Advertisement

Folsäure und Folat-Enzyme.

  • L. Von Jaenicke
  • C. Kutzbach
Chapter
  • 33 Downloads
Part of the Fortschritte Der Chemie Organischer Naturstoffe book series (FORTCHEMIE (closed), volume 21)

Zusammenfassung

Folgende Abkürzungen werden verwendet: ADP und ATP = Adenosin-di- bzw. -triphosphat; CMP = Cytosinmonophosphat; UMP = Uridin- monophosphat; TMP = Thymidinmonophosphat; FMN = Flavinmononucleotid; FAD = Flavin-Adenin-dinucleotid; DPN und TPN = Diphospho- und Triphospho- pyridin-nucleotid (= NAD bzw. NADP); p AB = p-Aminobenzoesäure; Glu = Glutaminsäure; Pa = Orthophosphat (HPO4— —).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1.
    Albert, A.: The Pteridines. Fortschr. Chem. organ. Naturstoffe II, 350 (1954).Google Scholar
  2. 2.
    Albert, A. and S. Matsuura: Pteridine Studies. Part XV. The Reduction of 2-Hydroxypteridine. J. Chem. Soc.(London) 1961, 5131.Google Scholar
  3. 3.
    Albert, A. and S. Matsuura: Pteridine Studies. Part XVII. The Reduction of Hydroxypteridines. J. Chem. Soc.(London) 1962, 2162.Google Scholar
  4. 4.
    Alexander, N. and D. M. Greenberg: Studies on the Purification and Properties of the Serine-forming Enzyme System. J. Biol. Chem.220, 775 (1956).Google Scholar
  5. 5.
    Allen, W., R. L. Pasternak and W. Seaman: Polarographic Determination and Evidence for the Structure of Leucovorin. J. Amer. Chem. Soc.74, 3264 (1952).Google Scholar
  6. 6.
    Allfrey, V. G. and C. G. King: An Investigation of the Folic Acid-Protein Complex in Yeast. J. Biol. Chem.182, 367 (1950).Google Scholar
  7. 7.
    Allfrey, V., L. J. Tepley, C. Geffen and C. G. King: A Fluorometric Method for the Determination of Pteroylglutamic Acid. J. Biol. Chem.178, 465 (1949).Google Scholar
  8. 8.
    Ames, B. N., R. G. Martin and B. J. Garny: The first Step of Histidine Biosynthesis. J. Biol. Chem.236, 2019 (1961).Google Scholar
  9. 9.
    Angier, R. B., J. H. Boothe, B. L. Hutchings, J. H. Mowat, J. Semb, E. L. R. Stokstad, Y. Subbarow, C. W. Waller, D. B. Cosulich, M. J. Fahrenbach, M. E. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sickels and J. M. Smith, Jr.: The Structure and Synthesis of the Liver L. casei Factor. Science (Washington) 103, 667 (1946).Google Scholar
  10. 9a.
    Angier, R. B., J. H. Boothe, J. H. Mowat, C. W. Waller and J. Semb: Pteridine Chemistry. II. The Action of Excess Nitrous Acid upon Pteroyl-glutamic Acid and Derivatives. J. Amer. Chem. Soc.74, 408 (1952).Google Scholar
  11. 10.
    Angier, R. B., E. L. R. Stokstad, J. H. Mowat, B. L. Hutchings, J. H. Boothe, C. W. Waller, J. Semb, Y. Subbarow, D. B. Cosulich, M. J. Fahrenbach, M. E. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sickels and J. M. Smith, Jr.: Synthesis of Pteroylglutamic Acid. III.J. Amer. Chem. Soc.70, 25 (1948).Google Scholar
  12. 11.
    Arnstein, H. R. V. and D. Keglević: A Comparison of Alanine and Glucose as Precursors of Serine and Glycine. Biochemic. J.62, 199 (1956).Google Scholar
  13. 12.
    Arnstein, H. R. V. and A. Neuberger: The Effect of Cobalamin on the Quantitative Utilization of Serine, Glycine, and Formate for the Synthesis of Choline and Methyl Groups of Methionine. Biochemic. J.55, 259 (1953).Google Scholar
  14. 13.
    Asahi, Y.: Polarographic Determination of Multivitamin Preparation. I. Ascorbic Acid, Riboflavin and Pteroylglutamic Acid. Vitamins (Kyoto) 13, 490 (1957).Google Scholar
  15. 14.
    Baker, H., S. H. Hutner and H. Sobotka: Estimation of Folic Acid with a Thermophilic Bacillus. Proc. Soc. exp. Biol. Med.89, 210 (1955).Google Scholar
  16. 13.
    Bakerman, H. A.: A Method for Measuring the Microbiological Activity of Tetrahydrofolic Acid and Other Labile Reduced Folic Acid Derivatives. Anal. Biochem.2, 588 (1961).Google Scholar
  17. 16.
    Barker, H. A. and J. V. Beck: Clostridium acidi-urici and Clostndium cylindro-sporum, Organisms Fermenting Uric Acid and some Other Purines. J. Bacteriol.43, 291 (1942).Google Scholar
  18. 17.
