To modern scientists, the origin of life seems one of the most difficult of all problems. This was not always so. From classic Greek times until the middle of the 19th century it was generally accepted that living organisms could originate spontaneously, without parents, from nonliving material. Thus, for centuries it was believed that insects, frogs, worms, etc. were generated spontaneously in mud and decaying matter. This notion was experimentally disproved in 1668 by Redi, who showed that larvae did not develop in meat if adult insects were prevented from laying their eggs on it; but it was revived again following the discovery of microorganisms by Leeuwenhoek in 1675. Since bacteria, yeasts and protozoa were much smaller and apparently simpler than any previously known living things, Redi’s disproof did not seem to apply to them, and the possibility of their spontaneous origin became a matter of controversy for nearly 200 years. We know today that these organisms, despite their small size, are enormously complex—as complex as the cells of higher organisms—and the possibility that they could originate spontaneously from non-living material is as remote as it is for any other cells. In a series of brilliant experiments, Pasteur (82) in 1861 finally overcame the technical difficulties that had prevented solution of the problem and demonstrated, by logically the same argument that Redi had used, that microorganisms arise only from pre-existing microorganisms. The genetic continuity of living organisms was thus established for the first time.


Electric Discharge Ultraviolet Light Hydrogen Cyanide Living Matter Primitive Earth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelson, P. H.: Amino Acids Formed in “Primitive Atmospheres”. Science (Washington) 124, 935 (1956).Google Scholar
  2. 2.
    Abelson, P. H.: Paleobiochemistry and Organic Geochemistry. Fortschr. Chem. organ. Naturstoffe 17. 379 (1959).Google Scholar
  3. 3.
    Akabori, S.: On the Origin of the Fore-Protein. In (78), p. 189.Google Scholar
  4. 4.
    Alexander, H. E. and G. Leidy: Determination of Inherited Traits of H. influenzas by Desoxyribonucleic Acid Fractions Isolated from Type-Specific Cells. J. exp. Medicine 93, 345 (1951).Google Scholar
  5. 5.
    Allison, A. C.: Protection Afforded by Sickle-Cell Trait Against Subtertian Malarial Infection. Brit. Med. J. 1954, 290Google Scholar
  6. 6.
    Anfinsen, C. B.: The Molecular Basis of Evolution. New York: John Wiley and Sons, Inc. 1959.Google Scholar
  7. 7.
    Arrhenius, S.: Worlds in the Making. New York: Harper. 1908.Google Scholar
  8. 8.
    Avery, O. T., C. M. Macleod and M. Mccarty: Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types. J. exp. Medicine 79, 137 (1944).Google Scholar
  9. 9.
    Bahadur, K.: Photosynthesis of Amino Acids from Paraformaldehyde and Potassium Nitrate. Nature (London) 173, 1141 (1954).Google Scholar
  10. 10.
    Bahaadur, K.: The Reactions Involved in the Formation of Compounds Preliminary to the Synthesis of Protoplasm and Other Materials of Biological Importance. In (78), p. 140.Google Scholar
  11. 11.
    Bahadur, K., S. Ranganayaki and L. Santamaria: Photosynthesis of Amino Acids from Paraformaldehyde Involving the Fixation of Nitrogen in the Presence of Colloidal Molybdenum Oxides, as Catalyst. Nature (London) 182, 1668 (1958).Google Scholar
  12. 12.
    Barghoorn, E. S.: Origin of Life. Geol. Soc. Amer., Memoirs No. 67, 2, 75 (1957)Google Scholar
  13. 13.
    Beadle, G. W.: Biochemical Genetics. Chem. Rev. 37, 15 (1945).Google Scholar
  14. 14.
    Beadle, G. W.: Evolution in Microorganisms, with Special Reference to the Fungi. Accad. naz. Lincei, Roma 47, 301 (1960).Google Scholar
  15. 15.
    Berg, P.: Specificity in Protein Synthesis. Annu. Rev. Biochem. 30 293 (1961).Google Scholar
  16. 16.
    Berger, R.: The Proton Irradiation of Methane, Ammonia, and Water at 77° K. Proc. Nat. Acad. Sci. (USA) 47, 1434 (1961).Google Scholar
  17. 17.
    Bernal, J. D.: The Physical Basis of Life. London: Routledge and Kegan Paul. 1951.Google Scholar
  18. 18.
