Advertisement

Abstract

A considerable number of fungal metabolites have now been isolated and characterised which contain nitrogen as a constituent part of the molecule. The molecular structure of these nitrogenous metabolites has in many cases been determined. The time is now ripe for an attempt to arrange these substances in some sort of order, based on constitution, and to review any evidence available relating to their biosynthesis, in the hope of throwing some light on the fundamental processes of nitrogen incorporation and exchange as exemplified in fungal metabolism.

Keywords

Ergot Alkaloid Fusaric Acid Fungal Metabolite Dipicolinic Acid Lysergic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ale, M.: Annu. Rep. Takeda Res. Lab. 10, 73 (1951).Google Scholar
  2. 2.
    Abe, M., T. Yamano, Y. Kozu and M. Kusumoto: A new Water-soluble Ergot Alkaloid, Elymoclavine. J. Agr. Chem. Soc. Japan 25, 458 (1952).Google Scholar
  3. 3.
    Abe, M., T. Yamano, S. Yamatodani, Y. Kozu, M. Kusumoto, H. Komatsu and S. Yamada: On the new Peptide Type Ergot Alkaloids, Ergosecaline and Ergosecalinine. Bull. Agr. Chem. Soc. Japan 23, 246 (1959).Google Scholar
  4. 4.
    Abe, M. and S. Yamatodani: Isolation of Soluble Ergot Alkaloids. J. Agr. Chem. Soc. Japan 28, 501 (1954).Google Scholar
  5. 5.
    Abe, M., S. Yamatodani, T. Yamano and M. Kusumoto: On a new Water-soluble Ergot Alkaloid, Triseclavine. Bull. Agr. Chem. Soc. Japan 19, 92 (1955).Google Scholar
  6. 6.
    Abraham, E. P. and G. G. F. Newton: The Structure of Cephalosporin C. Biochemic. J. 79, 377 (1961).Google Scholar
  7. 7.
    Ackermann, D., P. H. List und H. G. Menssen: Über das Vorkommen von Herzynin neben Ergothionein in der Samenflüssigkeit des Ebers sowie in Rinder-Erythrocyten und die biologische Beziehung der beiden Basen zueinander. Z. physiol. Chem. (Hoppe-Seyler) 314, 33 (1959).Google Scholar
  8. 8.
    Anchel, M.: Identification of an Antibiotic Polyacetylene from Clitocybe diatreta as a Suberamic Acid Ene-Diyne. J. Amer. Chem. Soc. 75, 4621 (1953)Google Scholar
  9. 9.
    Anchel, M.: Structure of Diatretyne 2, an Antibiotic Polyacetylenic Nitrile from Clitocybe diatreta. Science (Washington) 121, 607 (1955)Google Scholar
  10. 10.
    Anslow, W. K. and H. Raistrice: Studies in the Biochemistry of Microorganisms. 19. 6-Hydroxy-z-methylbenzoic Acid, a Product of the Metabolism of Glucose by Penicillium griseofulvum DIERCKX. Biochemic. J. 25, 39 (1931).Google Scholar
  11. 11.
    Arnstein, H. R. V.: The Biosynthesis of Penicillin and some other Antibiotics. Annu. Rep. Progr. Chem. 54, 339 (1957).Google Scholar
  12. 12.
    Arnstein, H. R. V., M. Artman, D. Morris and E. J. Toms: Sulphur-Containing Amino Acids and Peptides in the Mycelium of Penicillium chrysogenum. Biochemic. J. 76, 353 (1960).Google Scholar
  13. 13.
    Arnstein, H. R. V. and D. Morris: The Utilization of L-Cysteinyl-L-Valine for Penicillin Biosynthesis. Biochemic. J. 76, 323 (1960).Google Scholar
  14. 14.
    Arnstein, H. R. V. and D. Morris: The Structure of a Peptide, Containing a-Aminoadipic Acid, Cystine and Valine, Present in the Mycelium of Penicillium chrysogenum. Biochemic. J. 76, 357 (1960).Google Scholar
  15. 15.
    Ashworth, P. J., E. R. H. Jones, G. H. Mansfield, K. Schlögl, J. M. Thompson and M. C. Whiting: Researches on Acetylenic Compounds. Part LIX. The Synthesis of Three Polyacetylenic Antibiotics. J. Chem. Soc. ( London ) 1958, 950.Google Scholar
  16. 16.
    Ballio, A., E. B. Chain, F. D. DI Accadia, F. Navazio, C. Rossi and M. T. Ventura: Selected Sci. Papers Istituto Super. Sanità 1960, 312.Google Scholar
  17. 17.
    Bell, M. R., J. R. Johnson, B. S. Wildi and R. B. Woodward: The Structure of Gliotoxin. J. Amer. Chem. Soc. 80, 1001 (1958).Google Scholar
  18. 18.
    Bentley, H. R., K. G. Cunningham and F. S. Spring: Cordycepin, a Metabolic Product from Cultures of Cordyceps militaris (LINN.) LINK. Part II. The Structure of Cordycepin. J. Chem. Soc. ( London ) 1951, 2301.Google Scholar
  19. 19.