    Barner, H. D. and S. S. Cohen: Virus Induced Acquisition of Metabolic Function. IV. Thymidylate Synthetase in Thy mine-requiring Escherichia coli Infected by T2 and T5 Bacteriophages. J. Biol. Chem.234, 2957 (1959).Google Scholar
  19. 18.
    Batt, R. D., F. Dickens and D. H. Williamson: The Enzymic Incorporation of the β-Carbon of Serine into Dihydroxyacetone. Biochim. Biophys. Acta 45, 571 (1961).Google Scholar
  20. 19.
    Berg, P.: A Study of Formate Utilization in Pigeon Liver Extracts. J. Biol. Chem.205, 145 (1953).Google Scholar
  21. 20.
    Bergmann, F. and H. Kwietny: Pteridines as Substrates of Mammalian Xanthine Oxidase. I. The Endproduct of the Enzymic Oxidation of Pteridines. Biochim. Biophys. Acta 28, 613 (1958).Google Scholar
  22. 21.
    Bertino, J. R., B. W. Gabrio and F. M. Huennekens: Dihydrofolic Reductase in Human Leucémie Leucocytes. Biochem. Biophys. Res. Comm.9, 103 (1961).Google Scholar
  23. 22.
    Bertino, J. R., B. Simmons and D. M. Donohue: Purification and Properties of the Formate Activating Enzyme from Erythrocytes. J. Biol. Chem.237, 1314 (1962).Google Scholar
  24. 23.
    Binkley, S. B., O. D. Bird, E. S. Bloom, R. A. Brown, D. G. Calkins, C. J. Campbell, A. D. Emmett and J. J. Pfiffner: On the Vitamin Bc Conjugate in Yeast. Science (Washington) 100 36 (1944).Google Scholar
  25. 23a.
    Bird, O. D., M. Robbins, J. M. Vandenbelt and J. J. Pfiffner: Observations on Vitamin Bc-Conjugase from Hog Kidney. J. Biol. Chem.163, 649 (1946).Google Scholar
  26. 24.
    Birnie, G. D. and G. W. Crosbie: Biosynthesis of Thymidylic Acid. Biochemic. J.69, 1 P (1958).Google Scholar
  27. 25.
    Blakley, R. L.: The Interconversion of Serine and Glycine: Rôle of Pteroyl-glutamic Acid and Other Cofactors. Biochemic. J.58, 448 (1954).Google Scholar
  28. 26.
    Blakley, R. L.: The Interconversion of Serine and Glycine: Preparation and Properties of Catalytic Derivatives of Pteroylglutamic Acid. Biochemie. J.65, 331 (1957).Google Scholar
  29. 27.
    Blakley, R. L.: The Interconversion of Serine and Glycine: Some Further Properties of the Enzyme System. Biochemie. J.65, 342 (1957).Google Scholar
  30. 28.
    Blakley, R. L.: The Reactive Intermediate Formed by Formaldehyde and Tetrahydro-pteroylglutamate. Biochim. Biophys. Acta 23, 654 (1957).Google Scholar
  31. 29.
    Blakley, R. L.: Interaction of Formaldehyde and Tetrahydrofolic Acid and its Relation to the Enzymatic Synthesis of Serine. Nature (London) 182, 1719 (1958).Google Scholar
  32. 30.
    Blakley, R. L.: The Reaction of Tetrahydropteroylglutamic Acid and Related Hydro-pteridines with Formaldehyde. Biochemie. J.72, 707 (1959).Google Scholar
  33. 31.
    Blakley, R. L.: Spectrophotometric Studies on the Combination of Formaldehyde with Tetrahydropteroylglutamic Acid and other Hydropteridines. Biochemie. J.74, 71 (1960).Google Scholar
  34. 32.
    Blakley, R. L.: Spectrophotometric Study on the Reaction Catalyzed by Serine Trans-hydroxymethylase. Biochemie. J.77, 459 (1960).Google Scholar
  35. 33.
    Blakley, R. L.: Crystalline Dihydropteroylglutamic Acid. Nature (London) 188, 231 (1960).Google Scholar
  36. 34.
    Blakley, R. L. and B. M. Mcdougall: Dihydrofolic Acid Reductase from Streptococcus faecalis R. J. Biol. Chem.236, 1163 (1961).Google Scholar
  37. 35.
    Blakley, R. L. and B. M. Mcdougall: The Biosynthesis of Thymidylic Acid. III. Purification of Thymidylate Synthetase and its Spectrophotometric Assay. J. Biol. Chem.237, 812 (1962).Google Scholar
  38. 36.
    Boon, W. R. and T. Leigh: Pteridines. III. Unambiguous Synthesis of Xanthopterin and 2-Amino-4-hydroxy-6-methylpteridine. J. Chem. Soc.(London) 1951, 1497.Google Scholar
  39. 37.
    Boothe, J. H., J. H. Mowat, B. L. Hutchings, R. B. Angier, C. W. Waller, E. L. R. Stokstad, J. Semb, A. L. Gazzola and Y. Subbarow: Pteroic Acid Derivatives. II. Pteroyl-γ-glutamylglutamic Acid and Pteroyl-γ-glutamyl-γ-glutamylglutamic Acid. J. Amer. Chem. Soc.70, 1095 (1948).Google Scholar
  40. 38.
