Advertisement

Chemistry of the Natural Rotenoids

  • L. Crombie
Chapter
Part of the Fortschritte Der Chemie Organischer Naturstoffe book series (FORTCHEMIE (closed), volume 21)

Zusammenfassung

In many warm countries of the world the natives fish by throwing preparations of crushed plant material into ponds and streams. These preparations cause stupefaction of the fish, which rise to the surface and are collected. Plants which are frequently employed in South America, tropical Africa, the East Indies and Malaya belong to the Papilionatae sub-family of the Leguminosae, especially species of the genera Derris, Lonchocarpus, Mundulea, Millettia, Neorautanenia and Tephrosia. A number of these are also noted locally as insecticides and the preparation “Derris“ has been available in commerce as an insecticide for half a century. Such Derris preparations (tuba), which originate mainly in East Asia, are now less important in Western markets than those derived from South American Lonchocarpus species (the latter have a variety of names, e. g. cube, timbo, barbasco and haiari) (92) .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1.
    Baker, W., J. Chadderton, J. B. Harborne and W. D. Ollis: A New Synthesis of isoFlavones. Part I. J. Chem. Soc.(London) 1953, 1852.Google Scholar
  2. 2.
    Baker, W., J. B. Harborne and W. D. Ollis: A New Synthesis of isoFlavones. Part II. 5: 7: 2′-Trihydroxyisoflavone. J. Chem. Soc.(London) 1953, 1860.Google Scholar
  3. 3.
    Bickel, H. und H. Schmid: Über die Konstitution des Pachyrrhizons. Helv. Chim. Acta 36, 664 (1953).CrossRefGoogle Scholar
  4. 4.
    Birch, A. J. and H. Smith: Chem. Soc. Sympos., Bristol, 1958. Chem. Soc. (London), Special Publ. 1958, No. 12, 1.Google Scholar
  5. 5.
    Birch, H. F., A. Robertson and T. S. Subramaniam: Experiments on the Synthesis of Rotenone and its Derivatives. Part. X. 6: 7-Dimethoxychroman-4-one. J. Chem. Soc.(London) 1936, 1832.Google Scholar
  6. 6.
    Boam, J. J. and R. S. Cahn: Buckley’s Substance m. p. 183° from Derris Extract. J. Chem. Soc.(London) 1938, 1818.Google Scholar
  7. 7.
    Boam, J. J., R. S. Cahn and A. Stuart: The identification of Tephrosin and Deguelin from Different Sources. J. Soc. Chem. Ind.56, 91 T (1937).Google Scholar
  8. 8.
    Bridge, W., R. G. HEYES and A. Robertson: Experiments on the Synthesis of Rotenone and its Derivatives. Part XII. The 2: 2-Dimethyl-Δ3-chromen Residue of Toxicarol. J. Chem. Soc.(London) 1937, 279.Google Scholar
  9. 9.
    Büchi, G., L. Crombie, P. J. Godin, J. S. Kaltenbronn, K. S. Siddalingaiah and D. A. Whiting: The Absolute Configuration of Rotenone. J. Chem. Soc.(London) 1961, 2843.Google Scholar
  10. 10.
    Büchi, G., J. S. Kaltenbronn, L. Crombie, P. J. Godin and D. A. Whiting: The Stereochemistry of Rotenone. Proc. Chem. Soc.(London) 1960, 274.Google Scholar
  11. 11.
    Buckley, T. A.: The Toxic Constituents of Derris Root. J. Soc. Chem. Ind.55, 285 T (1936).Google Scholar
  12. 12.
    Burrows, B. F., N. Finch, W. D. OLLIS and I. O. Sutherland: Mundulone. Proc. Chem. Soc.(London) 1959, 150.Google Scholar
  13. 13.
    Burrows, B. F., W. D. Ollis and L. M. Jackman: Sericetin. Proc. Chem. Soc.(London) 1960, 177.Google Scholar
  14. 14.
    Butenandt, A.: Über das Rotenon, den physiologisch wirksamen Bestandteil der Derris elliptica. Liebigs Ann. Chem.464, 253 (1928).CrossRefGoogle Scholar
  15. 15.
    Butenandt, A. und F. Hildebrandt: Untersuchungen über pflanzliche Fisch-und Insektengifte. II. 2. Mitt. über Rotenon, den physiologisch wirksamen Bestandteil der Derris elliptica. Liebigs Ann. Chem.477, 245 (1930).CrossRefGoogle Scholar
  16. 16.
    Butenandt, A. und G. Hilgetag: Untersuchungen über pflanzliche Fisch-und Insektengifte. IV. Über die Inhaltstoffe der Derris-und Tephrosia-Arten. Liebigs Ann. Chem.495, 172 (1932).CrossRefGoogle Scholar
  17. 17.
    Butenandt, A. und G. Hilgetag: Untersuchungen über pflanzliche Fisch-und Insektengifte. VI. Über die Beziehungen des Toxicarols zum Rotenon. Liebigs Ann. Chem.506, 158 (1933).CrossRefGoogle Scholar
  18. 18.
    Butenandt, A. und W. Mccartney: Untersuchungen über pflanzliche Fisch-und Insektengifte. III. 3. Mitt. über Rotenon, den physiologisch wirksamen Bestandteil des Derris elliptica: Die Konstitution des Rotenons. Liebigs Ann. Chem.494, 17 (1932).CrossRefGoogle Scholar
  19. 19.
