Advertisement

Abstract

Rotating a solution for a sufficient period of time in an ultracentrifuge gives rise to a sedimentation-diffusion equilibrium. The denser component in the solution sediments in the direction of the field, and back-diffusion occurs in response to the non-uniform concentration. At equilibrium the concentration of the solute increases with distance from the center of rotation and gives rise, along with the compression, to a density gradient. In conventional sedimentation equilibrium experiments described by Svedberg and Pedersen (68), and by Schachman (56), performed with low concentrations of solute, the density gradient is small. However, when a concentrated solution of an appropriate low-molecular weight solute is used, a large density gradient may be established. Because the system is at equilibrium, the density gradient at any position in the liquid is stable and reproducible, and depends only on the angular velocity, distance, temperature, and the molecular and solution parameters of the system.

Keywords

Density Gradient Deoxyribonucleic Acid Liquid Column Buoyant Density Analytical Ultracentrifuge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aten, J. B. T. and A. Schouten: Ultraviolet Absorption Optical System with Photoelectric Recording for a Phywé Ultracentrifuge. J. Sci. Instruments 38, 325 (1961).CrossRefGoogle Scholar
  2. 2.
    Baldwin, R. L.: Equilibrium Sedimentation in a Density Gradient of Materials Having a Continuous Distribution of Effective Densities. Proc. Nat. Acad. Sci. (USA) 45, 939 (1959).CrossRefGoogle Scholar
  3. 3.
    Berns, K. I. and C. A. Thomas, Jr.: A Study of Single Polynucleotide Chains Derived from T 2 and T 4 Bacteriophage. J. Mol. Biol. 3, 289 (1961).CrossRefGoogle Scholar
  4. 4.
    Brenner, S., F. Jacob and M. Meselson: An Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis. Nature (London) 190, 576 (1961).CrossRefGoogle Scholar
  5. 5.
    Bresler, S. E., L. M. Pyrkov and S. YA. Frenkel: Equilibrium Sedimentation of Block Copolymers in a Density Gradient. Vysokomol. Soedineniya 2 261 (1960). [Chem. Abstr. 54, 20302 (1960).]Google Scholar
  6. 6.
    Buchdahl, R., H. A. Ende and L. H. Peebles, Jr.: Detection of Structural Differences in Polymers in a Density Gradient Established by Ultracentrifugation. J. Physic. Chem. 65, 1468 (1961).CrossRefGoogle Scholar
  7. 7.
    Casassa, E. F. and H. Eisenberg: On the Definition of Components in Solutions Containing Charged Macromolecular Species. J. Physic. Chem. 64, 753 (1960).CrossRefGoogle Scholar
  8. 8.
    Cavalieri, L. F., B. H. Rosenberg and J. F. Deutsch: The Subunit of Deoxyribonucleic Acid. Biochem. Biophys. Res. Comm. 1, 124 (1959).CrossRefGoogle Scholar
  9. 9.
    Chargaff, E.: Tables. In: E. Chargaff and J. N. Davidson, The Nucleic Acids, Vol. I, p. 307. New York: Academic Press. 1955.Google Scholar
  10. 10.
    Chun, E. H. L. and J. W. Littlefield: The Separation of the Light and Heavy Strands of Bromouracil-substituted Mammalian DNA. J. Mol. Biol. 3, 668 (1961).CrossRefGoogle Scholar
  11. 11.