    Boothe, J. H., J. Semb, C. W. Waller, R. B. Angier, J. H. Mowat, B. L. Hutchings, E. L. R. Stokstad and Y. Subbarow: Pteroic Acid Derivatives. III. Pteroyl-γ-glutamylglutamic Acid and Pteroyl-γ-glutamyl-γ-glutamylglutamic Acid. J. Amer. Chem. Soc.71, 2304 (1949).Google Scholar
  41. 39.
    Boothe, J. H., C. W. Waller, E. L. R. Stokstad, B. L. Hutchings, J. H. Mowat, R. B. Angier, J. Semb, Y. Subbarow, D. B. Cosulich, M. J. Fahrenbach, M. E. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sickels and J. M. Smith, Jr.: Synthesis of Pteroylglutamic Acid. IV. J. Amer. Chem. Soc.70, 27 (1948).Google Scholar
  42. 40.
    Braganca, B. M., I. Aravindakshan and D. S. Ghanekar: Enzymic Cleavage of Folic Acid by Extracts from Human Blood Cells. I. Preparation and Cofactor Requirement of the Enzyme System. Biochim. Biophys. Acta 25, 623 (1957).Google Scholar
  43. 41.
    Braganca, B. M. and U. W. Kenkare: Flavins as Components of Folic Acid Reductases. Nature (London) 184, 1488 (1959).Google Scholar
  44. 42.
    Bratton, A. C. and E. K. Marshall, Jr.: A New Coupling Compound for Sulfanilamide Determination. J. Biol. Chem.128, 537 (1939).Google Scholar
  45. 43.
    Bregoff, H. M. and C. C. Delwiche: The Formation of Choline and Betain in Leaf Disks of Beta vulgaris. J. Biol. Chem.217, 819 (1955).Google Scholar
  46. 44.
    Bremer, J., P. H. Figard and D. M. Greenberg: The Biosynthesis of Choline and its Relation to Phospholipid Metabolism. Biochim. Biophys. Acta 43, 477 (1960).Google Scholar
  47. 45.
    Brenner-holzach, O. und F. Leuthardt: Untersuchungen zur Biosynthese der Pterine bei Drosophila melanogaster. Helv. Chim. Acta 42, 2254 (1959).Google Scholar
  48. 46.
    Brode, E. und L. Jaenicke: Modelluntersuchungen zur biologischen Aktivierung der Einkohlenstoffeinheiten. II. Ein Modell der Serinhydroxymethylase-Reaktion. Biochem. Z.332, 259 (1960).Google Scholar
  49. 47.
    Brown, G. M.: The Synthesis of Folic Acid by Cell-free Extracts of Escherichia coli. Federat. Proc.(Amer. Soc. exp. Biol.) 18, 19 (1959).Google Scholar
  50. 48.
    Brown, G. M. Biosynthesis of Folic Acid. II. Inhibition by Sulfonamides. J. Biol. Chem.237, 536 (1962).Google Scholar
  51. 49.
    Brown, G. M., R. A. WEISMAN and D. A. Molnar: The Biosynthesis of Folic Acid. I. Substrate and Cofactor Requirements for Enzymatic Synthesis by Cell-free Extracts of Escherichia coli. J. Biol. Chem.236, 2534 (1961).Google Scholar
  52. 50.
    Buchanan, J. M.: The Enzymatic Synthesis of Inosinic Acid. Proc. Intern. Sympos. Enzyme Chem., Tokyo and Kyoto, 1957. London: Pergamon Press. 1958.Google Scholar
  53. 51.
    Buchanan, J. M. Enzymic Synthesis of Purine Nucleotides. Harvey Lect. 54, 104 (1960).Google Scholar
  54. 52.
    Buchanan, J. M., J. G. Flaks, S. C. Hartman, B. Levenberg, L. LUKENS and L. Warren: The Enzymic Synthesis of Inosinic Acid de novo. In: G. E. W. Wolstenholme and C. M. O’connor, Chemistry and Biology of Purines, p. 233. London: Churchill. 1957.Google Scholar
  55. 53.
    Buchanan, J. M. and S. C. Hartman: Enzymic Reactions in the Synthesis of the Purines. Adv. Enzymology 21, 199 (1959).Google Scholar
  56. 53a.
    Buchanan, J. M., B. Levenberg, J. G. Flaks and J. A. Gladner: Interrelationships of Amino Acid Metabolism with Purine Biosynthesis. In: W. D. Mcelroy and B. Glass, Amino Acid Metabolism, p. 743. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  57. 54.
    Buchanan, J. M., J. C. Sonne and A. M. Delluva: Biological Precursors of Uric Acid Carbon. J. Biol. Chem. 166, 395 (1946).Google Scholar
  58. 55.
    Carpenter, K. J. and E. Kodicek: A Polarographic Study of Pteroylglutamic Acid and Related Compounds. Biochemic. J. 43, 11 (1948).Google Scholar
  59. 55a.
    Cathou, R. E. and J. M. Buchanan: Enzymatic Synthesis of the Methyl Group of Methionine. V.J. Biol. Chem. 238, 1746 (1963).Google Scholar
  60. 56.