    Cahn, R. S.: The Correlation of Toxicity with Optical Activity of Derris Derivatives. J. Soc. Chem. Ind.55, 259 T (1936).Google Scholar
  20. 20.
    Cahn, R. S. and J. J. Boam: The Constituents of Derris Resin. J. Soc. Chem. Ind.54, 42 T (1935).CrossRefGoogle Scholar
  21. 21.
    Cahn, R. S., R. F. Phipers and J. J. Boam: The Total Composition of Derris Extract. J. Soc. Chem. Ind.57, 200 T (1938).CrossRefGoogle Scholar
  22. 22.
    Cahn, R. S., R. F. Phipers and J. J. Boam: The Action of Alkali on Rotenone and Related Substances. J. Chem. Soc.(London) 1938, 513.Google Scholar
  23. 23.
    Cahn, R. S., R. F. Phipers and J. J. Boam: The Methylation and Ease of Ring-fission of Rotenone and Related Substances. J. Chem. Soc.(London) 1938, 734.Google Scholar
  24. 24.
    Chen, Y.-L. and C.-S. Tsai: The Paper Chromatography of Rotenone. J. Taiwan Pharm. Assoc.7, 31 (1955).Google Scholar
  25. 25.
    Clark, E. P.: Toxicarol, A Constituent of the South American Fish Poison Cracca (Tephrosia) toxicaria. J. Amer. Chem. Soc.52, 2461 (1930).CrossRefGoogle Scholar
  26. 26.
    Clark, E. P.: Deguelin. I. The Preparation, Purification and Properties of Deguelin, A Constituent of Certain Tropical Fish-Poisoning Plants. J. Amer. Chem. Soc.53, 313 (1931).CrossRefGoogle Scholar
  27. 27.
    Clark, E. P.: Tephrosin. I. The Composition of Tephrosin and its Relation to Deguelin. J. Amer. Chem. Soc.53, 729 (1931).CrossRefGoogle Scholar
  28. 28.
    Clark, E. P.: Toxicarol. II. Some Acetyl Derivatives of Toxicarol. J. Amer. Chem. Soc.53, 2264 (1931).CrossRefGoogle Scholar
  29. 29.
    Clark, E. P.: Deguelin. II. Relationships Between Deguelin and Rotenone. J. Amer. Chem. Soc.54, 2369 (1931).CrossRefGoogle Scholar
  30. 30.
    Clark, E. P.: Deguelin. III. The Orientation of the Methoxyl Groups in Deguelin, Tephrosin and Rotenone. J. Amer. Chem. Soc.53, 3431 (1931).CrossRefGoogle Scholar
  31. 31.
    Clark, E. P.: Toxicarol. III. A Relation Between Toxicarol and the Rotenone Group of Fish Poisons. J. Amer. Chem. Soc.54,1600 (1932).CrossRefGoogle Scholar
  32. 32.
    Clark, E. P.: Toxicarol. IV. Concerning the Structure of Toxicarol. J. Amer. Chem. Soc.54, 2537 (1932).CrossRefGoogle Scholar
  33. 33.
    Clark, E. P.: Deguelin. IV. The Structure of Deguelin and Tephrosin. J. Amer. Chem. Soc.54, 3000 (1932).CrossRefGoogle Scholar
  34. 34.
    Clark, E. P.: Tephrosin. III. Some Acidic Derivatives of Tephrosin. J. Amer. Chem. Soc.55, 759 (1933).CrossRefGoogle Scholar
  35. 35.
    Clark, E. P.: Toxicarol. V. 7-Hydroxytoxicarol and Related Compounds. J. Amer. Chem. Soc.56, 987 (1934).CrossRefGoogle Scholar
  36. 36.
    Clark, E. P. and H. V. Claborn: Tephrosin. II. Isotephrosin. J. Amer. Chem. Soc.54, 4454 (1932).CrossRefGoogle Scholar
  37. 37.
    Crombie, L.: Unpublished results.Google Scholar
  38. 38.
    Crombie, L. and P. J. Godin: Structure and Stereochemistry of the Rotenolones, Rotenolols, Isorotenolones and Isorotenolols. Proc. Chem. Soc.(London) 1960, 276.Google Scholar
  39. 39.
    Crombie, L. and P. J. Godin: Structure and Stereochemistry of the Rotenolones, Rotenolols, Isorotenolones and Isorotenolols. J. Chem. Soc.(London) 1961, 2861.Google Scholar
  40. 40.
    Crombie, L., P. J. Godin, K. S. Siddalingaiah and D. A. Whiting: Rotenoid Reactions Prefaced by Alkaline Attack. Proc. Chem. Soc.(London) 1961, 19.Google Scholar
  41. 41.
    Crombie, L., P. J. Godin, K. S. Siddalingaiah and D. A. Whiting: Some Chemistry of the B/C Ring-System of Rotenoids. J. Chem. Soc.(London) 1961, 2876.Google Scholar
  42. 42.
    Crombie, L. and J. W. Lown: Determination of the Geometry of the B/C Fusion of Rotenoids by Means of Long-Range Asymmetric Magnetic Shielding of the Carbonyl Group. Proc. Chem. Soc.(London) 1961, 299.Google Scholar
  43. 43.
    Crombie, L. and J. W. Lown: Proton Magnetic Studies of Rotenone and Related Compounds. J. Chem. Soc.(London) 1962, 775.Google Scholar
  44. 44.