    Birch, A. J.: Personal communication.Google Scholar
  20. 20.
    Birch, A. J., G. E. Blance, S. David and H. Smith: Studies in Relation to Biosynthesis. Part XXIV. Some Remarks on the Structure of Echinulin. J. Chem. Soc. ( London ) 1961, 3128.Google Scholar
  21. 21.
    Birch, A. J., R. J. English, R. A. Massy-Westropp and H. Smith: Studies in Relation to Biosynthesis. Part XV. Origin of Terpenoid Structures in Mycelianamide and Mycophenolic Acid. J. Chem. Soc. ( London ) 1958, 369.Google Scholar
  22. 22.
    Birch, A. J., R. I. Fryer, P. J. Thomson and H. Smith: Pigments of Phoma terrestris HANSEN and their Biosynthesis. Nature (London) 190, 441 (1961).Google Scholar
  23. 23.
    Birch, A. J., R. A. Massy-Westropp and R. W. Rickards: Mycelianamide. Chem. and Ind. 1955, 5599.Google Scholar
  24. 24.
    Birch, A. J., R. A. Massy-Westropp and R. W. Rickards: Studies in Relation to Biosynthesis. Part VIII. The Structure of Mycelianamide. J. Chem. Soc. ( London ) 1956, 3717.Google Scholar
  25. 25.
    Birch, A. J., B. J. Mcloughlin and H. Smith: Biosynthesis of Ergot Alkaloids. Tetrahedron Letters 1960, No. 7, I.Google Scholar
  26. 26.
    Birch, A. J., B. J. Mcloughlin, H. Smith and J. Winter: Biosynthesis of ß-Nitropropionic Acid. Chem. and Ind. 1960, 840.Google Scholar
  27. 27.
    Birch, A. J. and H. Smith: Oxidative Formation of Biologically Active Compounds from Peptides. In: Ciba Found. Sympos, Amino Acids and Peptides with Antimetabolic Activity, p. 247. London: Churchill. 1958.Google Scholar
  28. 28.
    Birkinshaw, J. H., H. Raistrick and G. Smith: Studies in the Biochemistry of Micro-organisms. 71. Fumaryl-dl-alanine (Fumaromono-dl-alanide) a Metabolic Product of Penicillium resticulosum sp. nov. Biochemic. J. 36, 829 (1942).Google Scholar
  29. 28a.
    Bohlmann, F, und H. J. Mannhardt: Acetylenverbindungen im Pflanzenreich. Fortschr. Chem. organ. Naturstoffe 14, 1 (1957).Google Scholar
  30. 29.
    Bonner, D. M.: The Identification of a Natural Precursor of Nicotinic Acid. Proc. Nat. Acad. Sci. (USA) 34, 5 (1948).Google Scholar
  31. 30.
    Bracken, A., A. Pocker and H. Raistrick: Studies in the Biochemistry of Micro-organisms. 93. Cyclopenin, a Nitrogen-containing Metabolic Product of Penicillium cyclopium WESTLING. Biochemic. J. 57, 587 (1954)Google Scholar
  32. 31.
    Brenner, M., R. Tamm und P. Quitt: Zum Problem der Struktur des Lycomarasmins. Rely. Chim. Acta 41, 763 (1958).Google Scholar
  33. 32.
    Brockmann, H. und H. Geeren: ValinOmyCin, II; Antibiotica aus Actinomyceten, XXXVII. Die Konstitution des Valinomycins. Liebigs Ann. Chem. 603, 216 (1957).Google Scholar
  34. 33.
    Brown, G. B. and V. S. Weliky: Synthesis of 9-B-D-Ribofuranosyl-purine and the Identity of Nebularine. J. Biol. Chem. 204, 1019 (1953).Google Scholar
  35. 34.
    Bush, M. T., A. Goth and H. L. Dickison: Flavicin 2. An Antibacterial Substance Produced by an Aspergillus flavus. J. Pharmacol. 84, 262 (1945).Google Scholar
  36. 35.
    Bush, M. T., O. Touster and J. E. Brockman: The Production of ß-Nitropropionic Acid by a Strain of Aspergillus flavus. J. Biol. Chem. 188, 685 (1951).Google Scholar
  37. 36.
    Carter, H. E., W. D. Celmer, W. E. M. Lands, K. L. Mueller and H. H. Tomizawa: Biochemistry of the Sphingolipides. 8. Occurrence of a Long-chain Base in Plant Phosphatides. J. Biol. Chem. 206, 613 (1954).Google Scholar
  38. 37.
    Casnati, G., F. Piozzi, A. Quilico e A. Ricca: Sulla costituzione dell’echinulina: sintesi del 2-ter2. amil-5,7-diisoamiltriptofano. Chim. e ind. (Milano) 43, 412 (1961).Google Scholar
  39. 38.
    Cavill, G. W. K., P. S. Clezy and J. R. Tetaz: The Chemistry of Mould Metabolites. II. Partial Structure for Polystictin. J. Chem. Soc. ( London ) 1957, 2646.Google Scholar
  40. 39.