    Cavalieri, L. F. and A. Bendich: The Ultraviolet Absorption Spectra of Pyrimidines and Purines. J. Amer. Chem. Soc. 72, 2587 (1950).Google Scholar
  61. 57.
    Challenger, F.: Biological Methylation. Quart. Rev. (Chem. Soc. London) 9, 255 (1955).Google Scholar
  62. 58.
    Clemens, D. H. and W. D. Emmons: The Synthesis of Orthoamides and their Conversion to Formamidininium Salts. J. Amer. Chem. Soc.83, 2588 (1961).Google Scholar
  63. 59.
    Cosulich, D. B., B. Roth, J. M. Smith, JR., M. E. Hultquist and R. P. Parker: Acid Transformation Products of Leucovorin. J. Amer. Chem. Soc.73, 5006 (1951).Google Scholar
  64. 60.
    Chemistry of Leucovorin. J. Amer. Chem. Soc. 74, 3252 (1952).Google Scholar
  65. 61.
    Cosulich, D. B., D. R. Seeger, M. J. Fahrenbach, K. H. Collins, B. Roth, M. E. Hultquist and J. M. Smith, Jr.: Analogs of Pteroylglutamic Acid. IX. Derivatives with Substituents on the Benzene Ring. J. Amer. Chem. Soc. 75, 4675 (1953).Google Scholar
  66. 62.
    Cosulich, D. B. and J. M. Smith, Jr.: Analogs of Pteroylglutamic Acid. I. N10-Alkyl Pteroic Acid and Derivatives. J. Amer. Chem. Soc. 70, 1922 (1948).Google Scholar
  67. 63.
    Cosulich, D. B. and J. M. Smith, Jr. N10-Nitroso Pteroylglutamic Acid. J. Amer. Chem. Soc. 71, 3574 (1949).Google Scholar
  68. 64.
    Cosulich, D. B., J. M. Smith, Jr. and H. P. Broquist: Diastereoisomers of Leucovorin. J. Amer. Chem. Soc. 74, 4215 (1952).Google Scholar
  69. 65.
    Crosbie, G. W.: Pyrimidine Biosynthesis in Escherichia coli. Biochemic. J. 69, 1 P (1958).Google Scholar
  70. 66.
    Dabrowska, W., A. Kazenko and M. Laskowski: Concerning the Specificity of Chicken-pancreas Conjugase. Science (Washington) 110, 95 (1949).Google Scholar
  71. 67.
    Deodhar, S., W. Sakami and A. L. Stevens; Mechanism of Serine Formation. Federat. Proc. (Amer. Soc. exp. Biol.) 14, 201 (19Google Scholar
  72. 68.
    Derenzo, E. C.: Chemistry and Biochemistry of Xanthine Oxidase. Adv. Enzymology 17, 293 (1956).Google Scholar
  73. 69.
    Dewey, V. C., R. E. Parks, Jr. and G. W. Kidder: Growth Response of Tetrahymena geleii to Changes in the Basal Media. Arch. Biochemistry 29, 281 (1950).Google Scholar
  74. 70.
    Dinning, J. S., B. K. Allen, R. S. Young and P. L. Day: The Role of Vitamin B12 in Thymine Biosynthesis by Lactobacillus leichmannii. J. Biol. Chem. 233, 674 (1958).Google Scholar
  75. 71.
    Dinning, J. S., J. T. Sime, P. S. Work, B. Alten and P. L. Day: The Metabolic Conversion of Folic Acid and Citrovorum Factor to a Diazotizable Amine. Arch. Biochem. Biophys. 65, 114 (1957).Google Scholar
  76. 72.
    Doctor, V. M.: In vitro Studies on the Conversion of Folic Acid to Citrovorum Factor. J. Biol. Chem. 222, 959 (1956).Google Scholar
  77. 73.
    Doctor, V. M. Studies in vivo on the Conversion of Folic Acid to Citrovorum Factor. J. Biol. Chem. 233, 982 (1958).Google Scholar
  78. 74.
    Doctor, V. M., T. Patton and J. Awapara: Incorporation of Serine-3-C14 and Formaldehyde-C14 in Methionine in vitro. I. Rôle of Folic Acid. Arch. Biochem. Biophys. 67, 404 (1957).Google Scholar
  79. 75.
    Donaldson, K. O. and J. C. Keresztesy: Naturally Occurring Forms of Folic Acid. I. “Prefolic A” Preparation of Concentrate and Enzymatic Conversion to Citrovorum Factor. J. Biol. Chem. 234, 3235 (1959).Google Scholar
  80. 76.
    The Interconversion of Prefolic A and Tetrahydrofolic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 20, 453 (1961).Google Scholar
  81. 77.
    Further Evidence on the Nature of Prefolic A.Biochem. Biophys. Res. Comm. 5, 289 (1961).Google Scholar
  82. 78.
    Naturally Occurring Forms of Folic Acid. II.Enzymic Conversion of Methylenetetrahydrofolic Acid to Prefolic A-methyl-tetrahydrofolate. J. Biol. Chem. 237, 1298 (1962).Google Scholar
  83. 78a.