    Cohen, R. et B. Nisman: Mise en évidence par analyse en gradient de densité d’une nouvelle structure subcellulaire d’E. coli synthétisant des protéines spécifiques. C. R. hebd. Séances Acad. Sci. 252, 1063 (1961).Google Scholar
  12. 12.
    Cox, D. J. and V. N. Schumaker: The Preferential Hydration of Proteins in Concentrated Salt Solutions. II. Sedimentation Equilibrium of Proteins in Salt Density Gradients. J. Amer. Chem. Soc. 83, 2439 (1961).CrossRefGoogle Scholar
  13. 13.
    Cox, R., J. Marmur and P. Dory: unpublishedGoogle Scholar
  14. 14.
    Crawford, L. V.: A Study of the Rous Sarcoma Virus by Density Gradient Centrifugation. Virology 12, 143 (1960).CrossRefGoogle Scholar
  15. 15.
    Davern, C. I. and M. Meselson: The Molecular Conservation of Ribonucleic Acid During Bacterial Growth. J. Mol. Biol. 2, 153 (1960).CrossRefGoogle Scholar
  16. 16.
    Davison, P. F.: The Effect of Hydrodynamic Shear on the Deoxyribonucleic Acid from T 2 and T 4 Bacteriophages. Proc. Nat. Acad. Sci. (USA) 45, 1560 (1959).CrossRefGoogle Scholar
  17. 17.
    Dintzis, H. M., H. Borsook and J. Vinograd: Microsomal Structure and Hemoglobin Synthesis in the Rabbit Reticulocyte. In: R. B. Roberts, Microsomal Particles and Protein Synthesis, p. 95. New York: Pergamon Press. 1958.Google Scholar
  18. 18.
    Doty, P., J. Marmur, J. Eigner and C. Schildkraut: Strand Separation and Specific Recombination in Deoxyribonucleic Acids: Physical Chemistry Studies. Proc. Nat. Acad. Sci. (USA) 46, 461 (1960).CrossRefGoogle Scholar
  19. 19.
    Doty, P, J. Marmur and N. Sueoka: The Heterogeneity in Properties and Functioning of Deoxyribonucleic Acids. Brookhaven Sympos. Biol., Structure and Function of Genetic Elements, 1959.Google Scholar
  20. 20.
    Duve, C. de, J. Berthet and H. Beaufay: Gradient Centrifugation of Cell Particulates. Theory and Applications. Progr. Biophys. Biophysic. Chem. 9, 325 (1959).Google Scholar
  21. 21.
    Goldberg, R. J.: Sedimentation in the Ultracentrifuge. J. Physic. Chem. 57, 194 (1953).CrossRefGoogle Scholar
  22. 22.
    Hall, B. D. and S. Spiegelman: Sequence Complementarity of T 2-DNA and T 2-specific RNA. Proc. Nat. Acad. Sci. (USA) 47, 137 (1961).CrossRefGoogle Scholar
  23. 23.
    Hearst, J. E.: Thesis, California Institute of Technology, Pasadena, 1961.Google Scholar
  24. 24.
    Hearst, J. E., J. B. Ifft and J. Vinograd: The Effects of Pressure on the Buoyant Behavior of Deoxyribonucleic Acid and Tobacco Mosaic Virus in a Density Gradient at Equilibrium in the Ultracentrifuge. Proc. Nat. Acad. Sci. (USA) 47, 1015 (1961).CrossRefGoogle Scholar
  25. 25.
    Hearst, J. E. and J. Vinograd: The Net Hydration of Deoxyribonucleic Acid. Proc. Nat. Acad. Sci. (USA) 47, 825 (1961).CrossRefGoogle Scholar
  26. 26.
    Hearst, J. E. and J. Vinograd: A Three-Component Theory of Sedimentation Equilibrium in a Density Gradient. Proc. Nat. Acad. Sci. (USA) 47, 999 (1961).CrossRefGoogle Scholar
  27. 27.
    Hearst, J. E. and J. Vinograd: The Net Hydration of T 4 Bacteriophage Deoxyribonucleic Acid and the Effect of Hydration on Buoyant Behavior in a Density Gradient at Equilibrium in the Ultracentrifuge. Proc. Nat. Acad. Sci. (USA) 47, 1005 (1961).CrossRefGoogle Scholar