    Cavill, G. W. K., P. S. Clezy and J. R. Tetaz: Structure of Cinnabarin (Polystictin). Proc Chem. Soc. (London) 1957, 346Google Scholar
  41. 40.
    Cavill, G. W. K., P. S. Clezy, J. R. Tetaz and R. L. Werner: The Chemistry of Mould Metabolites. III. Structure of Cinnabarin (Polystictin). Tetrahedron 5, 275 (1959).Google Scholar
  42. 41.
    Coox, A. H., S. F. Cox and T. H. Farmer: Production of Antibiotics by Fungi. Part IV. Lateritiin-I, Lateritiin-II, Avenacein, Sambucinin, and Fructigenin. J. Chem. Soc. ( London ) 1949, 1022.Google Scholar
  43. 42.
    Coox, A. H. and C. A. Slater: The Structure of Pulcherrimin. J. Chem. Soc. ( London ) 1956, 4133.Google Scholar
  44. 43.
    Crombie, L.: Amides of Vegetable Origin. Part IV. The Nature of Pellitorine and Anacyclin. J. Chem. Soc. ( London ) 1955, 999.Google Scholar
  45. 44.
    Cunningham, K. G. and G. G. Freeman: The Isolation and some Chemical Properties of Viridicatin, a Metabolic Product of Penicillium viridicatum WESTLING. Biochemie. J. 53, 328 (1953).Google Scholar
  46. 45.
    Cunningham, K. G., S. A. Hutchinson, W. Manson and F. S. Spring: Cordycepin, a Metabolic Product from Cultures of Cordyceps militaris (LINN.) LINK. Part I. Isolation and Characterisation. J. Chem. Soc. ( London ) 1951, 2299.Google Scholar
  47. 46.
    Cunningham, K. G., W. Manson, F. S. Spring and S. A. Hutchinson: Cordycepin, a Metabolic Product Isolated from Cultures of Cordyceps militaris (LINN.) LINK. Nature (London) 166, 949 (1950).Google Scholar
  48. 47.
    Demain, A. L.: Mechanism of Penicillin Biosynthesis. Adv. Appl. Microbiol. 1, 23 (1959).Google Scholar
  49. 48.
    Dunn, G., G. T. Newbold and F. S. Spring: Synthesis of Flavacol, a Metabolic Product of Aspergillus flavus. J. Chem. Soc. ( London ) 1949, 2586.Google Scholar
  50. 49.
    Dutcher, J. D.: Aspergillic Acid: an Antibiotic Substance produced by Aspergillus flavus. III. The Structure of Hydroxyaspergillic Acid. J. Biol. Chem. 232, 785 (1958). Google Scholar
  51. 50.
    Ehrenberg, L., H. Hedström, N. Löfgren and B. Takman: Antibiotic Effect of Agarics on Tubercle Bacilli. Svensk. Kern. Tidskr. 58, 269 (1946).Google Scholar
  52. 51.
    Ex, A. and B. Witkop: Synthesis and Biochemistry of 5- and 7-Hydroxytryptophan and Derivatives. J. Amer. Chem. Soc. 75, 500 (1953).Google Scholar
  53. 52.
    Ellman, G. L. and H. K. Mitchell: Evidence for the Existence of I-Amino2-Methyl-2-Propanol in Phospholipids of Neurospora. J. Amer. Chem. Soc. 76, 4028 (1954).Google Scholar
  54. 53.
    Eugster, C. H.: Isolierung von Muscarin aus Inocybe patouillardi (BREs.). 4. Mitt. über Muscarin. Helv. Chim. Acta 40, 886 (1957).Google Scholar
  55. 54.
    Eugster, C. H.: Zur Konstitution des Muscarins. 3. Mitt. über Muscarin. Helv. Chim. Acta 39, 1023 (1956).Google Scholar
  56. 55.
    Eugster, C. H. und G. Muller: Notiz über weitere Vorkommen von Muscarin. 12. Mitt. über Muscarin. Helv. Chico. Acta 42, 1189 (1959).Google Scholar
  57. 56.
    Ewins, A. J.: Acetylcholine, A New Active Principle of Ergot. Biochemie. J. 8, 44 (1914).Google Scholar
  58. 57.
    Glenn, A. L.: The Structure of the Ergot Alkaloids. Quart. Rev. (Chem. Soc. London) 8, 192 (1954).Google Scholar
  59. 58.
    Glister, A.: A new Antibacterial Agent Produced by a Mould. Nature (London) 148. 470 (1941).Google Scholar
  60. 59.
    Gripenberg, J.: Fungus Pigments. VIII. The Structure of Cinnabarin and Cinnabarinic Acid. Acta Chem. Scand. 12, 603 (1958).Google Scholar
  61. 60.
    Gröger, D., K. Mothes, H. Simon, H. Floss und F. Weygand: Über den Einbau von Mevalonsäure in das Ergolinsystem der Clavin-Alkaloide. Z. Naturforsch. 15 b, 141 (1960).Google Scholar
  62. 61.