    Naturally Occurring Forms of Folic Acid. II.Naturally Occurring Forms of Folic Acid. III. Characterization and Properties of 5-Methyl-dihydro-folate, an Oxidation Product of 5-Methyl-tetrahydrofolate. J. Biol. Chem. 237, 3815 (1962).Google Scholar
  84. 79.
    Elion, G. B. and G. H. Hitchings: The identification of “β-Dihydroxantho-pterin” as 2,4-Diamino-6-hydroxy-p-oxazino-(2,3-d)-pyrimidine. J. Amer. Chem. Soc. 74, 3877 (1952).Google Scholar
  85. 80.
    Elwyn, D., J. Ashmore, G. F. Cahill, JR., S. Zottu, W. Welch and A. B. Hastings: Serine Metabolism in Rat Liver Slices. J. Biol. Chem. 226, 735 (1957).Google Scholar
  86. 80a.
    Elwyn, D. and D. B. Sprinson: The Rôle of Serine and Acetate in Uric Acid Formation. J. Biol. Chem. 184, 465 (1950).Google Scholar
  87. 81.
    The Extensive Synthesis of the Methyl Groups of Thymine in the Adult Rat. J. Amer. Chem. Soc. 72, 3317 (1950).Google Scholar
  88. 82.
    Esposito, R. G. and A. M. Fletcher: The Relationship of Pteridine Biosynthesis to the Action of Copper-8-hydroxyquinolinate on Fungal Spores. Arch. Biochem. Biophys. 93, 369 (1961).Google Scholar
  89. 83.
    Flaks, J. G. and S. S. Cohen: Virus-induced Acquisition of Metabolic Function. III. Formation and Some Properties of Thymidylate Synthetase of Bacterio-phage-infected Escherichia coli. J. Biol. Chem. 234, 2981 (19Google Scholar
  90. 83a.
    Virus-induced Acquisition of Metabolic Function. I.Enzymatic Formation of 5-Hydroxymethyl-deoxycytidylate. J. Biol. Chem. 234, 1501 dy1959).Google Scholar
  91. 84.
    Fleming, L. W. and G. W. Crosbie: Non-enzymic Transamination between Glycine and Glyoxylate. Biochim. Biophys. Acta 43, 139 (1960).Google Scholar
  92. 85.
    Forrest, H. S. and J. Walker: The Effect of Hydrazine on the Condensation of Certain α-Ketols and Related Substances with 2:4: 5-Triamino-6-hydroxy-pyrimidine. J. Chem. Soc. (London) 1949, 2077.Google Scholar
  93. 86.
    Foster, M. A., K. M. Jones and D. D. Woods: The Purification and Properties of a Factor Containing Vitamin B12 Concerned in the Synthesis of Methionine by Escherichia coli. Biochemic. J. 80, 519 (1961).Google Scholar
  94. 87.
    Franklin, A. L., E. L. R. Stokstad, M. Belt and T. H. Jukes: Biochemical Experiments with a Synthetic Preparation having an Action Antagonistic to that of Pteroylglutamic Acid. J. Biol. Chem. 169, 427 (1947).Google Scholar
  95. 88.
    Friedkin, M.: Enzymatic Conversion of Desoxyuridylic Acid to Thymidylic Acid and the Participation of Tetrahydrofolic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 16, 183 (1957).Google Scholar
  96. 88a.
    Friedkin, M., E. J. Crawford, E. Donovan and E. J. Pasture: Enzymatic Synthesis of Thymidylate. III. The Further Purification of Thymidylate Synthetase and its Separation from Natural Fluorescent Inhibitors. J. Biol. Chem. 237, 3811 (1962).Google Scholar
  97. 89.
    Friedkin, M. and A. Kornberg: The Enzymatic Conversion of Deoxyuridylic Acid to Thymidylic Acid and the Participation of Tetrahydrofolic Acid. In: W. D. Mcelroy and B. Glass, Chemical Basis of Heredity, p. 609. Baltimore: Johns Hopkins Press. 1957.Google Scholar
  98. 90.
    Fujimori, E.: Interaction between Pteridines and Tryptophan. Proc. Nat. Acad. Sci. (USA) 45, 133 (1959).Google Scholar
  99. 91.
    Futterman, S.: Enzymatic Inactivation of Folic Acid. Féderat. Proc. (Amer. Soc. exp. Biol.) 15, 258 (1956).Google Scholar
  100. 92.
    Futterman, S. Enzymatic Reduction of Folic Acid and Dihydrofolic Acid to Tetrahydrofolic Acid. J. Biol. Chem. 228, 1031 (1957).Google Scholar
  101. 93.
    Futterman, S. and M. Silverman: The “Inactivation” of Folic Acid by Liver. J. Biol. Chem. 224, 31 (1957).Google Scholar
  102. 94.
    Girdwood, R. H.: Folic Acid, its Analogs and Antagonists. Adv. Clin. Chem. 3, 1 (1960).Google Scholar
  103. 95.
    Glazko, A. J. and L. M. Wolf: Colorimetric Determination of Folic Acid and Adenine. Arch. Biochemistry 21, 241 (1949).Google Scholar
  104. 96.