    Crombie, L. and R. Peace: Structure and Stereochemistry of Sumatrol and Malaccol. J. Chem. Soc.(London) 1961, 5445.Google Scholar
  45. 45.
    Crombie, L. and D. A. Whiting: Structure of Nepseudin. A Trimethoxyfurano-isoflavanone. Chem. and Ind.1962, 1946.Google Scholar
  46. 46.
    Crombie, L. and D. A. Whiting: The Constitution of Neotenone and Dolichone. Biogenetic Connexions in the Sub-Family Papilionatae. Tetrahedron Letters 1962, No. 18, 801.Google Scholar
  47. 47.
    Crombie, L. and D. A. Whiting: A Study of the Extractives of Neorautanenia pseudopachyrrhiza. The Isolation and Structure of a New Rotenoid and Two New Isoflavanones. J. Chem. Soc.(London) 1962, 1569.Google Scholar
  48. 48.
    Dann, O. und G. Volz: Katalytische Hydrierung von Dehydrorotenon zu Dihydrorotenon. Liebigs Ann. Chem.631, 102 (1960).CrossRefGoogle Scholar
  49. 49.
    Dann, O. und G. Volz: 5 a,IIa-Dihydro-chromeno-[3,4: b]-chromon, die Stammverbindung der Rotenoide. Liebigs Ann. Chem.631, III (1960).Google Scholar
  50. 50.
    Dann, O. und G. Volz: Einfache synthetische Rotenoide. Naturwiss. 48, 162 (1961).CrossRefGoogle Scholar
  51. 51.
    Djerassi, C., W. D. Ollis and R. C. Russell: The Relative Stereochemistry of the Rotenoids. J. Chem. Soc.(London) 1961, 1448.Google Scholar
  52. 52.
    Dutta, N. L.: Chemical Investigation of Mundulea suberosa. II. Constitution of Munetone, the Principal Crystalline Product of the Root Bark. J. Indian Chem. Soc.36, 165 (1959).Google Scholar
  53. 53.
    Eisenbeiss, J. und H. Schmid: Struktur des Erosnin (Norton and Hansberry’s “Compound I“). Helv. Chim. Acta 42, 61 (1959).CrossRefGoogle Scholar
  54. 54.
    Feinstein, L. and M. Jacobson: Insecticides Occurring in Higher Plants. Fortschr. Chem. organ. Naturstoffe 10, 423 (1953).Google Scholar
  55. 55.
    Feldman, A.: Stereo Numbers: A Short Designation for Stereoisomers. J. Organ. Chem.(USA) 24, 1556 (1959).CrossRefGoogle Scholar
  56. 56.
    Finch, N. and W. D. Ollis: Munduserone. Proc. Chem. Soc.(London) 1960, 176.Google Scholar
  57. 57.
    Fukami, H., M. Nakayama and M. Nakajima: Synthesis of Rotenoids. III. Synthesis of β-Tubanol Methyl Ether. Agric. Biol. Chem.(Tokyo) 25, 243 (1961).Google Scholar
  58. 58.
    Fukami, H., M. Nakayama and M. Nakajima: Synthesis of Rotenoids. IV. Synthesis of β-Tubanol. Agric. Biol. Chem.(Tokyo) 25, 247 (1961).Google Scholar
  59. 59.
    Fukami, H., J. Oda, G. Sakata and M. Nakajima: Total Synthesis of dl-Deguelin. Bull. Agric. Chem. Soc. Japan 24, 327 (1960).Google Scholar
  60. 60.
    Fukami, H., J. Oda, G. Sakata and M. Nakajima: Synthesis of Rotenoids. V. Total Synthesis of dl-Deguelin. Agric. Biol. Chem.(Tokyo) 25, 252 (1961).Google Scholar
  61. 61.
    Fukami, H., S. Takahashi, K. Konishi and M. Nakajima: Synthesis of Rotenoids. I. Synthesis of Chromanochromanone and 2-Substituted Iso-flavanones. Bull. Agric. Chem. Soc. Japan 24, 119 (1960).Google Scholar
  62. 62.
    Fukami, J., T. Nakatsugawa and T. Narahashi: The Relation Between Chemical Structure and Toxicity in Rotenone Derivatives. Japan. J. Appl. Entomol. Zool.3, 259 (1959).CrossRefGoogle Scholar
  63. 63.
    Geoffroy, E.: Contribution à l’étude du Robinia nicou au point de vue botanique, chimique et physiologique. Ann. Inst. Colon. Marseilles 2, 1 (1896).Google Scholar
  64. 64.
    George, S. W. and A. Robertson: Experiments on the Synthesis of Rotenone and its Derivatives. Part XIV. The Structure of Toxicarol. J. Chem. Soc.(London) 1937, 1535.Google Scholar
  65. 65.
    Goodhue, L. D.: An Improvement on the Gross and Smith Colorimetric Method for the Determination of Rotenone and Deguelin. J. Assoc. Official Agric. Chem.19, 118 (1936).Google Scholar
  66. 66.
    Grisebach, H.: In: W. D. Ollis, Recent Developments in The Chemistry of Natural Phenolic Compounds. London: Pergamon. 1961.Google Scholar
  67. 67.
    Grisebach, H. und G. Brandner: Einbau des 2′,4,4′,6′-Tetrahydroxy-chalcon-2′-glucosid-[β-14C] in Isoflavone. Experientia 18, 400 (1962) (and earlier papers).CrossRefGoogle Scholar
  68. 68.
