Advertisement

Abstract

Anthocyanins are water soluble pigments which are responsible for most of the pink, red, mauve and blue colours of plants. They are all based on a single aromatic structure—that of the 3,5,7,3′,4′-pentahydroxyflavylium cation, cyanidin (I). The colour of this substance is altered by the addition or removal of a hydroxyl group or by methylation or glycosylation. Such modifications in structure are known to be controlled in the flowers of many higher plants by single gene substitutions. The anthocyanins present in series of colour mutants of garden flowers are thus suitable material for studying the biochemical effects of gene action. Such studies have in fact provided most of the present knowledge of the biochemical genetics of higher plants (34). Flower and fruit colours are undoubtedly of adaptive value in relation to animal pollen vectors, and the primary function of the anthocyanins is to attract insects and birds to plants. The suggestion of Moewus (68) that anthocyanins play an active part in the sexuality of plants by acting as hormones has not been substantiated by later workers (81).

Keywords

Cinnamic Acid Sugar Residue Sour Cherry Anthocyanin Pigment Sugar Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, Y. and K. Gotoh: Biochemical and Genetical Studies on Anthocyanins in Egg Plant. Bot. Mag. (Tokyo) 72, 432 (1959).Google Scholar
  2. 2.
    Abe, Y. and K. Hayashi: Studies on Anthocyanins. XXIX. Further Studies on Paper Chromatography of Anthocyanins involving an Examination of Glycoside Types by Partial Hydrolysis. Bot. Mag. (Tokyo) 69, 577 (1956).Google Scholar
  3. 3.
    Alston, R. E.: An Investigation of the Purple Vacuolar Pigment of Zygogonium ericetorum and the Status of “Algal Anthocyanins” and “Phycoporphyrins”. Amer. J. Bot. 45, 689 (1958).Google Scholar
  4. 4.
    Asen, S., H. W. Siegelman and N. W. Stuart: Anthocyanin and other Phenolic Compounds in Red and Blue Sepals of Hydrangea macrophylla var. Merveille. Proc. Amer. Soc. hort. Sci. 69, 561 (1957).Google Scholar
  5. 5.
    Asen, S., N. W. Stuart and H. W. Siegelman: Effect of various Concentrations of Nitrogen, Phosphorus and Potassium on Sepal Colour of Hydrangea macrophylla. Proc. Amer. Soc. hort. Sci. 73, 495 (1959).Google Scholar
  6. 6.
    Bate-Smith, E. C.: Paper Chromatography of Anthocyanins and Related Substances in Petal Extracts. Nature (London) 161, 835 (1948).CrossRefGoogle Scholar
  7. 7.
    Bate-Smith, E. C. and T. Swain: Glycoflavonols. Chem. and Ind. 1960, 1132.Google Scholar
  8. 8.
    Bauer, L., A. J. Birch and W. E. Hillis: Some Synthetic Leucoanthocyanidins. Chem. and Ind. 1954, 433.Google Scholar
  9. 9.
    Bayer, E.: Über den blauen Farbstoff der Kornblume. I. Natürliche und synthetische Anthocyan-Metallkomplexe. Chem. Ber. 91, 1115 (1958).CrossRefGoogle Scholar
  10. 10.
    Bayer, E.: Über Anthocyankomplexe. II. Farbstoffe der roten, violetten und blauen Lupinenblüten. Chem. Ber. 92, I062 (1959).CrossRefGoogle Scholar
  11. 11.
    Bayer, E., K. Nether und H. Egeter: Natürliche und synthetische Anthocyankomplexe. III. Synthese der blauen, im Kornblumenfarbstoff enthaltenen Chelate. Chem. Ber. 93, 2871 (1960).CrossRefGoogle Scholar
  12. 12.
    Bayer, E. und K. Wegmann: Enzymatischer Abbau von Anthocyanen. Z. Naturforsch. 12 b, 37 (1957).Google Scholar
  13. 13.
    Beale, G. H., J. R. Price and R. Scott-Moncrieff: The Genetics of Verbena. II. Chemistry of the Flower Colour Variations. J. Genetics 41, 65 (1940).CrossRefGoogle Scholar
  14. 14.