    Bonner, J.: Structure and Origin of the Ribosomes. In: R. J. C. Harris, Protein Biosynthesis, p. 323. New York: Academic Press. 1961.Google Scholar
  19. 19.
    Bovarnick, M. and H. T. Clarke: Racemization of Tripeptides and Hydantoins. J. Amer. Chem. Soc. 60 2426 (1938).Google Scholar
  20. 20.
    Brenner, S., F. Jacob and M. Meselson: An Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis. Nature (London) 190, 76 (1961).Google Scholar
  21. 20a.
    Brown, H.: The Carbon Cycle in Nature. Fortschr. Chem. organ. Naturstoffe 14, 317 (1957)Google Scholar
  22. 21.
    Cavalieri, L. F., B. H. Rosenberg and J. F. Deutsch: The Subunit of Deoxyribonucleic Acid. Biochem. Biophys. Res. Comm. 1, 124 (1959).Google Scholar
  23. 22.
    Crawford, I. P. and C. Yanofsky: On the Separation of the Tryptophan Synthetase of Escherichia coli into Two Protein Components. Proc. Nat. Acad. Sci. (USA) 44, 1161 (1958).Google Scholar
  24. 23.
    Crow, J. F.: Darwin’s Influence on the Study of Genetics and the Origin of Life. In: M. R. Wheeler, Biological Contributions, p. 49. Austin: Univ. Texas. 1959.Google Scholar
  25. 24.
    Davidson, J. N.: The Biochemistry of the Nucleic Acids. London: Methuen and Co., Ltd. 3rd ed. 1957.Google Scholar
  26. 25.
    Demerec, M. and P. E. Hartman: Complex Loci in Microorganisms. Annu. Rev. Microbiol. 13, 377 (1959)Google Scholar
  27. 26.
    Ellenbogen, E.: Photochemical Synthesis of Amino Acids. Abstr. Amer. Chem. Soc. Meeting, Chicago (1955), p. 47 C; and personal communications.Google Scholar
  28. 27.
    Fowler, W. A., J. L. Greenstein and F. Hoyle: Deuteronomy: Synthesis of Deuterons and the Light Nuclei During the Early History of the Solar System. Amer. J. Physics 29, 393 (1961).Google Scholar
  29. 28.
    Fox, S. W.: How Did Life Begin? Science (Washington) 132, 200 (1960).Google Scholar
  30. 28a.
    Fox, S. W. and K. Harada: Synthesis of Uracil under Conditions of a Thermal Model of Prebiological Chemistry. Science (Washington) 133, 1923 (1961).Google Scholar
  31. 29.
    Fraenkel-Conrat, H.: The Role of the Nucleic Acid in the Reconstitution of Active Tobacco Mosaic Virus. J. Amer. Chem. Soc. 78, 882 (1956).Google Scholar
  32. 30.
    Fraenkel-Conrat, H. and B. Singer: Virus Reconstitution. H. Combination of Protein and Nucleic Acid from Different Strains. Biochim. Biophys. Acta 24, 540 (1957)Google Scholar
  33. 31.
    Freese, E.: On the Molecular Explanation of Spontaneous and Induced Mutations. Brookhaven Sympos. Biol. 12, 63 (1959).Google Scholar
  34. 32.
    Garrison, W. M., D. C. Morrison, J. G. Hamilton, A. A. Benson and M. Calvin: Reduction of Carbon Dioxide in Aqueous Solutions by Ionizing Radiation. Science (Washington) 114, 416 (1951).Google Scholar
  35. 33.
    Gierer, A. and G. Schramm: Infectivity of Ribonucleic Acid from Tobacco Mosaic Virus. Nature (London) 177, 702 (1956).Google Scholar
  36. 34.
    Glasel, J.: Stabilization of NH in Hydrocarbon Matrices and its Relation to Cometary Phenomena. Proc. Nat. Acad. Sci. (USA) 47, 174 (1961).Google Scholar
  37. 35.
    Gros, F., H. Hiatt, W. Gilbert, C. G. Kurland, R. W. Risebrough and J. D. Watson: Unstable Ribonucleic Acid Revealed by Pulse Labelling of Escherichia coli. Nature (London) 190, 581 (1961).Google Scholar
  38. 36.