  28. 28.
    Hearst, J. E. and J. Vinograd: Sedimentation Equilibrium in a Density Gradient: An Evaluation of the Errors Caused by Refraction of Light in the Photometric Determination of Molecular Weight and Buoyant Density. J. Physic. Chem. 65, 1069 (1961).CrossRefGoogle Scholar
  29. 29.
    Ifft, J. B.: Thesis, California Institute of Technology, Pasadena, 1962.Google Scholar
  30. 30.
    Ifft, J. B. and J. Vinograd: The Buoyant Behavior of Bovine Serum Mercaptalbumin in Salt Solutions at Equilibrium in the Ultracentrifuge. I. The Protein Concentration Distribution by Schlieren Optics and the Net Hydration of the Salt-free Protein in CsCl Solutions (unpublished).Google Scholar
  31. 31.
    Ifft, J. B. and J. Vinograd: The Buoyant Behavior of Bovine Serum Mercaptalbumin in Salt Solutions at Equilibrium in the Ultracentrifuge. II. The Determination of the Solvated Molecular Weight in Various Salt Solutions (unpublished).Google Scholar
  32. 32.
    Ippt, J. B., D. H. Voet and J. Vinograd: The Determination of Density Distributions and Density Gradients in Binary Solutions at Equilibrium in the Ultracentrifuge. J. Physic. Chem. 65, 1138 (1961).CrossRefGoogle Scholar
  33. 33.
    Inman, R. and R. L. Baldwin: Formation of Hybrid Molecules from two Alternating DNA Copolymers (unpublished).Google Scholar
  34. 34.
    Jacob, F. and J. Monod: Genetic Regulatory Mechanisms in the Synthesis of Proteins. J. Mol. Biol. 3, 318 (1961).CrossRefGoogle Scholar
  35. 35.
    Kaiser, A. D. and D. S. Hogness: The Transformation of Escherichia coli with Deoxyribonucleic Acid Isolated from Bacteriophage A dg. J. Mol. Biol. 2, 392 (1960).CrossRefGoogle Scholar
  36. 36.
    Kellenberger, G., M. L. Zichichi and J. Weigle: A Mutation Affecting the DNA Content of Bacteriophage Lambda and its Lysogenizing Properties. J. Mol. Biol. 3, 399 (1961).CrossRefGoogle Scholar
  37. 37.
    Kit, S.: Equilibrium Sedimentation in Density Gradients of DNA Preparations from Animal Tissues. J. Mol. Biol. 3, 711 (1961).CrossRefGoogle Scholar
  38. 38.
    Kornberg, A. et al.: Private communication.Google Scholar
  39. 39.
    Kuhn, W.: Zeitbedarf der Längsteilung von miteinander verzwirnten Fadenmolekülen. Experientia 13, 301 (1957).CrossRefGoogle Scholar
  40. 40.
    Langridge, R., H. R. Wilson, C. W. Hooper, M. H. F. Wilkins and L. D. Hamilton: The Molecular Configuration of Deoxyribonucleic Acid. I. X-ray Diffraction Study of a Crystalline Form of the Lithium Salt. J. Mol. Biol. 2, 19 (1960).CrossRefGoogle Scholar
  41. 41.
    Lauffer, M. A. and I. J. Bendet: The Hydration of Viruses. Adv. Virus Res. 2, 241 (1954).CrossRefGoogle Scholar
  42. 42.
    Longuet-Higgins, H. C. and B. H. Zimm: Calculation of the Rate of Uncoiling of the DNA Molecule. J. Mol. Biol. 2, 1 (1960).CrossRefGoogle Scholar
  43. 43.
    Levintow, L. and J. E. Darnell, Jr.: A Simplified Procedure for the Purification of Large Amounts of Poliovirus: Characterization and Amino Acid Analysis of Type I Poliovirus. J. Biol. Chem. 235, 70 (1960).Google Scholar
