R. Ber. dtsch. chem. Ges. 75, 455 (1942).CrossRefGoogle Scholar
  99. 98.
    Hunsdiecker, H. und E. Wirth: Über das Verhalten der γ-Diketone. III. Mitt. Die Synthese des Jasmons. Ber. dtsch. chem. Ges. 75, 460 (1942).CrossRefGoogle Scholar
  100. 99.
    Incho, H. H. and H. Greenberg: Synergistic Effect of Piperonyl Butoxide with the Active Principles of Pyrethrum and with Allethrolone Esters of Chrysanthemum Acids. J. econ. Entomol. 45, 794 (1952).Google Scholar
  101. 100.
    Inoue, Y.: Synthesis and Stereochemistry of Chrysanthemum Dicarboxylic Acid. Bull. Inst. Chem. Res. Kyoto Univ. 35, 49 (1957).Google Scholar
  102. 101.
    Inoue, Y. and M. Ohno: Resolution of (±)-trans-3-(trans-2-carboxypropenyl)-2,2-Dimethylcyclopropane-I-carboxylic Acid. Bull. Inst. Chem. Res., Kyoto Univ. 34, 90 (1956).Google Scholar
  103. 102.
    —: Absolute Configuration of Natural Pyrethrins. Kagaku (Tokyo) 28, 636 (1958).Google Scholar
  104. 103.
    Inoue, Y., T. Shinohara and M. Ohno: An Approach to the Synthesis of Pyrethric Acid. Botyu Kagaku 19, 35 (1954).Google Scholar
  105. 104.
    Inoue, Y., Y. Sugita and M. Ohno: Synthesis of Pyrethroids. IX. Assignment of Geometrical Configuration to αδ-Dimethylsorbic Acid. Bull. Agric. Chem. Soc. Japan 21, 5 (1957).Google Scholar
  106. 105.
    M. Ohno —: Synthesis of Pyrethroids. XI. Another Piece of Evidence for the trans-Configuration of αδ-Dimethylsorbic Acid. Bull. Agric. Chem. Soc. Japan 21, 222 (1957).Google Scholar
  107. 106.
    M. Ohno —: A Novel Route of Synthesis to Chrysanthemumdicarboxylic Acid. Bull. Agric. Chem. Soc. Japan 22, 269 (1958).Google Scholar
  108. 107.
    Inoue, Y., Y. Takeshita and M. Ohno: Studies on Synthetic Pyrethroids. V. Synthesis of Geometrical Isomers of Chrysanthemumdicarboxylic Acid. Botyu-Kagaku 20, 102 (1955).Google Scholar
  109. 108.
    M. Ohno —: Geometrical Isomers of Chrysanthemum Dicarboxylic Acid. Bull. Inst. Chem. Res., Kyoto Univ. 33, 73 (1955).Google Scholar
  110. 109.
    Jackman, L. M. and R. H. Wiley: Studies in Nuclear Magnetic Resonance. Part III. Assignment of Configurations of aαβ-Unsaturated Esters and the Isolation of Pure trans-β-Methylglutaconic Acid. J. Chem. Soc. (London) 1960, 2886.Google Scholar
  111. 110.
    Julia, M., S. Julia Et C. Jeanmart: Synthèses de l’acide trans-dihyaxo-chrysanthémique. C. R. hebd. Séances Acad. Sci. 250, 4003 (1960).Google Scholar
  112. 111.
    —: Synthèses de la pyrocine, de l’acide trans-(±)-chrysanthémique et de quelques acides cyclopropaniques apparantés. C. R. hebd. Séances Acad. Sci. 251, 249 (1960).Google Scholar
  113. 112.
    Kageyama, I.: Extraction of Active Principles from Pyrethrum, Derris, Tobacco etc. Japanese Patent 3649 (1952) [Chem. Abstr. 47, 8328 (1953)].Google Scholar
  114. 113.