    Grisebach, H. and W. D. Ollis: Biogenetic Relationships Between Coumarins, Flavonoids, Isoflavonoids and Rotenoids. Experientia 17, 4 (1961).CrossRefGoogle Scholar
  69. 69.
    Haller, H. L.: Rotenone. XL The Relation Between Isorotenone and Rotenone. J. Amer. Chem. Soc.53, 733 (1931).CrossRefGoogle Scholar
  70. 70.
    Haller, H. L.: Rotenone. XXL The Structure of Isorotenone, β-Dihydrorotenone and Dehydrorotenol. J. Amer. Chem. Soc.54, 2126 (1932).CrossRefGoogle Scholar
  71. 71.
    Haller, H. L.: Rotenone. XXV. The Synthesis of Tetrahydrotubanol and Tetrahydro-tubaic Acid. J. Amer. Chem. Soc.55, 3032 (1933).CrossRefGoogle Scholar
  72. 72.
    Haller, H. L.: Some Color Tests for Rotenone Not Specific. Ind. Eng. Chem., Analyt. Ed.16, 277 (1944).CrossRefGoogle Scholar
  73. 73.
    Haller, H. L., L. D. Goodhue and H. A. Jones: The Constituents of Derris and Other Rotenone-bearing Plants. Chem. Rev.30, 33 (1942).CrossRefGoogle Scholar
  74. 74.
    Haller, H. L. and F. B. Laforge: Rotenone. VII. The Structure of Tubanol and Tubaic Acid. J. Amer. Chem. Soc.52, 3207 (1930).CrossRefGoogle Scholar
  75. 74a.
    Haller, H. L. and F. B. Laforge: Rotenone. XII. Some New Derivatives of Rotenol. J. Amer. Chem. Soc.53, 2271 (1931).CrossRefGoogle Scholar
  76. 75.
    Haller, H. L. and F. B. Laforge: Rotenone. XIV. The Relation of the Optical Activity of Some Rotenone Derivatives to the Structure of Tubaic Acid. J. Amer. Chem. Soc.53, 3426 (1931).CrossRefGoogle Scholar
  77. 76.
    Haller, H. L. and F. B. Laforge: Rotenone. XX. The Structure of Tubaic Acid. J. Amer. Chem. Soc.54, 1988 (1932).CrossRefGoogle Scholar
  78. 77.
    Haller, H. L. and P. S. Schaffer: Rotenone. XXVII. Note on the Hydrogenation of Rotenone. J. Amer. Chem. Soc.55, 3494 (1933).CrossRefGoogle Scholar
  79. 78.
    Hanriot, M.: Sur les substances actives du Tephrosia vogelii. C. R. hebd. Séances Acad. Sci.144, 150 (1907).Google Scholar
  80. 79.
    Harper, S. H.: A New Compound from Derris elliptica Resin. Chem. and Ind.1938, 1059.Google Scholar
  81. 80.
    Harper, S. H.: The Precursor of Buckley’s Compound. Chem. and Ind.1939. 292.Google Scholar
  82. 81.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part I. The Properties of l-α-Toxicarol Isolated from Derris malaccensis (Kinta Type). J. Chem. Soc.(London) 1939, 812.Google Scholar
  83. 82.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part II. The Isolation of l-Elliptone from Derris elliptica. J. Chem. Soc.(London) 1939, 1099.Google Scholar
  84. 83.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part III. The Structure of Elliptone. J. Chem. Soc.(London) 1939, 1424.Google Scholar
  85. 84.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part IV. The Isolation of Malaccol from Derris malaccensis. J. Chem. Soc.(London) 1940, 309.Google Scholar
  86. 85.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part V. Derris malaccensis and Tephrosia toxicaria. J. Chem. Soc.(London) 1940, 1178.Google Scholar
  87. 86.
    Harper, S. H.: The Melting Points of Toxicarol and Related Compounds. J. Chem. Soc.(London) 1941, 878.Google Scholar
  88. 87.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part VII. The Reduction of Elliptone. J. Chem. Soc.(London) 1942, 587.Google Scholar
  89. 88.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part VIII. The Synthesis of Dehydrotetrahydroelliptone and of Dehydrotetrahydro-malaccol. J. Chem. Soc.(London) 1942, 593.Google Scholar
  90. 89.
    Harper, S. H.: The Active Principles of Leguminous Fish-poison Plants. Part IX. The Synthesis of Furanoisoflavones Related to Rotenone. J. Chem. Soc.(London) 1942, 595.Google Scholar
  91. 90.
    Herbert, J. R., W. D. Ollis and R. C. Russell: Synthesis of (±)-Munduserone. Proc. Chem. Soc.(London) 1960, 177.Google Scholar
  92. 91.
    Heyes, R. G. and A. Robertson: Experiments on the Synthesis of Rotenone and its Derivatives. Part V. The Constitution of apoToxicarol. J. Chem. Soc.(London) 1935, 681.Google Scholar
  93. 92.
    Holman, H. J.: A Survey of Insecticide Materials of Vegetable Origin. London: Imperial Institute. 1940.Google Scholar
  94. 93.
    Holton, G. W., G. PARKER and A. Robertson: Experiments on the Synthesis of Rotenone and its Derivatives. Part XVI. The Synthesis of Abutic Acid and its Analogues. J. Chem. Soc.(London) 1949, 2049.Google Scholar
  95. 94.