    Goldthwait, D. A. and G. R. Greenberg: Some Methods for the Study of the de novo Synthesis of Purine Nucleotides. In: S. P. COLOWICK and N. O. Kaplan, Methods in Enzymology, Vol. II, p. 504. New York: Academic Press. 1955.Google Scholar
  105. 97.
    Goldthwait, D. A., R. A. PEABODY and G. R. Greenberg: The Biosynthesis of the Purine Ring. In: W. D. MCELROY and B. Glass, Amino Acid Metabolism, p. 765. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  106. 98.
    Gordon, M., J. M. Ravel, R. E. EAKIN and W. Shive: Formylfolic Acid, a Functional Derivative of Folic Acid. J. Amer. Chem. Soc. 170, 878 (1948).Google Scholar
  107. 99.
    Green, M. and S. S. Cohen: Studies on the Biosynthesis of Bacterial and Viral Pyrimidines. I. Tracer Studies. J. Biol. Chem.225, 387 (1957).Google Scholar
  108. 100.
    Greenberg, D. M., R. Nath and G. K. Humphreys: Purification and Properties of Thymidylate Synthetase from Calf Thymus. J. Biol. Chem.236, 2271 (1961).Google Scholar
  109. 101.
    Greenberg, G. R.: A Formylation Cofactor. J. Amer. Chem. Soc.76, 1458 (1954).Google Scholar
  110. 102.
    Greenberg, G. R.: Rôle of Folic Acid Derivatives in Purine Biosynthesis. Federat. Proc. (Amer. Soc. exp. Biol.) 13, 745 (1954).Google Scholar
  111. 103.
    Greenberg, G. R. and L. Jaenicke: On the Activation of the One-carbon Unit for the Biosynthesis of Purine Nucleotides. In: G. E. W. Wolstenholme and C. M. O’connor, The Chemistry and Biology of Purines, p. 204. London: Curchill. 1957.Google Scholar
  112. 103a.
    Greenberg, G. R., L. JAENICKE and M. Silverman: On the Occurrence of N10-Formyl Tetrahydrofolic Acid by Enzymic Formylation of Tetrahydro-folic Acid and on the Mechanism of this Reaction. Biochim. Biophys. Acta 17, 589 (1955).Google Scholar
  113. 104.
    Guest, J. R., S. Friedman and M. A. Foster: Alternative Pathways for the Methylation of Homocysteine by Escherichia coli. Biochemic. J.84, 93 P (1962).Google Scholar
  114. 105.
    Guest, J. R., S. Friedman, D. D. Woods and E. L. Smith: A Methyl Analogue of Cobamide Coenzyme in Relation to Methionine Synthesis by Bacteria. Nature (London) 195, 340 (1962).Google Scholar
  115. 106.
    Guest, J. R. and K. M. Jones: Tetrahydropteroyltriglutamate as a Cofactor of Methionine Synthesis. Biochemic. J.75, 12 P (1960).Google Scholar
  116. 107.
    Guest, J. R. and D. D. Woods: Cobalamin and the Enzymic Formation of a Factor Concerned in the Synthesis of Methionine by Escherichia coli. Biochemic. J.77, 422 (1960).Google Scholar
  117. 108.
    Metabolic Interrelationships between Cobalamine and Folic Acid in the Synthesis of Methionine by Escherichia coli. In: H. C. Heinrich, Vitamin B12 and Intrinsic Factor, p. 686. Stuttgart: F. Enke. 1962.Google Scholar
  118. 109.
    Hakala, M. T. and A. D. Welch: A Polyglutamate Form of Citrovorum Factor Synthesized by Bacillus subtilis. J. Bacteriol.73, 35 (1957).Google Scholar
  119. 110.
    Hakala, M. T., S. F. ZAKRZEWSKI and C. A. Nichol: Relation of Folic Acid Reductase to Amethopterin Resistance in Cultured Mammalian Cells. J. Biol. Chem.236, 952 (1961).Google Scholar
  120. 111.
    Hartman, S. C. and J. M. Buchanan: Biosynthesis of the Purines. XXVI. The identification of the Formyl Donors of the Transformylation Reactions. J. Biol. Chem.234, 1812 (1959).Google Scholar
  121. 112.
    Hatch, F. T., A. R. Larrabee, R. E. Cathou and J. M. Buchanan: Enzymatic Synthesis of the Methyl Group of Methionine. I. identification of the Enzymes and Cofactors Involved in the System Isolated from Escherichia coli. J. Biol. Chem.236, 1095 (1961).Google Scholar
  122. 113.
    Hatefi, Y., M. J. Osborn, L. D. Kay and F. M. Huennekens: Hydroxy-methyl Tetrahydrofolate Dehydrogenase. J. Biol. Chem.227, 637 (1957).Google Scholar
  123. 114.
    Hatefi, Y., P. T. Talbert, M. J. OSBORN and F. M. Huennekens: Tetrahydrofolic Acid. In: H. A. Lardy, Biochemical Preparations, Vol. 7, p. 89. New York: Wiley & Sons. 1960.Google Scholar
  124. 115.
    Heisler, C. R. and B. S. Schweigert: Conversion of Pteroylglutamic Acid to the Citrovorum Factor by Preparations from Lactobacillus casei. J. Bacteriol.77, 804 (1959).Google Scholar
  125. 116.