    Gröger, D. und U. Mothes: Über das Vorkommen von Aminosäuren und Aminen in Mutterkorn. Pharmazie 11, 323 (1956).Google Scholar
  63. 62.
    Gröger, D., H. J. Wendt, K. Mothes und F. Weygand: Untersuchungen zur Biosynthese der Mutterkornalkaloide. Z. Naturforsch. 14b, 355 (1959).Google Scholar
  64. 63.
    Harada, T. and B. Spencer: Choline Sulphate in Fungi. J. Gen. Microbiol. 22, 520 (1960).Google Scholar
  65. 64.
    Hardegger, E. und F. Lohse: Über Muscarin. 7. Mitt. Synthese und absolute Konfiguration des Muscarins. Hely. Chim. Acta 40, 2383 (1957).Google Scholar
  66. 65.
    Herrmann, S.: p-Methylnitrosaminebenzaldehyd, ein Stoffwechselprodukt von Clitocybe suaveolens. Naturwiss. 47, 162 (1960).Google Scholar
  67. 66.
    Hodgkin, D. C. and E. N. Maslen: The X-ray Analysis of the Structure of Cephalosporin C. Biochemic. J. 79, 393 (1961).Google Scholar
  68. 67.
    Hofmann, A.: Die Chemie der Mutterkornalkaloide. Planta Med. 6, 381 (1958).Google Scholar
  69. 68.
    Hofmann, A.: Die psychotropen Wirkstoffe der mexicanischen Zauberpilze. Verh. Naturf. Ges. Basel 71, 239 (1960).Google Scholar
  70. 69.
    Hofmann, A.: Recent Developments in Ergot Alkaloids. Austral. J. Pharm. 42, 7 (1961).Google Scholar
  71. 70.
    Hofmann, A., R. Brunner, H. Kobel und A. Brack: Neue Alkaloide aus der saprophytischen Kultur des Mutterkornpilzes von Pennisetum typhoideum RICH. Hely. Chim. Acta 40, 1358 (1957).Google Scholar
  72. 71.
    Hofmann, A., R. Heim, A. Brack, H. Kobel, A. Frey, H. Ott, T. H. Petrzilka und F. Troxler: Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexicanischen Rauschpilzen. Hely. Chim. Acta 42, 1557 (1959)Google Scholar
  73. 72.
    Horowitz, N. H.: The Isolation and Identification of a Natural Precursor of Choline. J. Biol. Chem. 162, 413 (1946).Google Scholar
  74. 73.
    Johnson, J. R., A. R. Kidwai and J. S. Warner: Gliotoxin. XI. A Related Antibiotic from Penicillium terlikowski: Gliotoxin Monoacetate. J. Amer. Chem. Soc. 75, 2110 (1953).Google Scholar
  75. 74.
    Kavanagh, F., A. Hervey and W. J. Robbins: Antibiotic Substances from Basidiomycetes. VI. Agrocybe dura. Proc. Nat. Acad. Sci. (USA) 36, 102 (1950).Google Scholar
  76. 75.
    Kiss, J., S. Naef-Roth, E. Hardegger, A. Boller, F. Lohse, E. Gäumann und PL. A. Plattner: Welkstoffe und Antibiotica. 23. Mitt. Über die Isolierung von Culmomarasmin, einen peptidartigen Welkstoff aus dem Kulturfiltrat von Fusarium culmorum (W. G. SM.) SACC. Hely. Chim. Acta 43, 2096 (1960).Google Scholar
  77. 76.
    Klein, G. und M. Steiner: Stickstoffbasen in Eiweißabbau höherer Pflanzen I. Ammoniak und flüchtige Amine. Jahrb. wiss. Bot. 68, 602 (1928).Google Scholar
  78. 77.
    Kluyver, A. J., J. P. Van Der Walt and A. J. Van Triet: PulCherrlmin, the Pigment of Candida pulcherrima. Proc. Nat. Acad. Sci. (USA) 39, 583 (1953) .Google Scholar
  79. 78.
    Kögl, F., H. Duisberg und H. Erxleben: Untersuchungen über Pilzgifte. I. Über das Muscarin. I. Liebigs Ann. Chem. 489, 156 (1931).Google Scholar
  80. 79.
    Kögl, F. und F. W. Quackenbush: Untersuchungen über Pilzfarbstoffe. XV. Über Phomazarin. II. Rec. tray. chim. Pays-Bas 63, 251 (1944).Google Scholar
  81. 80.
    Kögl, F., C. A. Salemink, H. Schouten und F. Jellinek: Über Muscarin. III. Rec. tray. chim. Pays-Bas 76, 109 (1957).Google Scholar
  82. 81.
    Kögl, F., C. A. Salemink und P. L. Schuller: Über Muscaridin. Rec. tray. chim. Pays-Bas 79, 278 (1960).Google Scholar
  83. 82.
    Kögl, F. und J. Sparenburg: Untersuchungen über Pilzfarbstoffe. XIII. Über Phomazarin, den Farbstoff von Phoma terrestris HANSEN. I. Rec. tray. chim. Pays-Bas 59, 1180 (1940).Google Scholar
  84. 83.