    Jennen, A.: De Inwerking van Alkaliën en Alkali-metalen op Rotenon en Toxicarol. Bull. soc. chim. Belges 61, 536 (1952).CrossRefGoogle Scholar
  96. 95.
    Jones, H. A.: Crystalline Solvates of Rotenone. J. Amer. Chem. Soc.53, 2738 (1931).CrossRefGoogle Scholar
  97. 96.
    Jones, H. A. and C. M. Smith: A Colour Test for Rotenone. Ind. Eng. Chem., Analyt. Ed.5, 75 (1933).CrossRefGoogle Scholar
  98. 97.
    Jones, H. A. and J. W. Wood: Depression of the Melting Point of α-Toxicarol and Related Compounds in Soft-glass Capillary Tubes. J. Amer. Chem. Soc.63, 1760 (1941).CrossRefGoogle Scholar
  99. 98.
    Kageyama, I.: Extraction of Active Principles from Pyrethrum, Derris Root, Tobacco, etc. Japanese Patent 3649 (1952) [Chem. Abstr. 47, 8328 (1953)].Google Scholar
  100. 99.
    Kageyama, I., J. Yasamura and M. Sato: Rotenone frorn Cube or Derris Root. British Patent 708735 (1954) [Chem. Abstr. 48, 11715 (1954)].Google Scholar
  101. 100.
    Kariyone, T. and S. Kondo: Tubaic Acid. J. pharmac. Soc. Japan 518, 376 (1925) [Chem. Abstr. 19, 2485 (1925)], and earlier papers.Google Scholar
  102. 100a.
    Kawase, Y. and C. Numata: Synthesis of Furano [2″,3″: 7,8] chromeno-[3′,4′: 2,3] chromone. Chem. and Ind.1961, 1361.Google Scholar
  103. 101.
    Kawase, Y. and C. Numata: Synthetic Studies of Benzofuran Derivatives. Part 8. Synthesis of Furo[2,3-f]chromene[3,4-b]chromone. Bull. Chem. Soc. Japan 35, 1366 (1962).CrossRefGoogle Scholar
  104. 102.
    Kenny, T. S., A. Robertson and S. W. George: Sumatrol. Part II. The Synthesis of Dehydrotetrahydrosumatrol. J. Chem. Soc.(London) 1939, 1601.Google Scholar
  105. 103.
    King, H. I. and A. Robertson: Experiments on the Synthesis of Rotenone and its Derivatives. Part VI. Chromenochromones. J. Chem. Soc.(London) 1935. 993.Google Scholar
  106. 104.
    Laforge, F. B.: Rotenone. XV. The Structure of Derric Acid. J. Amer. Chem. Soc.53, 3896 (1931).CrossRefGoogle Scholar
  107. 105.
    Laforge, F. B.: Rotenone. XXIII. The Structure of Rotenonone. J. Amer. Chem. Soc.54, 3377 (1932).CrossRefGoogle Scholar
  108. 106.
    Laforge, F. B.: Rotenone. XXVI. Synthesis of the Parent Substances of Some Characteristic Rotenone Derivatives. J. Amer. Chem. Soc.55, 3040 (1933).CrossRefGoogle Scholar
  109. 107.
    Laforge, F. B. and H. L. Haller: Rotenone. XIX. The Nature of the Alkali Soluble Hydrogénation Products of Rotenone and Derivatives and their Bearing on the Structure of Rotenone. J. Amer. Chem. Soc.54, 810 (1932).CrossRefGoogle Scholar
  110. 108.
    Laforge, F. B. and H. L. Haller: Rotenone. XXIX. The Isomerism of the Rotenolones. J. Amer. Chem. Soc.56, 1620 (1934).CrossRefGoogle Scholar
  111. 109.
    Laforge, F. B. and H. L. Haller: Rotenone. XXX. The Non-Crystalline Constituents of Derris Root. J. Amer. Chem. Soc.56, 2415 (1934).CrossRefGoogle Scholar
  112. 109a.
    Laforge, F. B., H. L. Haller and L. E. Smith: Rotenone. XVI. Interpretation of Some Characteristic Reactions of Rotenone. J. Amer. Chem. Soc.53, 4400 (1931).CrossRefGoogle Scholar
  113. 110.
    Laforge, F. B., H. L. Haller and L. E. Smith The Determination of the Structure of Rotenone. Chem. Rev. 12, 181 (1933).CrossRefGoogle Scholar
  114. 111.
    Laforge, F. B. and G. L. Keenan: Rotenone. XVII. Note on the Dimorphic Forms of Dihydrorotenone. J. Amer. Chem. Soc.53, 4450 (1931).CrossRefGoogle Scholar
  115. 112.
    Laforge, F. B. and L. E. Smith: Rotenone. I. Reduction Products of Rotenone. J. Amer. Chem. Soc.51, 2574 (1929).CrossRefGoogle Scholar
  116. 113.
    Laforge, F. B. and L. E. Smith Rotenone. II. The Derivatives of Derritol. J. Amer. Chem. Soc.52, 1088 (1930).CrossRefGoogle Scholar
  117. 114.
    Rotenone. III. Dehydrorotenone. J. Amer. Chem. Soc.52, 1091 (1930).CrossRefGoogle Scholar
  118. 115.