    Helleiner, C. W. and D. D. Woods: Cobalamin and the Synthesis of Methionine by Cell-free Extracts of Escherichia coli. Biochemie. J.63, 26 P (1956).Google Scholar
  126. 117.
    Henderson, R. F. and J. S. Dinning: Effects of Vitamin B12 and its Coenzyme on Methylene Tetrahydrofolic Dehydrogenase Activity. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 471 (1962).Google Scholar
  127. 118.
    Herbert, V.: The Assay and Nature of Folic Acid Activity in Human Serum. J. Clin. Invest.40, 81 (1961).Google Scholar
  128. 119.
    Hermich, M. R., V. C. DEWEY and G. W. Kidder: Chromatography of Pteroylglutamic Acid and Related Compounds on Ion-exchange Resins. J. Chromatography 2, 296 (1959).Google Scholar
  129. 120.
    Heyrovský, J.: Analysis with the Electronic Polaroscope. Anal. Chim. Acta 12, 600 (1955).Google Scholar
  130. 120a.
    Himes, R. H. and J. C. Rabinowitz: Formyltetrahydrofolate Synthetase. II. Characteristics of the Enzyme and the Enzymic Reaction. J. Biol. Chem.237, 2903 (1962).Google Scholar
  131. 120b.
    Himes, R. H. and J. C. Rabinowitz: Formyltetrahydrofolate Synthetase. III. Studies on the Mechanism of the Reaction. J. Biol. Chem.237, 2915 (1962).Google Scholar
  132. 121.
    Ho, P. P. K., K. G. Scrimgeour and F. M. Huennekens: A Novel Reaction between Glyoxylate and Tetrahydrofolate. J. Amer. Chem. Soc.82, 5957 (1960).Google Scholar
  133. 122.
    Holland, J. F.: Folic Acid Antagonists. Clin. Pharmacology 2, 374 (1961).Google Scholar
  134. 122a.
    Huennekens, F. M.: The Role of Dihydrofolic Reductase in the Metabolism of One-Carbon Units. Biochemistry 2, 151 (1963).Google Scholar
  135. 123.
    Huennekens, F. M., Y. Hatefi and L. D. Kay: Manometric Assay and Cofactor Requirements for Serine Hydroxymethylase. J. Biol. Chem.224, 435 (1957).Google Scholar
  136. 124.
    Huennekens, F. M. and M. J. Osborn: Folic Acid Coenzymes and One-Carbon Metabolism. Adv. Enzymology 21, 369 (1959).Google Scholar
  137. 125.
    Huennekens, F. M., H. R. WHITELEY and M. J. Osborn: Mechanisms of Formylation and Hydroxymethylation Reactions. J. Cellular Comp. Physiol.54, Suppl. 1, 109 (1959).Google Scholar
  138. 126.
    Hultquist, M. E., E. Kuh, D. B. Cosulich, M. J. Fahrenbach, E. H. Northey, D. R. Seeger, J. P. Sickels, J. M. Smith, JR., R. B. Angier, J. H. Boothe, B. L. Hutchings, J. H. Mowat. J. Semb, E. L. R. Stokstad, Y. Subbarow and C. W. Waller: Synthesis of Pteroylglutamic Acid (Liver L. casei Factor) ana Pteroic Acid. II. J.Amer. Chem. Soc.70, 23 (1948).Google Scholar
  139. 127.
    Hultquist, M. E., J. M. Smith, JR., D. R. Seeger, D. B. Cosulich and E. Kuh: Analogs of Pteroylglutamic Acid. II. 9-Methylpteroylglutamic Acid and Derivatives. J. Amer. Chem. Soc.71, 619 (1949).Google Scholar
  140. 128.
    Humphreys, G. K. and D. M. Greenberg: Conversion of Desoxyuridylic Acid to Thymidylic Acid by a Soluble Extract from Rat Thymus. Arch. Biochem. Biophys.78, 275 (1958).Google Scholar
  141. 129.
    Hutchings, B. L., J. H. Mowat, J. J. Oleson, E. L. R. Stokstad, J. H. Boothe, C. W. Waller, R. B. Angier, J. Semb and Y. Subbarow: Pteroyl-aspartic Acid, an Antagonist for Pteroylglutamic Acid. J. Biol. Chem.170, 323 (1947).Google Scholar
  142. 130.
    Hutchings, B. L., E. L. R. Stokstad, N. Bohonos, N. H. Sloane and Y. Subbarow: The Isolation of the Fermentation Lactobacillus casei Factor. J. Amer. Chem. Soc.70, 1 (1948).Google Scholar
  143. 131.
    Hutchings, B. L., E. L. R. Stokstad, J. H. Boothe, J. H. Mowat, C. W. Waller, R. B. Angier, J. Semb and Y. Subbarow: A Chemical Method for the Determination of Pteroylglutamic Acid and Related Compounds. J. Biol. Chem.168, 705 (1947).Google Scholar
  144. 132.
    Hutchings, B. L., E. L. R. Stokstad, J. H. Mowat, J. H. Boothe, C. W. Waller, R. B. Angier, J. SEMB and Y. Subbarow: Degradation of the Fermentation L. casei Factor. II. J. Amer. Chem. Soc.70, 10 (1948).Google Scholar
  145. 133.