    Katsuda, Y., T. Chikamoto and Y. Inoue: The Absolute Configuration of Naturally Derived Pyrethrolone. Bull. Agric. Chem. Soc. Japan 22, 427 (1958); Relationship between Stereoisomers and Biological Activity of Pyrethroids. Part V. The Absolute Configuration of (+)-Pyrethrolone and (+)-Cinerolone. Bull. Agric. Chem. Soc. Japan 23, 174 (1959).Google Scholar
  115. 114.
    Katsuda, Y. and T. Chikamoto: Studies on the Degradation of Pyrethrins. IV. Botyu-Kagaku 23, 60 (1958).Google Scholar
  116. 115.
    Laforge, F. B. and F. Acree, Jr.: Constituents of Pyrethrum Flowers. XV. Presence of the Cumulated System in the Pyrethrolone Side-Chain. J. Organ. Chem. (USA) 7, 416 (1942).CrossRefGoogle Scholar
  117. 116.
    Laforge, F. B. and W. F. Barthel: Constituents of Pyrethrum Flowers. XVI. Heterogeneous Nature of Pyrethrolone. J. Organ. Chem. (USA) 9, 242 (1944).CrossRefGoogle Scholar
  118. 117.
    —: Constituents of Pyrethrum Flowers. XVII. The Isolation of Five Pyrethrolone Semicarbazones. J. Organ. Chem. (USA) 10, 106 (1945).CrossRefGoogle Scholar
  119. 118.
    Laforge, F. B. and W. F. Barthel: Constituents of Pyrethrum Flowers. XVIII. The Structure and Isomerism of Pyrethrolone and Cinerolone. J. Organ. Chem. (USA) 10, 114 (1945).CrossRefGoogle Scholar
  120. 119.
    —: Constituents of Pyrethrum Flowers. XIX. The Structure of Cinerolone. J. Organ. Chem. (USA) 10, 222 (1945).CrossRefGoogle Scholar
  121. 120.
    —: Constituents of Pyrethrum Flowers. XX. The Partial Synthesis of Pyrethrins and Cinerins and their Relative Toxicities. J. Organ Chem. (USA) 12, 199 (1947).CrossRefGoogle Scholar
  122. 121.
    Laforge, F. B., W. A. Gersdorff, N. Green and M. S. Schechter: Allethrin-Type Esters of Cyclopropanecarboxylic Acids and their Relative Toxicities to House Flies. J. Organ. Chem. (USA) 17, 381 (1952).CrossRefGoogle Scholar
  123. 122.
    Laforge, F. B. and N. Green: Constituents of Pyrethrum Flowers. XXV. The Synthesis of d-Cinerolone, Cinerin I, and its Optical Isomers. J. Organ. Chem. (USA) 17, 1635 (1952).Google Scholar
  124. 123.
    Laforge, F. B., N. Green and M. S. Schechter: Dimerized Cyclopenta-dienones from Esters of Allethrolone. J. Amer. Chem. Soc. 74, 5392 (1952).CrossRefGoogle Scholar
  125. 124.
    M. S. Schechter —: Allethrin. Resolution of dl-Allethrolone and Synthesis of the Four Optical Isomers of trans-Allethrin. J. Organ. Chem. (USA) 19, 457 (1954).CrossRefGoogle Scholar
  126. 125.
    M. S. Schechter —: Allethrin. Synthesis of Four Isomers of cis-Allethrin. J. Organ. Chem. (USA) 21, 455 (1956).CrossRefGoogle Scholar
  127. 126.
    Laforge, F. B. and H. L. Haller: Constituents of Pyrethrum Flowers. V. Concerning the Structure of Pyrethrolone. J. Amer. Chem. Soc. 58, 1061 (1936).CrossRefGoogle Scholar
  128. 12y.
    —: Constituents of Pyrethrum Flowers. VI. The Structure of Pyrethrolone. J. Amer. Chem. Soc. 58, 1777 (1936).CrossRefGoogle Scholar
  129. 128.