    Rotenone. VI. Derric Acid. J. Amer. Chem. Soc.52, 2878 (1930).CrossRefGoogle Scholar
  119. 116.
    Rotenone. VIII. Isomeric Hydroxy Acids and their Relation to Dehydrorotenone. J. Amer. Chem. Soc.52, 3603 (1930).CrossRefGoogle Scholar
  120. 117.
    Lindahl, P. E. and K. E. Oberg: Mechanism of the Physiological Action of Rotenone. Nature (London) 187, 784 (1960).CrossRefGoogle Scholar
  121. 118.
    Matsumoto, H.: Qualitative Analysis of Rotenone (Derris Root) by Paper Partition Chromatography. Kagaku to Sosa II, No. 4, p. 18 (1958).Google Scholar
  122. 119.
    Mehta, A. C. and T. R. Seshadri: Synthetic Experiments in the Benzopyrone Series. Part LVI. A New Synthesis of 7-Hydroxy-chromano-(3′: 4′: 2: 3)-chromone. Proc. Indian Acad. Sci. 42, 192 (1955).Google Scholar
  123. 120.
    Meijer, T. M.: Approximate Colorimetric Determination of Derris Extract. Rec. trav. chim. Pays-Bas 55, 954 (1936).CrossRefGoogle Scholar
  124. 121.
    Meijer, T. M. The Insecticidal Constituents of Pachyrrhizus erosus URBAN. I. Rec. trav. chim. Pays-Bas 65, 835 (1946).CrossRefGoogle Scholar
  125. 122.
    Meijer, T. M. and D. R. Koolhaas: New Constituents of Derris Root. I. Rec. trav. chim. Pays-Bas 58, 207 (1939).Google Scholar
  126. 123.
    Merck Index. 7th Edition, p. 909. Rahway, N. J.: Merck and Co. Inc. 1960.Google Scholar
  127. 124.
    Merz, K. W. und G. Schmidt: Über die giftigen Inhaltsstoffe der Samen von Tephrosia vogelii. Arch. Pharmaz. 273, 1 (1935).CrossRefGoogle Scholar
  128. 125.
    Miyano, M., A. Kobayashi and M. Matsui: Synthesis and Configurational Elucidation of Rotenoids. XVIII. The Total Synthesis of Natural Rotenone. Bull. Agric. Chem. Soc. Japan 24, 540 (1960).Google Scholar
  129. 126.
    Synthesis and Configurational Analyses of Rotenoids. XIX. The Total Synthesis of Natural Rotenone. Agric. Biol. Chem. (Tokyo) 25, 673 (1961).Google Scholar
  130. 127.
    Miyano, M. und M. Matsui: Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe X. Totalsynthese des Dihydrorotenons. Proc. Japan Acad. 35, 175 (1959).Google Scholar
  131. 128.
    Miyano, M. und M. Matsui Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. I. Ein Beitrag zur Synthese der Toxicarsäure. Bull. Chem. Soc. Japan 31, 207 (1958).Google Scholar
  132. 129.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. II. Zur Synthese und Konfiguration der dl-cis- und dl-trans-Oxynetorsäure. Bull. Chem. Soc. Japan 31, 271 (1958).CrossRefGoogle Scholar
  133. 130.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. III.Über die Reaktion der α,β-ungesättigten Säuren mit Resorcin bzw. Phloro-glucin: eine neue Synthese des Chromanonrings und ein Versuch zur Synthese des Rotenons. Bull. Chem. Soc. Japan 31, 397 (1958).CrossRefGoogle Scholar
  134. 131.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. III. Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. IV. Synthese des Rotenons. Bull. Agric. Chem. Soc. Japan 22, 128 (1958).Google Scholar
  135. 132.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. V.Partialsynthese des Rotenons und Dihydrorotenons. Chem. Ber. 91, 2044 (1958).CrossRefGoogle Scholar
  136. 133.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. VI.Die Struktur und Konfiguration von Rotenolonen. Bull. Agric. Chem. Soc. Japan 22, 335 (1958).CrossRefGoogle Scholar
  137. 134.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. VI. Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. VII. Eine Herstellung des natürlichen Rotenons aus Rotenolon II. Ein weiterer Beweis für die Struktur von Rotenolon II. Die Konfiguration des natürlichen Rotenons. Bull. Agric. Chem. Soc. Japan 22, 337 (1958).Google Scholar
  138. 135.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. VIII.Partialsynthesen des Rotenons aus Rotenolon I und II. Konstitution und Konfiguration der Rotenolone, Rotenolole und Deguelinole. Chem. Ber. 92, 1438 (1959).CrossRefGoogle Scholar
  139. 136.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. IX.Synthese des Roteols und Hydroxyroteols. Bull. Agric. Chem. Soc. JapanGoogle Scholar
  140. 137.
    Miyano, M. und M. Matsui: Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. XL Synthese des Dihydrorotenons. Chem. Ber. 92, 2487 (1959).CrossRefGoogle Scholar
  141. 138.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. XII.Synthese des d,l-Nordihydrorotenons. Chem. Ber. 93, 54 (1960).CrossRefGoogle Scholar
  142. 139.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. XIII.Synthese der Tubasäure. Bull. Agric. Chem. Soc. Japan 24, 218 (1960).Google Scholar
  143. 140.
    Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. XIV.Synthese der Tubasäure und verwandter Cumarane. Chem. Ber. 93, 1194 (1960).CrossRefGoogle Scholar
  144. 141.