    Kögl, F., G. C. Van Wessem und O. I. Elsbach: Untersuchungen über Pilzfarbstoff e. XVI. Synthetische Versuche zur Konstitutionsaufklärung des Phomazarins (III). Rec. tray. chim. Pays-Bas 64, 23 (1945).Google Scholar
  85. 84.
    Kong, A.: Über einige basische Extraktivstoffe des Fliegenpilzes (Amanita muscaria). Z. physiol. Chem. (Hoppe-Seyler) 91, 241 (1914).Google Scholar
  86. 85.
    List, P. H.: Basische Pilzinhaltsstoffe. II. Biogene Amine und Aminosäuren des Schopftintlings, Coprinus comatus GRAY. Arch. Pharmaz. 291 /63, 502 (1958).Google Scholar
  87. 86.
    List, P. H. und H. Hetzel: Basische Pilzinhaltsstoffe. 8. Mitt. Biogene Amine und Aminosäuren des Glimmertintlings, Coprinus micaceus BULL. Planta Medica 8, 105 (1960).Google Scholar
  88. 87.
    List, P. H. und H. G. Menssen: Basische Pilzinhaltsstoffe. 3. Mitt. Flüchtige Amine und Aminosäuren des Schwefelporlings, Polyporus sulphureus BULL. Arch. Pharmaz. 292/64, 21 (1959).Google Scholar
  89. 88.
    List, P. H. und H. Keith: Basische Pilzinhaltsstoffe. io. Mitt. Imidazolderivate im Faltentintling, Coprinus atramentarius BULL. Z. physiol. Chem. (Hoppe-Seyler) 319, 17 (1960).Google Scholar
  90. 89.
    Löfgren, N. and B. Löning: On the Structure of Nebularine. Acta Chem. Scand. 7, 225 (1953).Google Scholar
  91. 90.
    Macdonaid, J. C.: Biosynthesis of Aspergillic Acid. J. Biol. Chem. 236, 512 (1961).Google Scholar
  92. 91.
    Marumo, S.: Islanditoxin, a Toxic Metabolite Produced by Penicillium islandicum SoPP. Part I. Bull. Agric. Chem. Soc. Japan 19, 258 (1955).Google Scholar
  93. 92.
    Marumo, S.: Islanditoxin, a Toxic Metabolite Produced by Penicillium islandicum SoPP. Part III. Structure of Islanditoxin. Bull. Agric. Chem. Soc. Japan 23, 428 (1959).Google Scholar
  94. 93.
    Marumo, S., K. Miyao and A. Matsuyama: Islanditoxin, a Toxic Metabolite Produced by Penicillium islandicum Sops“. Part II. Acid Hydrolysis of Islanditoxin. Bull. Agric. Chem. Soc. Japan 19, 262 (1955).Google Scholar
  95. 94.
    Miles, P. G., H. Lund and J. R. Raper: The Identification of Indigo as a Pigment Produced by a Mutant Culture of Schizophyllum commune. Arch. Biochem. Biophys. 62, 1 (1956).Google Scholar
  96. 95.
    Miyao, K.: The Structure of Fungisporin. (Studies on Fungisporin. III.) Bull. Agric. Chem. Soc. Japan 24, 23 (1960).Google Scholar
  97. 96.
    Morris, M. P., C. Pagan and H. E. Warmke: Hiptagenic Acid, a Toxic Component of Indigofera endecaphylla. Science (Washington) 119, 322 (1954).Google Scholar
  98. 97.
    Mothes, K.: New Perspectives in the Biosynthesis of Alkaloids. Symposia Soc. exp. Biology No. 13, 258 (1959).Google Scholar
  99. 98.
    Mothes, K. und D. Gröger: Fortschritte in der Mutterkornforschung. Monatsber. dtsch. Akad. Wiss. Berlin 2, 300 (1960).Google Scholar
  100. 99.
    Mothes, K., F. Weygand, D. Gröger und H. Grisebach: Untersuchungen zur Biosynthese der Mutterkorn-Alkaloide. Z. Naturforsch. 13b, 41 (1958).Google Scholar
  101. 100.
    Nakamura, S.: Muta-aspergillic Acid, a New Growth Inhibitant against Hiochi Bacteria. Bull. Agric. Chem. Soc. Japan 24, 629 (1960).Google Scholar
  102. 101.
    Nakamura, S.: The Structure of Muta-aspergillic Acid. Agric. Biol. Chem. (Japan) 25, 74 (1961).Google Scholar
  103. 102.
    Nakamura, S. and C. Shimoda: Existence of ß-Nitropropionic Acid in the Fermentation Broth. J. Agric. Chem. Soc. Japan 28, 909 (1954).Google Scholar
  104. 103.
    Newton, G. G. F. and E. P. Abraham: Degradation, Structure and Some Derivatives of Cephalosporin N. Biochemie. J. 58, 103 (1954)Google Scholar
  105. 104.