    —: Constituents of Pyrethrum Flowers. VIII. The Presence of a New Ester of Pyrethrolone. J. Organ. Chem. (USA) 2, 56 (1937).CrossRefGoogle Scholar
  130. 129.
    —: Constituents of Pyrethrum Flowers. XII. The Nature of the Side-Chain of Pyrethrolone. J. Organ. Chem. (USA) 2, 546 (1938).CrossRefGoogle Scholar
  131. 130.
    Laforge, F. B. and S. B. Soloway: Constituents of Pyrethrum Flowers. XXI. Revision of the Structure of Dihydrocinerolone. J. Amer. Chem. Soc. 69, 2932 (1947).CrossRefGoogle Scholar
  132. 131.
    Lord, K. A., J. Ward, J. A. Cornelius and M. W. Jarvis: Chromatographic Separation of the Pyrethrins. J. Sci. Food Agric. 3, 419 (1952).CrossRefGoogle Scholar
  133. 132.
    Matsubara, H.: A New Synergist for Pyrethrins (Hinokinin). Science (Japan) 20, 183 (1950).Google Scholar
  134. 133.
    —: Hibalactone (Savinin) as a Synergist with Pyrethrins and Allethrin. Bull. Agric. Chem. Soc. Japan 21, 132 (1957).Google Scholar
  135. 134.
    Matsui, M.: Pyrocin (a New Insecticide). Botyu-Kagaku 15, 1 (1950).Google Scholar
  136. 135.
    —: Synthetic Insecticide. Japanese Patent 5626 (1955) [Chem. Abstr. 52, 1218 (1958)].Google Scholar
  137. 136.
    Matsui, M., S. Kitamura, T. Kato and S. Sugihara: Synthesis of Cyclo-pentenolones of the Cinerolone Type. J. Chem. Soc. Japan 71, 235 (1950).Google Scholar
  138. 137.
    Matsui, M., F. B. Laforge, N. Green and M. S. Schechter: Furethrin. J. Amer. Chem. Soc. 74, 2181 (1952).CrossRefGoogle Scholar
  139. 138.
    Matsui, M., M. Miyano, K. Yamashita, H. Kubo and K. Tomita: Syntheses of Pyrethridic (Chrysanthemumdicarboxylic) Acid. Bull. Agric. Chem. Soc. Japan 21, 22 (1957).Google Scholar
  140. 139.
    Matsui, M., T. Ohno, S. Kitamura and M. Tayao: The Lactones Derived from Chrysanthemic Acids. Bull. Chem. Soc. Japan 25, 210 (1952).CrossRefGoogle Scholar
  141. 140.
    Matsumoto, T. and A. Suzuki: Reaction of Isopropyl Zinc Iodide with Terebic Acid Chloride. A Suggested New Mode of Action of the Blaise Reagent. J. Organ. Chem, (USA) 25, 1666 (1960).CrossRefGoogle Scholar
  142. 141.
    Merritt, R. P. and T. F. West: Notes on the Oil Distilled from Pyrethrum Flowers. J. Soc. Chem. and Ind. 57, 321 (1938).Google Scholar
  143. 142.
    Metcalf, R. L.: Methods of Topical Application and Injection. In: H. H. Shepard, Methods of Testing Chemicals on Insects, Vol. I, p. 92. Minneapolis, Minn.: Burgess Publ. Co. 1958.Google Scholar
  144. 143.
    —: Organic Insecticides. Their Chemistry and Mode Of Action. New York and London: Interscience Publ. 1955.Google Scholar
  145. 144.
    Mitchell, W.: “Bucarpolate,” Pyrethrum Synergist. Pyrethrum Post 5, No. I, 19 (1959).Google Scholar
  146. 145.