    Miyano, M., T. Nishikubo und M. Matsui: Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe. XV. Partialsynthese des Deguelins. Untersuchung über Rotenonharz. Chem. Ber. 93, 1746 (1960).CrossRefGoogle Scholar
  145. 142.
    Nagai, K.: J. Tokyo Chem. Soc. 23, 744 (1902).Google Scholar
  146. 143.
    Nakazaki, M. and H. Arakawa: The Absolute Configuration of Rotenone. Bull. Chem. Soc. Japan 34, 453 (1961).CrossRefGoogle Scholar
  147. 144.
    Nickl, J.: Synthese von α-Tubasäure und von Lonchocarpin. Chem. Ber. 91, 1372 (1958).CrossRefGoogle Scholar
  148. 145.
    Norton, L. B. and R. Hansberry: Constituents of the Insecticidal Resin of the Yam Bean ( Pachyrrhizus erosus). J. Amer. Chem. Soc.67, 1609 (1945).CrossRefGoogle Scholar
  149. 146.
    O’donnell, R. W., F. P. REED and A. Robertson: Experiments on the Synthesis of Rotenone and its Derivatives. Part IX. J. Chem. Soc. (London) 1936, 419.Google Scholar
  150. 147.
    Offe, H. A.: Derris-und Pyrethrum-Inhaltsstoffe. Übersicht über Versuche zur Synthese von Rotenoiden und Pyrethrinen. Angew. Chem. 60, 9 (1948).CrossRefGoogle Scholar
  151. 148.
    Offe, H. A. und W. Barkow: Über die Kondensation von Resorcin und Resorcin-Derivaten mit Carbonsäuren unter dem Einfluβ wasserfreier Fluβ-säure. Chem. Ber. 80, 458 (1947).CrossRefGoogle Scholar
  152. 149.
    Über die Kondensation von Hydrochinon und Hydrochinon-Derivaten mit Carbonsäuren unter dem Einfluβ von wasserfreier Fluβsäure. Chem. Ber. 80, 464 (1947).CrossRefGoogle Scholar
  153. 150.
    Offe, H. A. und H. Jatzkewitz: Δ3-Chromen-carbonsäuren-(4). Chem. Ber. 80, 469 (1947).CrossRefGoogle Scholar
  154. 151.
    Ollis, W. D.: In: W. D. Ollis, Recent Developments in the Chemistry of Natural Phenolic Compounds. London: Pergamon. 1961.Google Scholar
  155. 152.
    Parker, G. and A. Robertson: Experiments on the Synthesis of Rotenone and its Derivatives. Part XVII. The Rotenonone Nucleus. J. Chem. Soc. (London) 1950, 1121.Google Scholar
  156. 153.
    Pavanaram, S. K. and L. RAMACHANDRA Row: Synthetic Analogues of Rotenoids. Current Sci. (India) 26, 145 (1957).Google Scholar
  157. 154.
    Reichstein, T. und R. Hirt: Synthese von 4-Oxy-cumaronen und Synthese der Iso-tubasäure (Rotensäure). Helv. Chim. Acta 16, 121 (1933).CrossRefGoogle Scholar
  158. 155.
    Richards, J. H., A. ROBERTSON and J. Ward: Experiments on the Synthesis of Rotenone and its Derivatives. Part XV. J. Chem. Soc. (London) 1948, 1610.Google Scholar
  159. 156.
    Roark, R. C.: A Digest of the Literature of Derris (Deguelia) Species used as Insecticides, 1747–1931. U. S. Dept. Agric., Misc. Publ. No. 120 (1932).Google Scholar
  160. 157.
    Roark, R. C. Lonchocarpus species (barbasco, cube, nekoe and timbo). Used as Insecticides. Bur. Entomol. U. S. Dept. Agric, Mon. E-367 (1936).Google Scholar
  161. 158.
    Roark, R. C. Tephrosia as an Insecticide — A Review of the Literature. Bur. Entomol. U. S. Dept. Agric, Mon. E-402 (1937).Google Scholar
  162. 159.
    Roark, R. C. Lonchocarpus (barbasco, cube and tumbo). A Review of Recent Literature. Bur. Entomol. U. S. Dept. Agric, Mon. E-453 (1938).Google Scholar
  163. 160.
    Roark, R. C. Definition of the Word Rotenoid. J. Econ. Entomol. 33, 416 (1940).Google Scholar
  164. 161.
    Robertson, A.: Experiments on the Synthesis of Rotenone and its Derivatives. Part II. The Synthesis of Rissic Acid and of Derric Acid, and the Constitution of Rotenone, Deguelin and Tephrosin. J. Chem. Soc. (London) 1932, 1380.Google Scholar
  165. 162.
    Robertson, A. Experiments on the Synthesis of Rotenone and its Derivatives. Part III. The Dehydrorotenone Nucleus. J. Chem. Soc. (London) 1933, 489.Google Scholar
  166. 163.
    Robertson, A. Experiments on the Synthesis of Rotenone and its Derivatives. Part IV. Dehydrodihydrorotenonic Acid and Tephrosic Acid. J. Chem. Soc. (London) 1933, 1163.Google Scholar
  167. 164.
    Robertson, A. and G. L. Rusby: Experiments on the Synthesis of Rotenone and its Derivatives. Part VII. Tetrahydrotubaic Acid. J. Chem. Soc. (London) 1935. 1371.Google Scholar
  168. 165.