    Oda, T.: Components of Penicillin-producing Moulds. 2. Fungus Cerebrin (I). J. pharmac. Soc. Japan 72, 136 (1952).Google Scholar
  106. 105.
    Oda, T.: Components of Penicillin-producing Moulds. 3. Fungus Cerebrin (2). J. pharmac. Soc. Japan 72, 139 (1952).Google Scholar
  107. 106.
    Oda, T.: Components of Penicillin-producing Moulds. 4. Fungus Cerebrin (3). J. pharmac. Soc. Japan 72, 142 (1952).Google Scholar
  108. 107.
    Oda, T. and H. Kamiya: The Complex Lipide, Cerebrine Phosphate, of Yeast. Chem. Pharmac. Bull. (Tokyo) 6, 682 (1958).Google Scholar
  109. 108.
    Ooyama, J., N. Nakamura and O. Tanabe: Biosynthesis of Dipicolinic Acid by a Penicillium Species. Bull. Agric. Chem. Soc. Japan 24, 743 (1960).Google Scholar
  110. 109.
    Oxford, A. E. and H. Raistrick: Studies in the Biochemistry of Microorganisms. 76. Mycelianamide, C22H2805N2, a Metabolic Product of Penicillium griseo/ulvum DIERCKX. I. Preparation, Properties and Breakdown Products. Biochemic. J. 42, 323 (1948).Google Scholar
  111. 109a.
    Bailer, M.: Natürlich vorkommende Nitroverbindungen. Fortschr. Chem. organ. Naturstoffe x8, 55 (1960).Google Scholar
  112. 110.
    Peterson, W. H. and N. E. Wideburg: Enzymatic Interconversion of Penicillins G and V. Int. Abst. biol. Sci., Suppl. 1958, 136.Google Scholar
  113. 111.
    Plattner, PL. A. und N. Clauson-Kaas: Über ein Welke erzeugendes Stoffwechselprodukt von Fusarium lycopersici SACC. Helv. Chim. Acta 28, 188 (1945).Google Scholar
  114. 112.
    Plattner, PL. A., N. Clauson-Kaas, A. Boller und U. Nager: Welkstoffe und Antibiotika. 9. Mitt. Der hydrolytische Abbau des Lycomarasmins. Helv. Chim Acta 31, 860 (1948).Google Scholar
  115. 113.
    Plattner, PL. A., W. Keller und A. Boller: Welkstoffe und Antibiotika. 15. Mitt. Konstitution und Synthese der Fusarinsäure. Synthese von 5-Äthylund 5-n-Hexyl-pyridin-2-carbonsäure. Helv. Chim. Acta 37, 1379 (1954)Google Scholar
  116. 114.
    Plattner, PL. A., U. Nager und A. Boller: Welkstoffe und Antibiotika. 7. Mitt. Über die Isolierung neuartiger Antibiotika aus Fusarien. Helv. Chim. Acta 31, 594 (1948).Google Scholar
  117. 115.
    Powell, J. F.: Isolation of Dipicolinic Acid (Pyridine-2: 6-dicarboxylic Acid) from Spores of Bacillus megatherium. Biochemie. J. 54, 210 (1953).Google Scholar
  118. 116.
    Proštenik, M.: The Sphingolipid Series. 7. The Configuration of α-Hydroxyn-hexacosanoic Acid. Croat. Chem. Acta 28, 287 (1956).Google Scholar
  119. 117.
    Proštenik, M. und N. ž. Stanaćev: Studien in der Reihe der Sphingolipoide. X. Über die Struktur der Cerebrin-Base aus Hefe. Chem. Ber. 91, 961 (1958).Google Scholar
  120. 118.
    Quilico, A. und L. Panizzi: Chemische Untersuchungen über Aspergillus echinulatus. I. Ber. dtsch. Chem. Ges. 76, 348 (1943).Google Scholar
  121. 119.
    Raistrick, H. and A. Stössl: Studies in the Biochemistry of Microorganisms. 104. Metabolites of Penicillium atrovenetum G. SMITH: ß-Nitropropionic Acid, a Major Metabolite. Biochemic. J. 68, 647 (1960).Google Scholar
  122. 120.
    Raphael, R. A. and C. M. Roxburgh: Synthesis of Cordycepose. Chem. and Ind. 1953, 1034.Google Scholar
  123. 121.
    Reindel, F.: Über Pilzcerebrin. I. Liebigs Ann. Chem. 480, 76 (1930).Google Scholar
  124. 122.
    Reindel, F., A. Weickmann, S. Picard, K. Luber und P. Turula: Über Pilzcerebrin. II. Liebigs Ann. Chem. 544, 116 (1940).Google Scholar
  125. 123.
    Rosett, T., R. H. Sankhala, C. E. Stickings, M. E. U. Taylor and R. Thomas: Studies in the Biochemistry of Micro-organisms. 103. Metabolites of Alternaria tenuis auct.: Culture Filtrate Products. Biochemie. J. 67, 39G (1957).Google Scholar
  126. 124.