    Groth, W. and H. V. Weyssenhoff: Photochemische Bildung von Aminosäuren aus Mischungen einfacher Gase. Naturwiss. 44, 510 (1957).Google Scholar
  39. 37.
    Groth, W. and H. V. Weyssenhoff: Photochemical Formation of Organic Compounds from Mixtures of Simple Gases. Planet. Space Science 2, 79 (1960); Ann. Physik 4, 70 (1959).Google Scholar
  40. 38.
    Gulick, A.: Phosphorus and the Origin of Life. Ann. N. Y. Acad. Sci. 69, 309 (1957); Amer. Scientist 43, 479 (1955).Google Scholar
  41. 39.
    Hardin, G.: Darwin and the Heterotroph Hypothesis. Sci. Monthly 70, 178 (1950).Google Scholar
  42. 40.
    Hershey, A. D. and M. Chase: Independent Functions of Viral Proteins and Nucleic Acid in Growth of Bacteriophage. J. Gen. Physiol. 36, 39 (1952).Google Scholar
  43. 41.
    Heyns, K., W. Walter and E. Meyer: Modelluntersuchungen zur Bildung organischer Verbindungen in Atmosphären einfacher Gase durch elektrische Entladungen. Naturwiss. 44, 385 (1957).Google Scholar
  44. 42.
    Hoagland, M. B.: The Relationship of Nucleic Acid and Protein Synthesis as Revealed by Studies in Cell Free Systems. In: E. Chargaff and J. N. Davidson, The Nucleic Acids, Vol. 3, P. 349. New York: Academic Press, Inc. 1960.Google Scholar
  45. 43.
    Holmes, A.: The Oldest Dated Minerals of the Rhodesian Shield. Nature (London) 173, 612 (1954)Google Scholar
  46. 44.
    Horowitz, N. H.: On the Evolution of Biochemical Syntheses. Proc. Nat. Acad. Sci. (USA) 31, 153 (1945)Google Scholar
  47. 45.
    Horowitz, N. H.: Biochemical Genetics of Neurospora. Adv. Genetics 3, 33 (1950).Google Scholar
  48. 46.
    Horowitz, N. H. and M. Fling: The Role of the Genes in the Synthesis of Enzymes. In: O. Gaebler, Enzymes: Units of Biological Structure and Function, p. 139. New York: Academic Press, Inc. 1956.Google Scholar
  49. 47.
    Horowitz, N. H., M. Fling, H. Macleod and N. Sueoka: A Genetic Study of Two New Structural Forms of Tyrosinase in Neurospora. Genetics 46, 1015 (1961).Google Scholar
  50. 48.
    Horowitz, N. H. and U. Leupold: Some Recent Studies Bearing on the One Gene-One Enzyme Hypothesis. Cold Spring Harbor Sympos. Quant. Biol. 16, 65 (1951).Google Scholar
  51. 49.
    Hotchkiss, R. D.: The Biological Role of the Deoxypentose Nucleic Acids. In: E. Chargaff and J. N. Davidson, The Nucleic Acids, Vol. 2, p. 435. New York: Academic Press, Inc. 1955.Google Scholar
  52. 50.
    Hotcukiss, R. D. and J. Marmite: Double Marker Transformations as Evidence of Linked Factors in Desoxyribonucleate Transforming Agents. Proc. Nat. Acad. Sci. (USA) 40, 55 (1954)Google Scholar
  53. 51.
    Hurwitz, J., A. Bresler and R. Diringer: The Enzymatic Incorporation of Ribonucleotides into Polyribonucleotides and the Effect of DNA. Biochem. Biophys. Res. Comm. 3, 15 (1960).Google Scholar
  54. 52.
    Ingram, V. M.: Abnormal Human Haemoglobins. I. The Comparison of Normal Human and Sickle-Cell Haemoglobins by “Fingerprinting”. Biochem. Biophys. Acta 28, 539 (1958).Google Scholar
  55. 53.
    Ingram, V. M.: Gene Evolution and the Haemoglobins. Nature (London) 189, 704 (1961).Google Scholar
  56. 54.
    Itano, H. A.: The Human Hemoglobins: Their Properties and Genetic Control. Adv. Protein Chem. 12, 215 (1957).Google Scholar
  57. 55.
    Itano, H. A. and E. Robinson: Genetic Control of the x-and ß-Chains of Hemoglobin. Federat. Proc. (Amer. Soc. exp. Biol.) 19, 193 (1960).Google Scholar
  58. 55a.