    Moore, B. P. and P. S. Hewlett: Insecticidal Synergism with the Pyrethrins: Studies on the Relationship between Chemical Structure and Synergistic Activity in 3,4-Methylenedioxyphenyl Compounds. J. Sci. Food Agric. 9, 666 (1958).CrossRefGoogle Scholar
  147. 146.
    Negherbon, W. O.: Handbook of Toxicology. Vol. III, Insecticides. A Compendium. Philadelphia and London: W. B. Saunders Co. 1959.Google Scholar
  148. 147.
    Newman, M. S. and W. T. Booth, Jr.: The Preparation of Ketones from Grignard Reagents. J. Amer. Chem. Soc. 67, 154 (1945).CrossRefGoogle Scholar
  149. 148.
    Pellegrini, J. P., A. C. Miller and R. V. Sharpless: Biosynthesis of Radioactive Pyrethrins using 14CO2. J. econ. Entomol. 45, 532 (1952).Google Scholar
  150. 149.
    Phipers, R. F.: Pyrethrins and Allied Compounds. In: K. Paech and M. V. Tracey, Modern Methods of Plant Analysis, Vol. III, p. 43. Berlin: Springer-Verlag. 1955.Google Scholar
  151. 150.
    —: The Analysis of Pyrethrins. A Review of Recent Publications. Pyrethrum Post 4(3), 3 (1958).Google Scholar
  152. 151.
    Potter, C. and M. J. Way: Precision Spraying. In: H. H. Shepard, Methods of Testing Chemicals on Insects, Vol. I, p. 154. Minneapolis, Minn.: Burgess Publ. Co. 1958.Google Scholar
  153. 152.
    Quayle, J. R.: Paper Chromatography of Pyrethrins and their Derivatives. Nature (London) 178, 375 (1956).CrossRefGoogle Scholar
  154. 153.
    Rai, C. and S. Dev: Organic, Reactions with Polyphosphoric Acid. IV. Intramolecular Acylation with Lactones: cycloPentenones from γ-Lactones. J. Indian Chem. Soc. 34, 178 (1957).Google Scholar
  155. 154.
    Roark, R. C.: A Digest of Information on Allethrin. U. S. Dept. Agric., Bur. Entomology and Plant Quarantine, Agric. Res. Admin., E 846, Sept. 1952.Google Scholar
  156. 155.
    Roark, R. C. and R. H. Nelson: A Second Digest of Information on Allethrin and Related Compounds. U. S. Dept. Agric, Agric. Res. Serv. ARS-33-12 (1955).Google Scholar
  157. 156.
    Ruzicka, L.: History of the Isoprene Rule. Proc. Chem. Soc. (London) 1959, 341.Google Scholar
  158. 157.
    Ruzicka, L. und M. Pfeiffer: Über Jasminriechstoffe. I. Die Konstitution des Jasmons. Helv. Chim. Acta 16, 1208 (1933).CrossRefGoogle Scholar
  159. 158.
    Sanders, H. J. and A. W. Taff: Allethrin. Ind. Eng. Chem. 46, 414 (1954).CrossRefGoogle Scholar
  160. 159.
    Sawicki, R. M.: Insecticidal Activity of the Four Constituents of Pyrethrum. Rothamsted Exp. Stat. Report for 1960 (in press).Google Scholar
  161. 160.
    —: A Technique for the Knockdown Assessment of Topically Treated Normally Active Houseflies. Bull. entom. Res. 51, 715 (1961).CrossRefGoogle Scholar
  162. 161.
    Sawicki, R. M., M. Elliott, J. C. Gower, M. Snarey and E. M. Thain: Insecticidal Activity of Pyrethrum Extract and its Active Constituents against Houseflies. I. Preparation and Relative Toxicity of the Pure Constituents; Statistical Analysis of Mixtures of these Compounds. J. Sci. Food Agric. (1961) (in press).Google Scholar
  163. 162.