    Bell, J. C. and R. Robinson: Experiments on the Synthesis of Anthocyanins. XX. Synthesis of Malvidin 3-Galactoside and its Probable Occurrence as a Natural Anthocyanin. J. Chem. Soc. ( London ) 1934, 813.Google Scholar
  15. 15.
    Birch, A. J.: Biosynthetic Relations of Some Natural Phenolic and Enolic Compounds. Fortschr. Chem. organ. Naturstoffe 14,, 86 (1959).Google Scholar
  16. 16.
    Bogorad, L.: The Biogenesis of Flavonoids. Annu. Rev. Plant Physiology 9, 417 (1958).CrossRefGoogle Scholar
  17. 17.
    Bopp, M.: Über den Farbwechsel von Streptocarpus-Blüten. Z. Naturforsch. 13 b, 669 (1958).Google Scholar
  18. 18.
    Chmielewska, I. Sur les colorants des pommes de terre violettes sNegresse». Roczniki Chem. (Poland) 16, 384 (1936).Google Scholar
  19. 19.
    Chmielewska, I., I. Kakowska and B. Lipinski: The Pigment of Red Cabbage. Bull. acad. polon. sci., Cl. III, 3, 527 (1955).Google Scholar
  20. 20.
    Davis, B. D.: Biosynthesis of the Aromatic Amino Acids. In: W. D. MCELROY and B. GLASS, Amino Acid Metabolism, p. 797. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  21. 21.
    Endo, T.: Biochemical and Genetical Investigations of Flower Colour in Swiss Giant Pansy. II. Chromatographic Studies on Anthocyanin Components. Bot. Mag. (Tokyo) 72, 10 (1959).Google Scholar
  22. 22.
    Endo, T.: Anthocyanin of Purplish-blue and Deep Purple Flowers of Pansies. Annu. Rep. Nat. Inst. Genetics (Japan) 10, 107 (1960).Google Scholar
  23. 23.
    Forsyth, F. G. C. and V. C. Quesnel: Cacao Polyphenolic Substances. 4. The Anthocyanin Pigments. Biochemic. J. 65, 177 (1957).Google Scholar
  24. 24.
    Forsyth, F. G. C. and N. W. Simmonds: A Survey of the Anthocyanins of some Tropical Plants. Proc. Roy. Soc. (London) 142 B, 549 (1954).Google Scholar
  25. 25.
    Forsyth, F. G. C. and N. W. Simmonds: Anthocyanidins of Lochnera rosea. Nature (London) 180, 247 (1957).CrossRefGoogle Scholar
  26. 26.
    Geissman, T. A. and L. Jumd: The Anthocyanin of Spirodela oligorrhiza. Arch. Biochem. Biophys. 56, 259 (1955).CrossRefGoogle Scholar
  27. 27.
    Geissman, T. A. and G. A. L. Mehlquist: Inheritance in the Carnation. IV. The Chemistry of Flower Color Variation. Genetics 32, 410 (1947).Google Scholar
  28. 28.
    Grisebach, H.: Zur Biogenese des Cyanidins. I. Mitt.: Versuche mit Acetat(I-14C) und Acetat-(2-.14C). Z. Naturforsch. 12 b, 227 (1957).Google Scholar
  29. 29.
    Grisebach, H.: Zur Biogenese des Cyanidins. III. Mitt.: Über die Herkunft des Ringes B. Z. Naturforsch. 13 b, 335 (1958).Google Scholar
  30. 30.
    Grisebach, H. und M. Boer’: Untersuchungen über den biogenetischen Zusammenhang zwischen Quercetin und Cyanidin beim Buchweizen mit Hilfe ‘4C-markierter Verbindungen. Z. Naturforsch. 14 b, 485 (1959).Google Scholar
  31. 31.
    Grisebach, H. and W. D. Ollis: Biogenetic Relationships between Coumarins, Flavonoids, Isoflavonoids, and Rotenoids. Experientia 17, 4 (1961).CrossRefGoogle Scholar
  32. 32.