    Kendrew, J. C., R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, D. C. Philips and V. C. Shore: Structure of Myoglobin. Nature (London) 185, 422 (1960).Google Scholar
  59. 56.
    Klug, A. and D. L. D. Caspar: The Structure of Small Viruses. Adv. Virus Res. 7, 225 (1960).Google Scholar
  60. 57.
    Kornberg, A.: Biologic Synthesis of Deoxyribonucleic Acid. Science (Washington) 131, 1503 (1960).Google Scholar
  61. 58.
    Kozyrev, N. A.: Observation of a Volcanic Process on the Moon. Sky and Telescope (Harvard College Observatory) 18, 184 (1959)Google Scholar
  62. 59.
    Lederberg, J.: Exobiology: Approaches to Life Beyond the Earth. Science (Washington) 132, 393 (1960).Google Scholar
  63. 60.
    Lederberg, J. and D. B. Cowie: Moondust. Science (Washington) 127, 1473 (1958).Google Scholar
  64. 61.
    Lehman, I. R.: Enzymatic Synthesis of Desoxyribonucleic Acid. Ann. N. Y. Acad. Sci. 81, 745 (1959).Google Scholar
  65. 62.
    Lewis, E. B.: Pseudoallelism and Gene Evolution. Cold Spring Harbor Sympos. Quant. Biol. 16, 159 (1951).Google Scholar
  66. 63.
    Litman, R. M. et H. Ephrussi-Taylor: Inactivation et mutation des facteurs génétiques de l’acide désoxyribonucléique du Pneumocoque par l’ultraviolet et par l’acide nitreux. C. R. hebd. Séances Acad. Sci. 249, 838 (1959).Google Scholar
  67. 64.
    Lotka, A. J.: Elements of Physical Biology. Baltimore: Williams and Wilkins Co. 1925.Google Scholar
  68. 65.
    Macgregor, A. M.: A Precambrian Algal Limestone in Southern Rhodesia. Geol. Soc. South Africa, Trans. 43, 9 (1940).Google Scholar
  69. 66.
    Marmur, J. and R. D. Hotchkiss: Mannitol Metabolism, a Transferable Property of Pneumococcus. J. Biol. Chem. 214, 383 (1955)Google Scholar
  70. 66a.
    Matthaei, J. H., O. W. Jones, R. G. Martin and M. W. Nirenberg: Characteristics and Composition of Coding Units. Proc. Nat. Acad. Sci. (USA) 48, 666 (1962).Google Scholar
  71. 67.
    Meselson, M. and F. W. Stahl: The Replication of DNA in Escherichia coli. Proc. Nat. Acad. Sci. (USA) 44, 671 (1958).Google Scholar
  72. 68.
    Miller, S. L.: A Production of Amino Acids Under Possible Primitive Earth Conditions. Science (Washington) 117, 528 (1953).Google Scholar
  73. 69.
    Miller, S. L.: The Mechanism of Synthesis of Amino Acids by Electric Discharges. Biochem. Biophys. Acta 23, 480 (1957)Google Scholar
  74. 70.
    Miller, S. L.: Production of Organic Compounds Under Possible Primitive Earth Conditions. J. Amer. Chem. Soc. 77, 2351 (1957).Google Scholar
  75. 71.
    Miller, S. L.: The Formation of Organic Compounds on the Primitive Earth. Ann. N. Y. Acad. Sci. 69, 260 (1957); also in (78), p. 123.Google Scholar
  76. 72.
    Miller, S. L. and H. C. Urey: Organic Compound Synthesis on the Primitive Earth. Science (Washington) 130, 245 (1959).Google Scholar
  77. 73.
    Muller, H. J.: Variation Due to Change in the Individual Gene. Amer. Naturalist 56, 32 (1922).Google Scholar
  78. 74.
    Muller, H. J.: The Gene as the Basis of Life. Proc. Intern. Congr. Plant Science, Ithaca 1, 897 (1929).Google Scholar
  79. 75.
    Mundry, K. W. und A. Gierer: Die Erzeugung von Mutanten des Tabakmosaikvirus durch chemische Behandlung der Nukleinsäure in vitro. Z. Vererbungslehre 89, 614 (1958).Google Scholar
  80. 76.