    Sawicki, R. M. and E. M. Thain: The Chemical and Biological Examination of Commercial Pyrethrum Extracts for Insecticidal Constituents. J. Sci. Food Agric. 12, 137 (1961).CrossRefGoogle Scholar
  164. 163.
    Schechter, M. S., N. Green and F. B. Laforge: Constituents of Pyrethrum Flowers. XXIII. Cinerolone and the Synthesis of Related Cyclopentenolones. J. Amer. Chem. Soc. 71, 3165 (1949).CrossRefGoogle Scholar
  165. 164.
    Schechter, M. S., N. Green and F. B. Laforge: Constituents of Pyrethrum Flowers. XXIV. Synthetic dl-cis-Cinerolone and Other Cyclopentenolones. J. Amer. Chem. Soc. 74, 4902 (1952).CrossRefGoogle Scholar
  166. 165.
    Schechter, M. S., F. B. Laforge, A. Zimmerli and J. M. Thomas: Crystalline Allethrin Isomer. J. Amer. Chem. Soc. 73, 3541 (1951).CrossRefGoogle Scholar
  167. 166.
    Schmidt, H.: Zur Kenntnis des Pfefferminzöls. Vorkommen von Jasmon im ätherischen Öl von Mentha piperita L. Chem. Ber. 80, 538 (1947).CrossRefGoogle Scholar
  168. 167.
    Simonsen, J. L. and L. N. Owen: The Terpenes, Vol. I. Cambridge: Univ. Press. 1947.Google Scholar
  169. 168.
    “Socophar”: Extraction of Pyrethrin with Isopropyl Ether. Belgian Patent 509803 (1952) [Chem. Abstr. 52, 6708 (1958)].Google Scholar
  170. 169.
    Soloway, S. B. and F. B. Laforge: The Synthesis of Dihydrocinerolone. J. Amer. Chem. Soc. 69, 979 (1947).CrossRefGoogle Scholar
  171. 170.
    Spickett, R. G. W.: A Method for the Separation of the Constituents of Pyrethrum Extract. Chem. and Ind. 1957, 561.Google Scholar
  172. 171.
    Stansbury, H. A., Jr. and H. R. Guest: Derivatives of Chrysanthemum Monocarboxylic Acid. British Patent 744268 (1956).Google Scholar
  173. 172.
    — [A] Substituted cyclo-Pentenones. [B] An Ester of Chrysanthemum-monocarboxylic Acid and Insecticidal Constituents Therefrom. British Patent 790841 (1958).Google Scholar
  174. 173.
    Staudinger, H., O. Muntwyler, L. Ruzicka und S. Scibt: Insektentötende Stoffe. VII. Synthesen der Chrysanthemumsäure und anderer Trimethylen-carbonsäuren mit ungesättigter Scitenkette. Helv. Chim. Acta 7, 390 (1924).CrossRefGoogle Scholar
  175. 174.
    Staudinger, H. und L. Ruzicka: Insektentötende Stoffe. I. Über Isolierung und Konstitution des wirksamen Teiles des dalmatinischen Insektenpulvers. Helv. Chim. Acta 7, 177 (1924).CrossRefGoogle Scholar
  176. 175.
    —: Insektentötende Stoffe. IL Zur Konstitution der Chrysanthemummonocarbonsäure und-dicarbonsäure. Helv. Chim. Acta 7, 201 (1924).CrossRefGoogle Scholar
  177. 176.
    —: Insektentötende Stoffe. III. Konstitution des Pyrethrolons. Helv. Chim. Acta 7, 212 (1924).CrossRefGoogle Scholar
  178. 177.
    —: Insektentötende Stoffe. IV. Konstitution des Tetrahydropyrethrons. Helv. Chim. Acta 7, 236 (1924).CrossRefGoogle Scholar
  179. 178.
    —: Insektentötende Stoffe. V. Synthese des Tetrahydropyrethrons, des Reduktionsproduktes des Pyrethrolons. Helv. Chim. Acta 7, 245 (1924).CrossRefGoogle Scholar
  180. 179.