    Grove, K. E., M. Inubuse and R. Robinson: Experiments on the Synthesis of Anthocyanins. XXIV. Cyanidin 3-Biosides and a Synthesis of Mecocyanin. J. Chem. Soc. ( London ) 1934, 1608.Google Scholar
  33. 33.
    Grove, K. E. and R. Robinson: An Anthocyanin of Oxycoccus macrocarpus. Biochemic. J. 25, 1706 (1931).Google Scholar
  34. 34.
    Haldane, J. B. S.: The Biochemistry of Genetics, p. 53. London: George Allen & Unwin. 1954.Google Scholar
  35. 35.
    Halevy, A. H. and S. Asen: Identification of the Anthocyanins in Petals of Tulip Varieties “Smiling Queen” and “Pride of Haarlem”. Plant Physiol. 34, 494 (1959).CrossRefGoogle Scholar
  36. 36.
    Harborne, J. B.: The Chromatographic Identification of Anthocyanin Pigments. J. Chromatogr. I, 473 (1958).Google Scholar
  37. 37.
    Harborne, J. B.: Spectral Methods of Characterizing Anthocyanins. Biochemie. J. 70, 22 (1958).Google Scholar
  38. 38.
    Harborne, J. B.: Plant Polyphenols. I. Anthocyanin Production in the Cultivated Potato. Biochemic. J. 74, 262 (1960).Google Scholar
  39. 39.
    Harborne, J. B.: Flavonoid Pigments of Lathyrus odoratus. Nature (London) 187, 240 (1960).CrossRefGoogle Scholar
  40. 40.
    Harborne, J. B.: Two New Naturally Occurring Anthocyanidins. Chem. and Ind. 1960, 229.Google Scholar
  41. 41.
    Harborne, J. B.: Chemicogenetical Studies of Flavonoid Pigments. In T. A. GEISSMAN: The Chemistry of the Flavonoids, p. 598. Oxford: Pergamon Press. 1962.Google Scholar
  42. 42.
    Harborne, J. B.: Plant Polyphenols. 5. Occurrence of Azalein and Related Pigments in Plumbago and Rhododendron Species. Arch. Biochem. Biophys. 96, 171 (1962).CrossRefGoogle Scholar
  43. 43.
    Harborne, J. B.:Unpublished observations.Google Scholar
  44. 44.
    Harborne, J. B. and J. J. Corner: Plant Polyphenols. 4. Hydroxycinnamic Acid-Sugar Derivatives. Biochemie. J. 81, 242 (1961).Google Scholar
  45. 45.
    Harborne, J. B. and H. S. A. Suerratt: The Specificity of Fungal Anthocyanase. Biochemie. J. 65, 24 P (1957).Google Scholar
  46. 46.
    Harborne, J. B. and H. S. A. Suerratt: Variations in the Glycosidic Pattern of Anthocyanins. Part II. Experientia 13, 486 (1957).CrossRefGoogle Scholar
  47. 47.
    Harborne, J. B. and H. S. A. Suerratt: Plant Polyphenols. 3. Flavonoids in Genotypes of Primula sinensis. Biochemie. J. 78, 298 (1961).Google Scholar
  48. 48.
    Hayashi, K.: Uliginosin, a New Dye from the Berries of Vaccinium uliginosum. Acta Phytochim. (Tokyo) 15, 35 (1949).Google Scholar
  49. 49.
    Hayashi, K., Y. Abe, T. Noguchi und K. Suzushlno: Studien über Anthocyane. XXII. Untersuchung von Farbstoffen in den roten Impatiens-Blüten und den blutroten Pfirsich-Früchten. Pharmac. Bull. (Tokyo) 1, 130 (1953).Google Scholar
  50. 50.
    Hayashi, K., K. G. Suzushino and K. Oucui: Anthocyanins. XX. Empetrin, a New Pigment from the Japanese Crowberry. Proc. Japan Acad. 27, 430 (1951).Google Scholar
  51. 51.
    Huang, H. T.: Decolorization of Anthocyanins by Fungal Enzymes. J. Agric. Food Chem. 3, 141 (1955).CrossRefGoogle Scholar
  52. 52.