    Nagy, B., W. G. Meinschein and D. J. Hennessy: MaSS Spectroscopic Analysis of the Orgueil Meteorite: Evidence for Biogenic Hydrocarbons. Ann. N. Y. Acad. Sci. 93, 25 (1961).Google Scholar
  81. 76a.
    Nirenberg, M. W. and J. H. Matthaei: The Dependence of Cell-free Protein Synthesis in E. coli upon Naturally Occurring or Synthetic Polyribonucleotides. Proc. Nat. Acad. Sci. (USA) 47, 1588 (1961).Google Scholar
  82. 77.
    Oparin, A. I.: The Origin of Life on the Earth. Edinburgh: Oliver and Boyd. 3rd Ed. 1957.Google Scholar
  83. 78.
    Oparin, A. I., A. E. Braunshtein, A. G. Pasynskii and T. E. Pavlovskaya (editors): Proceedings of the First International Symposium on thè Origin of Life on the Earth. New York: Pergamon Press. 1959.Google Scholar
  84. 79.
    Oró, J.: Comets and the Formation of Biochemical Compounds on the Primitive Earth. Nature (London) 190, 389 (1961).Google Scholar
  85. 80.
    Oró, J. and S. S. Kamat: Amino Acid Synthesis from Hydrogen Cyanide Under Possible Primitive Earth Conditions. Nature (London) 190, 442 (1961).Google Scholar
  86. 81.
    Oró, J. and A. P. Kimball: Synthesis of Purines Under Possible Primitive Earth Conditions. I. Synthesis of Adenine. Arch. Biochem. Biophys. 94, 217 (1961).Google Scholar
  87. 82.
    Pasteur, L.: Mémoire sur les corpuscules organisés qui existent dans l’atmosphère. Examen de la doctrine des générations spontanées. Dans: P. Valleryradot, Oeuvres de Pasteur, vol. 2, p. zTo. Paris Masson et Cie. 1922.Google Scholar
  88. 83.
    Pauling, L.: Discussion in (78), p. 182.Google Scholar
  89. 83a.
    Pauling, L. and R. B. Corey: Specific Hydrogen-Bond Formation Between Pyrimidines and Purines in Deoxyribonucleic Acids. Arch. Biochem. Biophys. 65, 164 (1956).Google Scholar
  90. 84.
    Pauling, L., H. A. Itano, S. J. Singer and I. C. Wells: Sickle Cell Anemia, a Molecular Disease. Science (Washington) no, 543 (1949).Google Scholar
  91. 85.
    Pavlovskaya, T. E. and A. G. Pasynskii: The Original Formation of Amino Acids Under the Action of Ultraviolet Rays and Electric Discharges. In (78), p. 151.Google Scholar
  92. 85a.
    Perutz, M. F., M. G. Rossmann, A. F. Cullis, H. Muirhead, G. Will and A. C. T. North: Structure of Haemoglobin. A Three-dimensional Fourier Synthesis at 5.5 A. Resolution, Obtained by X-Ray Analysis. Nature (London) 185, 416 (1960).Google Scholar
  93. 86.
    Pirie, N. W.: The Meaninglessness of the Terms Life and Living. In: J. Needham and D. E. Green, Perspectives in Biochemistry, p. 11. Cambridge Univ. Press. 1937.Google Scholar
  94. 87.
    Potter, Van R.: Nucleic Acid Outlines. Minneapolis: Burgess Publ. Co. 1960.Google Scholar
  95. 88.
    Rabinowitch, E. I.: Photosynthesis and Related Processes, Vol. I, p. 81. New York: Interscience Publ. 1945.Google Scholar
  96. 89.
    Rubey, W. W.: Development of the Hydrosphere and Atmosphere, with Special Reference to Probable Composition of the Early Atmosphere. Geol. Soc. Amer., Special Paper No. 62, 631 (1955).Google Scholar
  97. 9o.
    Sagan, C.: Indigenous Organic Matter on the Moon. Proc. Nat. Acad. Sci. (USA) 46, 393 (1960).Google Scholar
  98. 91.
    Shapley, H.: Of Stars and Men. Boston: Beacon Press. 1958.Google Scholar
  99. 92.
    Siegel, S. M.: Catalytic and Polymerization-Directing Properties of Mineral Surfaces. Proc. Nat. Acad. Sci. (USA) 43, 822 (2957).Google Scholar
  100. 93.