    —: Insektentötende Stoffe. X. Über die Synthese von Pyrethrinen. Helv. Chim. Acta 7, 448 (1924).CrossRefGoogle Scholar
  181. 180.
    Stephenson, H.: The Separation and Estimation of the Four Insecticidal Constituents of Chrysanthemum cinerariaefolium by Elution Chromatography on a Column of Adsorptive Charcoal. Pyrethrum Post 5, No. 4, 22 (1960).Google Scholar
  182. 181.
    Subbaratnam, A. V. and S. Siddiqui: The Irritant Factor of Pyrethrum Flowers. J. Sci. Industr. Res. (India) 15 B, 243 (1956).Google Scholar
  183. 182.
    Synerholm, M. E., A. Hartzell and J. M. Arthur: Derivatives of Piperic Acid and their Toxicities towards Houseflies. Contrib. Boyce Thompson Inst. 13, 433 (1945).Google Scholar
  184. 183.
    Takei, S., T. Sugita und Y. Inouye: Eine neue Synthese der Chrysanthemum-dicarbonsäure. Liebigs Ann. Chem. 618, 105 (1958).CrossRefGoogle Scholar
  185. 184.
    Treff, W. und H. Werner: Über die Synthese des Jasmons. Ber. dtsch. chem. Ges. 68, 640 (1935).CrossRefGoogle Scholar
  186. 185.
    Wachs, H.: Synergistic Insecticides. Science (Washington) 105, 530 (1947).CrossRefGoogle Scholar
  187. 186.
    Wanless, G. G., W. H. King and J. J. Ritter: Hydrocarbons in Pyrethrum Cuticle Wax. Biochemic. J. 59, 684 (1955).Google Scholar
  188. 187.
    Ward, J.: Separation of the Pyrethrins by Displacement Chromatography. Chem. and Ind. 1953, 586.Google Scholar
  189. 188.
    Weed, A.: New Insecticide Compound. Soap 14, No. 6, 133 (1938).Google Scholar
  190. 189.
    West, T. F.: The Structure of Pyrethrolone and Related Compounds. Part II. J. Chem. Soc. (London) 1944, 239.Google Scholar
  191. 190.
    —The Structure of Pyrethrolone and Related Compounds. Part IV. J. Chem. Soc. (London) 1945, 412.Google Scholar
  192. 191.
    —The Structure of Pyrethrolone and Related Compounds. Part V. J. Chem. Soc. (London) 1946, 463.Google Scholar
  193. 192.
    Winteringham, F. P. W., A. Harrison and P. M. Bridges: Absorption and Metabolism of 14C-Pyrethroids by the Adult Housefly, Musca domestica, in vivo. Biochemie. J. 61, 359 (1955).Google Scholar
  194. 193.
    Woods, G. F. and H. Sanders: Studies in Pyrane Chemistry. J. Amer. Chem. Soc. 68, 2483 (1946).CrossRefGoogle Scholar
  195. 194.
    Yamamoto, R.: The Insecticidal Principle in Chrysanthemum cinerariaefolium. I. J. Tokyo Chem. Soc. 40, 126 (1919).Google Scholar
  196. 195.
    —: Studies on the Insecticidal Principle in Chrysanthemum cinerariaefolium. Parts II and III. On the Constitution of Pyrethronic Acid. J. Chem. Soc. Japan 44, 311 (1923).CrossRefGoogle Scholar
  197. 196.
    Yamamoto, R. and M. Sumi: Studies on the Insecticidal Principle in Chrysanthemum cinerariaefolium. J. Chem. Soc. Japan 44, 1080 (1923).Google Scholar

Copyright information

© Springer-Verlag in Vienna 1961

Authors and Affiliations

  • L. Crombie
    • 1
  • M. Elliott
    • 2
  1. 1.LondonUK
  2. 2.Harpenden, HertsUK

Personalised recommendations