    Rossbach, H., K. G. Büchel und H. Rochelmeyer: Die Bildung von Ergometrin in saprophytischen Kulturen von Claviceps purpurea TuL. Arzn. Forsch. 6, 690 (1956).Google Scholar
  127. 125.
    Russell, D. W.: Sporidesmolide I, a Metabolic Product of Sporidesmium bakeri SYD. Biochem. Biophys. Acta 45, 411 (1960).Google Scholar
  128. 126.
    Schemjakin, M. M.: Die Chemie der Depsipeptide. Angew. Chem. 72, 342 (1960).Google Scholar
  129. 127.
    Sörensen, N. A.: Some Naturally Occurring Acetylenic Compounds. Proc. Chem. Soc. ( London ) 1961, 98.Google Scholar
  130. 128.
    Spencer, B. and T. Harada: The Role of Choline Sulphate in the Sulphur Metabolism of Fungi. Biochemic. J. 77, 305 (1960).Google Scholar
  131. 129.
    Spilsbury, J. F. and S. Wilkinson: The Isolation of Festuclavine and Two New Clavine Alkaloids from Aspergillus fumigatus FRES. J. Chem. Soc. ( London ) 1961, 2085.Google Scholar
  132. 130.
    Steiner, M. und E. S. v. Kamienski: Neue Alkylamine im Mutterkorn. Naturwiss. 42, 345 (1955).Google Scholar
  133. 131.
    Stickings, C. E.: Studies in the Biochemistry of Micro-organisms. io6. Metabolites of Alternaria tenuis auct.: The Structure of Tenuazonic Acid. Biochemic. J. 72, 332 (1959)Google Scholar
  134. 132.
    Stickings, C. E. and H. Raistrick: Chemistry of the Fungi. Annu. Rev. Biochem. 25, 225 (1956).Google Scholar
  135. 133.
    Stickings, C. E. and R. J. Townsend: Studies in the Biochemistry of Microorganisms. 108. Metabolites of Alternaria tenuis auct.: The Biosynthesis of Tenuazonic Acid. Biochemic. J. 78, 412 (1961).Google Scholar
  136. 134.
    Stoll, A.: Recent Investigations on Ergot Alkaloids. Fortschr. Chem. organ. Naturstoffe 9, 114 (1952).Google Scholar
  137. 134a.
    Stowe, B. B.: Occurrence and Metabolism of Simple Indoles in Plants. Fortschr. Chem. organ. Naturstoffe 17, 248 (1959).Google Scholar
  138. 135.
    Strassman, M., A. J. Thomas, L. A. Locke and S. Weinhouse: The Biosynthesis of Isoleucine. J. Amer. Chem. Soc. 78, 228 (1956).Google Scholar
  139. 136.
    Suhadolnik, R. J. and R. G. Chenoweth: The Biosynthesis of Gliotoxin. I. Incorporation of Phenylalanine-l-and -2-CII. J. Amer. Chem. Soc. 80, 4391 (1958).Google Scholar
  140. 137.
    Sweeley, C. C.: A Gas Chromatographic Method for Sphingosine Assay. Biochim. Biophys. Acta 36, 268 (1959).Google Scholar
  141. 138.
    Sweeley, C. C. and E. A. Moscatelli: Qualitative Microanalysis and Estimation of Sphingolipide Bases. J. Lipid Res. 1, 40 (1959).Google Scholar
  142. 139.
    Taber, W. A. and L. C. Vining: Tryptophan as a Precursor of the Ergot Alkaloids. Chem. and Ind. 1959, 1218.Google Scholar
  143. 140.
    Taylor, E. H. and E. Ramstad: Biogenesis of Lysergic Acid in Ergot. Nature (London) 188, 494 (1960).Google Scholar
  144. 141.
    Udo, S.: “Natto”, Fermented Soya Beans. (I) Dipicolinic Acid in “Natto” and its Behaviour. J. Agric. Chem. S.c. Japan 12, 386 (1936).Google Scholar
  145. 142.
    Umbreit, W. W., W. A. Wood and I. C. Gunsalus: The Activity of Pyridoxal Phosphate in Tryptophane Formation by Cell-free Enzyme Preparations. J. Biol. Chem. 165, 731 (1946).Google Scholar
  146. 143.
    White, E. C.: Bactericidal Filtrates from a Mould Culture. Science (Washington) 92, 127 (1940).Google Scholar
  147. 144.
    Wickerham, L. J. and F. H. Stodola: Formation of Extracellular Sphingolipides by Micro-organisms. I. Tetra-acetylphytosphingosine from Hansenula cif erri. J. Bacteriol. 80, 484 (1960).Google Scholar
  148. 145.
    Wieland, H., R. Hallermeyer und W. Zilg: itber die Giftstoffe des Knollenblätterpilzes. VI. Amanitin, das Hauptgift des Knollenblätterpilzes. Liebigs Ann. Chem. 548, I (1941)Google Scholar
  149. 146.
    Wieland, TN.: Über die Giftstoffe des grünen Knollenblätterpilzes. XV. Die Konstitution des Phalloins. Liebigs Ann. Chem. 617, 152 (1958).Google Scholar
  150. 147.