    Huang, H. T.: Enzymatic Identification of the Anthocyanin Pigment of Blackberry. Nature (London) 177, 39 (1956).CrossRefGoogle Scholar
  53. 53.
    Jürgensmeier, H. L. und M. Born: Enzymatischer Anthocyanabbau bei Begonien. Naturwiss. 48, 80 (1961).CrossRefGoogle Scholar
  54. 54.
    Karrer, P. und R. Widmer: Über Pflanzenfarbstoffe. II. Helv. Chim. Acta 10, 67 (1927).CrossRefGoogle Scholar
  55. 55.
    Karrer, P. und R. Widmer: Pflanzenfarbstoffe. VIII. Über die Konstitution des Monardaeins. Helv. Chim. Acta 11, 837 (1928).CrossRefGoogle Scholar
  56. 56.
    Karrer, P. und R. Widmer: Zur Konstitution des Monardaeins und Salvianins. XII. Mitt. über Pflanzenfarbstoffe. Helv. Chim. Acta 12, 292 (1929).CrossRefGoogle Scholar
  57. 57.
    Karrer, W.: Konstitution und Vorkommen der organischen Pflanzenstoffe, S. 673. Basel: Birkhäuser Verlag. 1958.Google Scholar
  58. 58.
    Klein, A. O. and C. W. Hagen: Anthocyanin Production in Detached Petals of Impatiens Balsamina. Plant Physiol. 36, 1 (1961).CrossRefGoogle Scholar
  59. 59.
    Lawrence, W. J. C., J. R. Price, G. M. Robinson and R. Robinson: The Distribution of Anthocyanins in Flowers, Fruits and Leaves. Philos. Trans. Roy. Soc. (London) 230 B, 149 (1939).Google Scholar
  60. 60.
    Lawrence, W. J. C. and V. C. Sturgess: Studies on Streptocarpus. III. Genetics and Chemistry of Flower Colour in the Garden Forms, Species and Hybrids. Heredity II, 303 (1957).Google Scholar
  61. 61.
    Leon, A., A. Robertson, R. Robinson and T. R. Seshadri: Experiments on the Synthesis of Anthocyanins VII. The Four Isomeric ß-Glucosides of Pelargonidin Chloride. J. Chem. Soc. ( London ) 1931, 2672.Google Scholar
  62. 62.
    Li, K. C. and A. C. Wagenknecht: The Anthocyanin Pigments of Sour Cherries. J. Amer. Chem. Soc. 78, 979 (1956).CrossRefGoogle Scholar
  63. 62a.
    Mabry, T. J., H. Wyler, G. Sassu, M. Mercier, J. Parikh und A. S. Dreiding: Die Struktur des Neobetanidins. 5. Mitt. Über die Konstitution des Randenfarbstoffes Betanin. Rely. Chim. Acta 45, 640 (1962).Google Scholar
  64. 63.
    Markakis, P.: Zone Electrophoresis of Anthocyanins. Nature (London) 187, 1092 (1960).CrossRefGoogle Scholar
  65. 64.
    Maroto, A. L.: Natural Anthocyanin Pigments. Rev. acad. cienc. exact, fis. y nat. Madrid 44, 79 (1950).Google Scholar
  66. 65.
    Mayer, F. and A. H. Coox: The Chemistry of Natural Coloring Matters, p. 212. New York: Reinhold Publ. Corp. 1943.Google Scholar
  67. 66.
    Metche, M. et E. Urion: Isolement et identification d’anthocyanosides des enveloppes d’orge. C. R. hebd. Séances Acad. Sci. 252, 356 (1961).Google Scholar
  68. 67.
    Mitsui, S., K. Hayashi and S. Hattori: Anthocyanins. XXXI. Commelinin, a Crystalline Blue Metalloanthocyanin from the Flowers of Commelina. Proc. Japan Acad. 35, 169 (1959).Google Scholar
  69. 68.
    Moewus, F.: Die Bedeutung von Farbstoffen bei den Sexualprozessen der Algen und Blütenpflanzen. Angew. Chem. 62, 496 (1950).CrossRefGoogle Scholar
  70. 69.