  44. 44.
    Marmur, J. and D. Lane: Strand Separation and Specific Recombination in Deoxyribonucleic Acids: Biological Studies. Proc. Nat. Acad. Sci. (USA) 46, 453 (1960).CrossRefGoogle Scholar
  45. 45.
    Marmur, J. and P. O. P. Ts’o: Denaturation of Deoxyribonucleic Acid by Formamide. Biochim. Biophys. Acta 51, 32 (1961).CrossRefGoogle Scholar
  46. 46.
    Meselson, M.: Thesis, California Institute of Technology, 1957.Google Scholar
  47. 47.
    Meselson, M.: The Deoxyribonucleic Acid of Coliphage T 7 and its Transfer from Parental to Progeny Phages. In: The Cell Nucleus, p. 240. London: Butterworth. 1960.Google Scholar
  48. 48.
    Meselson, M. and F. W. Stahl: The Replication of DNA in Escherichia coli. Proc. Nat. Acad. Sci. (USA) 44, 671 (1958).CrossRefGoogle Scholar
  49. 49.
    Meselson, M., F. W. Stahl and J. Vinograd: Equilibrium Sedimentation of Macromolecules in Density Gradients. Proc. Nat. Acad. Sci. (USA) 43, 581 (1957).CrossRefGoogle Scholar
  50. 50.
    Partington, J. R.: An Advanced Treatise on Physical Chemistry, Vol. II. New York: Longmans, Green and Co. 1954.Google Scholar
  51. 51.
    Pedersen, K. O.: The Light-absorption Method. In: T. Svedberg and K. O. Pedersen, The Ultracentrifuge, p. 240. Oxford: Clarendon Press. 1940.Google Scholar
  52. 52.
    Pohl, F.: Dissert., Univ. Bonn, 1906.Google Scholar
  53. 53.
    Robkin, E., M. Meselson and J. Vinograd: A Rotor Aperture for the Determination of Optical Density within Rotating Ultracentrifuge Cells. J. Amer. Chem. Soc. 82, 1305 (1959).CrossRefGoogle Scholar
  54. 54.
    Rolfe, R. and M. Meselson: The Relative Homogeneity of Microbial DNA. Proc. Nat. Acad. Sci. (USA) 45, 1039 (1959).CrossRefGoogle Scholar
  55. 55.
    Rownd, R. and C. L. Schildkraut: unpublished.Google Scholar
  56. 56.
    Schachman, H. K.: Ultracentrifugation in Biochemistry. New York: Academic Press. 1959.Google Scholar
  57. 57.
    Schachman, H. K.: Private communication.Google Scholar
  58. 58.
    Schildkraut, C. L., J. Marmur and P. Doty: The Formation of Hybrid DNA Molecules and their use in Studies of DNA Homologies. J. Mol. Biol. 3, 595 (1961).CrossRefGoogle Scholar
  59. 59.
    Schildkraut, C. L., J. Marmur and P. Doty: Determination of the Base Composition of Deoxyribonucleic Acid from its Apparent Density in CsC1 (unpublished).Google Scholar
  60. 60.
    Schumaker, V. N. and B. Marano: A Serious Convective Disturbance which Occurs during Ultracentrifugation using Duralumin Centerpieces. Arch. Biochem. Biophys. 94, 532 (1961).CrossRefGoogle Scholar
  61. 61.
    Siegel, A. and W. Hudson: Equilibrium Centrifugation of Two Strains of Tobacco Mosaic Virus in Density Gradients. Biochim. Biophys. Acta 34, 254 (1959).CrossRefGoogle Scholar
  62. 62.
    Simon, E. H.: Transfer of DNA from Parent to Progeny in a Tissue Culture Line of Human Carcinoma of the Cervix (Strain HeLa). J. Mol. Biol. 3, 101 (1961).CrossRefGoogle Scholar
  63. 63.
    Sinsheimer, R. L.: Purification and Properties of Bacteriophage Φ X-174. J. Mol. Biol. 1, 37 (1959).CrossRefGoogle Scholar
  64. 64.