    Wieland, TN.: Giftstoffe des grünen Knollenblätterpilzes (Amanita phalloides). Heiv. Chim. Acta 44, 919 (1961).Google Scholar
  151. 148.
    Wieland, TH. und W. Boehringer: Über die Giftstoffe des grünen Knollenblätterpilzes. XIX. Umwandlung von ß-Amanitin in a-Amanitin. Liebigs Ann. Chem. 635, 178 (1960).Google Scholar
  152. 149.
    Wieland, TH. und C. Dudensing: Über die Giftstoffe des grünen Knollenblätterpilzes. XI. y-Amanitin, eine weitere Giftkomponente. Liebigs Ann. Chem. 600, 156 (1956).Google Scholar
  153. 150.
    Wieland, TH., K. Freter und E. Gross: Über die Giftstoffe des grünen Knollenblätterpilzes. XVII. Versuche zur Synthese Phalloin-ähnlicher Cyclopeptide. Liebigs Ann. Chem. 626, 154 (1959).Google Scholar
  154. 151.
    Wieland, TH. und A. Höfer: Die Giftstoffe des grünen Knollenblätterpilzes. XVI. Die Bausteine des a-Amanitins. Liebigs Ann. Chem. 619, 35 (1958).Google Scholar
  155. 152.
    Wieland, TH., W. Motzel und H. Merz: Über das Vorkommen von Bufotenin im gelben Knollenblätterpilz. Liebigs Ann. Chem. 581, 10 (1953).Google Scholar
  156. 153.
    Wieland, Tx., G. Schmidt und L. Wirth: Über die Giftstoffe des Knollenblätterpilzes. VIII. Liebigs Ann. Chem. 577, 215 (1952).Google Scholar
  157. 154.
    Wieland, T. und W. Schön: Über die Giftstoffe des grünen Knollenblätterpilzes. X. Die Konstitution des Phalloidins. Liebigs Ann. Chem. 593, 157 (1955).Google Scholar
  158. 155.
    Wieland, TH. und A. Schöpf: Über die Giftstoffe des grünen Knollenblätterpilzes. XVIII. Ergänzungen zur Phalloidin-Formel: Ketophalloidin. Liebigs Ann. Chem. 626, 274 (1959).Google Scholar
  159. 156.
    Wieland, TH., L. Wirth und E. Fischer: Über die Giftstoffe des Knollenblätterpilzes. VII. ß-Amanitin, eine dritte Komponente des Knollenblätterpilzgiftes. Liebigs Ann. Chem. 564, 152 (1949).Google Scholar
  160. 157.
    Wilkinson, S.: The History and Chemistry of Muscarine. Quart. Rev. (Chem. Soc. London) 15, 153 (1961).Google Scholar
  161. 158.
    Winstead, J. A. and R. J. Suhadolnik: The Biosynthesis of Gliotoxin. II. Further Studies on Incorporation of Carbon-14 and Tritium Labelled Precursors. J. Amer. Chem. Soc. 82, 1645 (1960).Google Scholar
  162. 159.
    Winterstein, E. und C. Reuter: Über das Vorkommen von Histidinbetain im Steinpilz. Z. physiol. Chem. (Hoppe-Seyler) 86, 234 (1913).Google Scholar
  163. 160.
    Winterstein, E. und C. Reuter:Über die stickstoffhaltigen Bestandteile der Pilze. Landw. Vers. Sta. 79/80, 541 (1913) [Chem. Zbl. 1912 II, 935].Google Scholar
  164. 161.
    Woolley, D. W.: Studies on the Structure of Lycomarasmin. J. Biol. Chem. 176, 1291 (1948).Google Scholar
  165. 162.
    Woolley, D. W. and W. H. Peterson: Isolation of Cyclic Choline Sulphate from Aspergillus sydowi. J. Biol. Chem. 122, 213 (1937).Google Scholar
  166. 163.
    Wright, D. E. and K. Schofield: The Pigments of Phoma terrestris HANSEN. Nature (London) 188, 233 (1960).Google Scholar
  167. 164.
    Wright, L. D., E. L. Cresson, J. Valiant, D. E. Wolf and K. Folkers: Biotin l-Sulphoxide. III. The Characterization of Biotin l-Sulphoxide from a Microbiological Source. J. Amer. Chem. Soc. 76, 4163 (1954).Google Scholar
  168. 165.
    Yabuta, T., K. Kambe and T. Hayashi: Biochemistry of the “Bakanae ” Fungus. I. Fusaric Acid, a New Product of `Bakanae“ Fungus. J. Agric. Chem. Soc. Japan 10, 1059 (1934).Google Scholar
  169. 166.
    Zellner, J.: Zur Chemie des Fliegenpilzes (Amanita Muscaria L.) (IV. Mitt.). Monatsh. Chem. 32, 133 (1911).Google Scholar

Copyright information

© Springer-Verlag in Vienna 1962

Authors and Affiliations

  • J. H. Birkinshaw
    • 1
  • C. E. Stickings
    • 1
  1. 1.LondonUK

Personalised recommendations