    Nordström, C. G.: The Flavonoid Glycosides of Dahlia variabilis. IV. 3-Glucosido-5-arabinosidocyanidin from the Variety “Dandy”. Acta Chem. Scand. I0, 1491 (1956).CrossRefGoogle Scholar
  71. 70.
    Onslow, M. W.: The Anthocyanin Pigments of Plants. Cambridge: Univ. Press. 1925.Google Scholar
  72. 71.
    Pachf co, H.: Recherches sur la biochimie comparée des flavanonols dans les végétaux supérieurs. Bull. soc. chim. biol. (Paris) 39, 971 (1957).Google Scholar
  73. 72.
    Paech, K. und F. Eberhardt: Untersuchungen zur Biosynthese der Anthocyane. Z. Naturforsch. 7 b, 664 (1952).Google Scholar
  74. 73.
    Peterson, R. G. and M. A. Joslyn: The Red Pigment of the Root of the Beet (Beta vulgaris) as a Pyrrole Compound. Food Research 25, 429 (1960).Google Scholar
  75. 74.
    Reichel, L. und W. Reichwald: Über die Farbstoffe der schwarzen Holunderbeere. Naturwiss. 47, 40 (1960).CrossRefGoogle Scholar
  76. 75.
    Reichel, L., H.-H. Stroh und W. Reichwald: Über die Farbstoffe der schwarzen Holunderbeere. Naturwiss. 44, 468 (1957).CrossRefGoogle Scholar
  77. 76.
    Reznik, H.: Untersuchungen über die physiologische Bedeutung der Chymochromen Farbstoffe. Sitzber. heidelberg. Akad. Wiss., math.-naturwiss. Kl., Abhandl. 1956, 125.Google Scholar
  78. 77.
    Robertson, A. and R. B. Waters: Syntheses of Glucosides. IX. Methyl Salicylate Vicianoside (? Violutoside). J. Chem. Soc. ( London ) 1932, 2770.Google Scholar
  79. 78.
    Robinson, G. M. and R. Robinson: A Survey of Anthocyanins. I. Biochemic. J. 25, 1687 (1931).Google Scholar
  80. 79.
    Robinson, R.: Über die Synthese von Anthocyaninen. Ber. dtsch. chem. Ges. 67 A, 85 (1934): insbes. S. 98.Google Scholar
  81. 80.
    Robinson, R.: Chemistry of the Anthocyanins. Nature (London) 135, 732 (1935).CrossRefGoogle Scholar
  82. 81.
    Ryan, F. J.: Attempt to Reproduce some of Moewus’ Experiments on Chlamydomonas and Polytoma. Science (Washington) 122, 470 (1955).CrossRefGoogle Scholar
  83. 81a.
    Saito, N., S. Mitsui and K. Hayashi: Further Analysis of Organic and Inorganic Components in Crystalline Protocyanin Studies on Anthocyanins XXXV. Proc. Japan Acad. 37, 484 (1961).CrossRefGoogle Scholar
  84. 82.
    Sakamura, S. and F. J. Francis: The Anthocyanins of the American Cranberry. J. Food Sci. 26, 318 (1961).CrossRefGoogle Scholar
  85. 83.
    Scheiner, D. M.: The Enzymatic Decolorization of Anthocyanin Pigments. Ph. D. Thesis. Cornell Univ. 1960. (L. C. Card No. Mic 61–548.)Google Scholar
  86. 84.
    Schofield, K. and T. Swain: Heterocyclic Compounds. Annu. Rep. Chem. Soc. (London) 55, 285 (1959).Google Scholar
  87. 85.
    Scott-Moncrieff, R.: A Biochemical Survey of some Mendelian Factors for Flower Colour. J. Genetics 32, 117 (1936).CrossRefGoogle Scholar
  88. 86.
    Seyffert, W.: Über die Wirkung von Blütenfarbgenen bei der Levkoje, Matthiola incana R. BR. Z. Pflanzenzücht. 44, 4 (1960).Google Scholar
  89. 87.
    Shibata, M.: Über Fritillaricyanin ein neues Anthocyanin aus den Blüten von japanischen Schachblumen. Sci. Rep. Tohoku Univ. 24, 89 (1958).Google Scholar
  90. 88.