    Experiments on the Synthesis of Rotenone and its Derivatives. Part VIII. Netoric Acid and Toxicaric Acid. J. Chem. Soc. (London) 1936, 212.Google Scholar
  169. 166.
    Sumatrol. Part I. J. Chem. Soc. (London) 1937, 497.Google Scholar
  170. 167.
    Robertson, A. and T. S. Subramaniam: Experiments on the Synthesis of Rotenone and its Derivatives. Part XL Tetrahydrotubanol. J. Chem. Soc. (London) 1937, 278.Google Scholar
  171. 168.
    Robinson, Sir R.: The Structural Relations of Natural Products. Oxford: Clarendon Press. 1955.Google Scholar
  172. 169.
    Rogers, H. D. and J. A. Calamari: Rotenone Determined by Colorimetric Means. Ind. Eng. Chem., Analyt. Ed. 8, 135 (1936).CrossRefGoogle Scholar
  173. 170.
    Sehgal, J. M. and T. R. Seshadri: Synthetic Experiments in the Benzo-pyrone Series. Part LV. A Synthesis of 7: 7′-Dihydroxy-chromene-(3′:4′:2:3)-chromone. Proc. Indian Acad. Sci. 42 A, 36 (1955).Google Scholar
  174. 171.
    Seshadri, T. R. and S. Varadarajan: Synthetic Experiments in the Benzo-pyran Series. Part XXXI. A Synthetis of 7-Hydroxy-chromeno-(3′:4′:2:3). chromone. Proc. Indian Acad. Sci. 37 A, 784 (1953).Google Scholar
  175. 172.
    Shamshurin, A. A.: Synthesis of Structure Fragments of Rotenone and its Satellites. I. Synthesis in the Tubaic Acid Series. J. Gen. Chem. (USSR) 16, 1877 (1946).Google Scholar
  176. 173.
    Shamshurin, A. A. Synthesis of Tetrahydrotubanol and Tetrahydrotubaic Acid. J. Gen. Chem. (USSR) 19, 1864 (1949).Google Scholar
  177. 174.
    Shamshurin, A. A. Synthesis of Structural Fragments of Rotenone and its Satellites. II. Synthesis in the Tubaic Acid Series. J. Gen. Chem. (USSR) 21, 2068 (1951).Google Scholar
  178. 175.
    Simonitsch, E., H. Frei und H. Schmid: Die Konstitution des Pachyrrhizins. Monatsh. Chem. 88, 541 (1957).CrossRefGoogle Scholar
  179. 176.
    Stamm, O. A., H. Schmid und J. Büchi: Die Konstitution des Jamaicins. Helv. Chim. Acta 41, 2006 (1958).CrossRefGoogle Scholar
  180. 177.
    Takahashi, S., H. Fukami and M. Nakajima: Synthesis of Rotenoids. II. Synthesis of Four Diastereoisomers of Dihydrorotenone. Bull. Agric. Chem. Soc. Japan 24, 123 (1960).Google Scholar
  181. 178.
    Takei, S. und M. Koide: Über Rotenon, den wirksamen Bestandteil der Derriswurzel, Iii: Über die Tubasäure. Ber. dtsch. chem. Ges. 62, 3030 (1929).CrossRefGoogle Scholar
  182. 179.
    Takei, S., S. Miyajima und M. Ono: Über Rotenon, den wirksamen Bestandteil der Derriswurzel, IX. Mitt. Nachtrag zur Konstitution der Tetrahydro-tubasäure und des Rotenons. Synthesen einiger Abbauprodukte des Rotenons. Ber. dtsch. chem. Ges. 65, 1041 (1932).CrossRefGoogle Scholar
  183. 180.
    Takei, S., S. Miyajima und M. Ono Über Rotenon, den wirksamen Bestandteil der Derriswurzel, X. Mitt. Oxydation und Reduktion des Rotenons in schwach alkalischer Lösung. Ber. dtsch. chem. Ges. 66, 479 (1933).CrossRefGoogle Scholar
  184. 181.
    Takei, S., S. Miyajima und M. Ono: Über Rotenon, den wirksamen Bestandteil der Derriswurzel, XL Mitt. Rotenonharz, Quantitative Bestimmung des Rotenons und des Deguelins in Rotenonharz. Ber. dtsch. chem. Ges. 66,. 1826 (1933).CrossRefGoogle Scholar
  185. 182.
    Tattersfield, F. and J. T. Martin: An Optically Active Constituent of Derris Resin Related to Toxicarol. J. Soc. Chem. Ind. 56, 77 T (1937).Google Scholar
  186. 183.
    VAN Duuren, B. L.: Chemistry of Edulin, Neorautone and Related Compounds, from Neorautanenia edulis C. A. SM. J. Organ. Chem. (USA) 26, 5013 (1961).CrossRefGoogle Scholar
  187. 184.
    Venkataraman, K.: Flavones and Isoflavones. Fortschr. Chem. organ. Naturstoffe 17, 1 (1959).Google Scholar
  188. 183.
    Whalley, W. B. and G. Lloyd: 3-Aroylcoumarones. J. Chem. Soc. (London) 1956, 3213.Google Scholar

Copyright information

© Springer-Verlag/Wien 1963

Authors and Affiliations

  • L. Crombie
    • 1
  1. 1.LondonUK

Personalised recommendations