    Sinsheimer, R. L.: The Biochemistry of Genetic Factors. Annu. Rev. Biochem. 29, 503 (196o).Google Scholar
  101. 94.
    Sinsheimer, R. L.: Bacteriophage With Single-Stranded Deoxyribonucleic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 20, 661 (1961).Google Scholar
  102. 95.
    Sinton, W. M.: Further Evidence of Vegetation on Mars. Science (Washington) 130, 1234 (1959).Google Scholar
  103. 95a.
    Speyer, J. F., P. Lengyel, C. Basilio and S. Ocxoa: Synthetic Poly-nucleotides and the Amino Acid Code. IV. Proc. Nat. Acad. Sci. (USA) 48, 442 (1962).Google Scholar
  104. 96.
    Spizizen, J.: Genetic Activity of Deoxyribonucleic Acid in the Reconstitution of Biosynthetic Pathways. Federat. Proc. (Amer. Soc. exp. Biol.) 18, 957 (1959).Google Scholar
  105. 97.
    Stadler, L. J. and F. M. Uber: Genetic Effects of Ultraviolet Radiation in Maize. IV. Comparison of Monochromatic Radiations. Genetics 27, 84 (1942).Google Scholar
  106. 98.
    Stevens, A.: Incorporation of the Adenine Ribonucleotide into RNA by Cell Fractions from E. coli B. Biochem. Biophys. Res. Comm. 3, 92 (1960).Google Scholar
  107. 99.
    Swallow, A. J.: Radiation Chemistry of Organic Compounds. New York: Pergamon Press. 1960.Google Scholar
  108. 100.
    Taylor, J. H., P. S. Woons and W. L. Hughes: The Organization and Duplication of Chromosomes as Revealed by Autoradiographic Studies Using Tritium-Labeled Thymidine. Proc. Nat. Acad. Sci. (USA) 43, 122 (1957)Google Scholar
  109. 101.
    Terenin, A. N.: Photosynthesis in the Shortest Ultraviolet. In (78), p. 136.Google Scholar
  110. 102.
    Urey, H. C.: The Planets, their Origin and Development. New Haven, Conn.: Yale Univ. Press. 1952.Google Scholar
  111. 103.
    Urey, H. C.: On the Early Chemical History of the Earth and the Origin of Life. Proc. Nat. Acad. Sci. (USA) 38, 351 (1952).Google Scholar
  112. 104.
    Urey, H. C.: On the Concentration of Certain Elements at the Earth’s Surface. Proc. Roy. Soc. (London) 219 A, 281 (1953)Google Scholar
  113. 105.
    Urey, H. C.: The Atmospheres of the Planets. In: S. Flügge, Handbuch der Physik, Bd. 52, S. 363. Berlin: Springer-Verlag. 2959.Google Scholar
  114. 106.
    Wald, G.: The Origin of Optical Activity. Ann. N. Y. Acad. Sci. 69, 352 (1957)Google Scholar
  115. 107.
    Wang, J. H.: Hemoglobin Studies. II. A Synthetic Material with Hemoglobin-like Property. J. Amer. Chem. Soc. 80, 3168 (1958).Google Scholar
  116. 108.
    Watson, H. C. and J. C. Kendrew: Comparison Between the Amino-Acid Sequences of Sperm Whole Myoglobin and of Human Haemoglobin. Nature (London) 290, 670 (1961).Google Scholar
  117. 109.
    Watson, J. D. and F. H. C. Crick: Molecular Structure of Nucleic Acids. A Structure for Deoxyribose Nucleic Acid. Nature (London) 171, 737 (1953).Google Scholar
  118. 109a.
    Watson, J. D. and F. H. C. Crick: Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature (London) 271, 964 (1953).Google Scholar
  119. 110.
    Weiss, S. B. and T. Nakamotu: On the Participation of DNA in RNA Biosynthesis. Proc. Nat. Acad. Sci. (USA) 47, 694 (1961).Google Scholar
  120. 111.
    Wright, S.: Color Inheritance in Mammals. J. Hered. 8, 224 (1917).Google Scholar

Copyright information

© Springer-Verlag in Vienna 1962

Authors and Affiliations

  • N. H. Horowitz
    • 1
  • Stanley L. Miller
    • 2
  1. 1.PasadenaUSA
  2. 2.La JollaUSA

Personalised recommendations