    Siegelman, H. W. and S. B. Hendricks: Photocontrol of Anthocyanin Formation in Turnip and Red Cabbage Seedlings. Plant Physiol. 32, 393 (1957).CrossRefGoogle Scholar
  91. 89.
    Silberman, H. C.: Reactions of Sugars in the Presence of Acids-a Paper Chromatographic Study. J. Organ. Chem. (USA) 26, 1967 (1961).Google Scholar
  92. 90.
    Sondheimer, E. and C. B. Karash: The Major Anthocyanin Pigments of the Wild Strawberry (Fragaria vesca). Nature (London) 178, 648 (1956).CrossRefGoogle Scholar
  93. 91.
    Straus, J.: Anthocyanin Synthesis in Corn Endosperm Tissue Cultures. 2. Effect of certain Inhibitory and Stimulatory Agents. Plant Physiol. 35, 645 (1960).CrossRefGoogle Scholar
  94. 92.
    Stroh, H.-H.: Über die Anthocyane des Rotkohls. I. Mitt.: Zur Konstitution des Rubrobrassinchlorids. Z. Naturforsch. 14 b, 699 (1959).Google Scholar
  95. 93.
    Suomalainen, H. and A. J. A. Keränen: The First Anthocyanins appearing during the Ripening of Blueberries. Nature (London) 191, 498 (1961).CrossRefGoogle Scholar
  96. 94.
    Thimann, K. V. and Y. L. Ng: Private communication.Google Scholar
  97. 95.
    Thimann, K. V. and Y. H. Edmondson: The Biogenesis of the Anthocyanins. I. General Nutritional Conditions Leading to Anthocyanin Formation. Arch. Biochemistry 22, 33 (1949)•Google Scholar
  98. 96.
    Thimann, K. V. and B. S. Radner: The Biogenesis of Anthocyanin. VI. The Rôle of Riboflavine. Arch. Biochem. Biophys. 74, 209 (1958).CrossRefGoogle Scholar
  99. 97.
    Van Buren, J. P., D. M. Scheiner and A. C. Wagenknecht: An Anthocyanin-decolorizing System in Sour Cherries. Nature (London) 185, 165 (1960).CrossRefGoogle Scholar
  100. 98.
    Wawzonek, S.: Chromenols, Chromenes, and Benzopyrylium Salts: The Anthocyanins. In: R. C. ELDERFIELD, Heterocyclic Compounds, Vol. II, p. 277. New York: John Wiley. 1951.Google Scholar
  101. 99.
    Willstätter, R. und C. L. Burdick: Über den Farbstoff der Petunie. Liebigs Ann. Chem. 412, 217 (1917).Google Scholar
  102. 100.
    Willstätter, R. und A. E. Everest: Über den Farbstoff der Kornblume. Liebigs Ann. Chem. 401, 189 (1913).Google Scholar
  103. 101.
    Willstätter, R. und W. Mieg: Über ein Anthocyan des Rittersporns. Liebigs Ann. Chem. 408, 61 (1915).Google Scholar
  104. 102.
    Wyler, H. und A. S. Deriding: Über Betacyane, die stickstoffhaltigen Farbstoffe der Centrospermen. Vorl. Mitt. Experientia 17, 23 (1961).CrossRefGoogle Scholar
  105. 103.
    Yamaha, T. and C. E. Cardini: The Biosynthesis of Plant Glycosides. H. Gentiobiosides. Arch. Biochem. Biophys. 86, 133 (1960).CrossRefGoogle Scholar
  106. 104.
    Yang, H. Y. and W. F. Steele: Removal of Excessive Anthocyanin Pigment by Enzyme. Food Tech. (London) 12, 517 (1958).Google Scholar
  107. 105.
    Yeh, P.-Y. and P.-K. Huang: Malvidin 3-Galactoside and Delphinidin 7Galactoside from Bladhia sieboldii. Tetrahedron 12, 181 (1961).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag in Vienna 1962

Authors and Affiliations

  • J. B. Harborne
    • 1
  1. 1.HertfordEngland

Personalised recommendations