    Sueoka, N.: A Statistical Analysis of Deoxyribonucleic Acid Distribution in Density Gradient Centrifugation. Proc. Nat. Acad. Sci. (USA) 45, 1480 (1959).CrossRefGoogle Scholar
  65. 65.
    Sueoka, N.: Mitotic Replication of Deoxyribonucleic Acid in Chlamydomonas reinhardi. Proc. Nat. Acad. Sci. (USA) 46, 83 (1960).CrossRefGoogle Scholar
  66. 66.
    Sueoka, N.: Variation and Heterogeneity of Base Compositions of Deoxyribonucleic Acids: A Compilation of Old and New Data. J. Mol. Biol. 3, 31 (1961).CrossRefGoogle Scholar
  67. 67.
    Sueoka, N., J. Marmur and P. Doty: Heterogeneity in Deoxyribonucleic Acids. II. Dependence of the Density of Deoxyribonucleic Acids on Guanine-Cytosine Content. Nature (London) 183, 1429 (1959).CrossRefGoogle Scholar
  68. 68.
    Svedberg, T. and K. O. Pedersen: The Ultracentrifuge. Oxford: Clarendon Press. 1940.Google Scholar
  69. 69.
    Szybalski, W.: Sampling of Virus Particles and Macromolecules Sedimented in an Equilibrium Density Gradient. Experientia 16, 164 (1960).CrossRefGoogle Scholar
  70. 70.
    Szybalski, W.: Private communication.Google Scholar
  71. 71.
    Trautman, R.: Determination of Density Gradients in Isodensity Equilibrium Ultracentrifugation. Arch. Biochem. Biophys. 87, 289 (1960).CrossRefGoogle Scholar
  72. 72.
    Van Holde, K. E. and R. L. Baldwin: Rapid Attainment of Sedimentation Equilibrium. J. Physic. Chem. 62, 734 (1958).CrossRefGoogle Scholar
  73. 73.
    Vinograd, J. and R. Kent: unpublished.Google Scholar
  74. 74.
    Vinograd, J. and J. Morris: unpublished.Google Scholar
  75. 75.
    Vinograd, J., J. Morris, W. F. Dove and N. Davidson: The Buoyant Behavior of Bacterial and Viral DNA in Alkaline Cesium Chloride Solution (unpublished).Google Scholar
  76. 76.
    Vinograd, J., J. Morris and R. Greenwald: The Buoyant Titration of Poly-L-Glutamate (unpublished).Google Scholar
  77. 77.
    Volkin, E. and L. Astrachan: Phosphorus Incorporation in Escherichia coli Ribonucleic Acid after Infection with Bacteriophage T 2. Virology 2, 149 (1956).CrossRefGoogle Scholar
  78. 78.
    Wake, R. G. and R. L. Baldwin: Physical Studies of the Replication of DNA in vitro (unpublished).Google Scholar
  79. 79.
    Wales, M.: Density Gradient Sedimentation in Polymer Solutions (unpublished).Google Scholar
  80. 80.
    Weigle, J., M. Meselson and K. Paigen: Density Alterations Associated with Transducing Ability in the Bacteriophage Lambda. J. Mol. Biol. 1, 379 (1959).CrossRefGoogle Scholar
  81. 81.
    WEIL, R.: Some Properties of the Subviral Infective Agent Related to Polyoma Virus (unpublished).Google Scholar
  82. 82.
    Williams, J. W., K. E. Van Holde, R. L. Baldwin and H. Fujita: The Theory of Sedimentation Analysis. Chem. Rev. 58, 715 (1958).CrossRefGoogle Scholar
  83. 83.
    Williams, R. C.: Private communication.Google Scholar
  84. 84.
    International Critical Tables. New York: McGraw-Hill, Inc. 1933.Google Scholar

Copyright information

© Springer-Verlag in Vienna 1962

Authors and Affiliations

  • Jerome Vinograd
    • 1
  • John E. Hearst
    • 1
  1. 1.PasadenaUSA

Personalised recommendations