    Hutner, S. H., H. A. NATHAN and H. Baker: Metabolism of Folic Acid and other Pterin-Pteridine Vitamins. Vitamins and Horm. 17, 1 (1959).Google Scholar
  146. 133a.
    Ichihara, A. and D. M. Greenberg: Further Studies on the Pathway of Serine Formation from Carbohydrate. J. Biol. Chem. 224, 331 (1957).Google Scholar
  147. 134.
    Jaenicke, L.: Occurrence of N10-Formyltetrahydrofolic Acid and its General Involvement in Transformylation. Biochim. Biophys. Acta 17, 588 (1955).Google Scholar
  148. 135.
    Jaenicke, L. Conversion of β-Carbon of Serine to N10-Formyltetrahydrofolic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 15, 281 (1956).Google Scholar
  149. 136.
    Jaenicke, L. Folsäure als Cofaktor biologischer Reaktionen. Experientia 17, 481 (1961).Google Scholar
  150. 137.
    Jaenicke, L. Ein biologisch aktives Methylfolat. Z. physiol. Chem. (Hoppe-Sey 1er) 326, 168 (1961).Google Scholar
  151. 138.
    Jaenicke, L. Die Folsäure im Stoffwechsel der Einkohlenstoff-Einheiten. Angew. Chem. 73, 449 (1961).Google Scholar
  152. 139.
    Jaenicke, L. Mechanisms of Action of Tetrahydrofolate Cofactors in One-Carbon Transfer. In: A. V. S. DE REUCK and M. O’connor, The Mechanism of Action of Water-soluble Vitamins. Ciba Foundation Study Group No 11, p. 38. London: Churchill Ltd. 1961.Google Scholar
  153. 140.
    Jaenicke, L. Wirkformen der Folsäure, ihre Struktur und Funktion. In: H. C. Heinrich, Vitamin B12 and Intrinsic Factor, p. 701. Stuttgart: F. Enke. 1962.Google Scholar
  154. 141.
    Jaenicke, L. und E. Brode: Modelluntersuchungen zur biologischen Aktivierung der Einkohlenstoff-Einheit en. I. N,N’-Diaryl-äthylendiamine als Modelle der Tetrahydrofolsäure in nicht-enzymatischen Reaktionen. Liebigs Ann. Chem. 624, 120 (1959).Google Scholar
  155. 141a.
    Jaenicke, L. und E. Brode: Untersuchungen über Einkohlenstoffkörper. I. Die Tetrahydrofolat-formylase aus Taubenleber. Reinigung und Mechanismus. Biochem. Z. 334, 108 (1961).Google Scholar
  156. 142.
    Jaenicke, L. und P. C. Chan: Die Biosynthese der Folsäure. Angew. Chem. 72, 752 (1960).Google Scholar
  157. 143.
    Jenny, E. und F. Leuthardt: Über den Abbau von Glykokoll-(2-14C) durch Meerschweinchenleberschnitte. Helv. Chim. Acta 44, 78 (1961).Google Scholar
  158. 144.
    Johnson, B. C.: The Activity of Lactobacillus casei Factor’, “Folic Acid” and “Vitamin Bc” for Streptococcus faecalis and Lactobacillus casei. J. Biol. Chem. 163, 255 (1946).Google Scholar
  159. 145.
    Jones, K. M., J. R. GUEST and D. D. Woods: Folic Acid and the Synthesis of Methionine by Extracts of Escherichia coli. Biochemic. J. 79, 566 (1961).Google Scholar
  160. 146.
    Jukes, T. H.: Compounds with Folic Acid Activity. In: D. Glick, Methods of Biochemical Analysis, Vol. II, p. 121. New York: Interscience Publ. 1955.Google Scholar
  161. 147.
    Jukes, T. H. and H. P. Broquist: Sulfonamides and Folic Acid Antagonists. (Privatmitteilung. )Google Scholar
  162. 148.
    Kalckar, H. M., N. D. KJELDGAARD and H. Klenow: 2-Amino-4-hydroxy-6-formylpteridine, an Inhibitor of Purine and Pterine Oxydases. Biochim. Biophys. Acta 5, 516 (1950).Google Scholar
  163. 149.
    Karrer, P. und R. Schwyzer: Über die Konstitution einiger neuer Pteridine. Eine weitere Folsäuresynthese. Helv. Chim. Acta 31, 777 (1948).Google Scholar
  164. 150.
    Katsunuma, N. und A. Shoda: Folic Acid-synthesizing System in Myco-bacterium avium. Kôso Kagaku Shinpojiumu 12, 124 (1957) [Chem. Abstr. 52, 6488 (1958)].Google Scholar
  165. 151.
    Katsunuma, N., T. Shoda and H. Noda: Enzymic Study of Folic Acid Biosynthesis by Mycobactenum avium. Vitamins (Kyoto) 11, 322 (1956).Google Scholar
  166. 151a.
    Folic Acid Biosynthesis of M. avium. J. Vitaminol. (Osaka) 3, 77 (1957).Google Scholar
  167. 152.
    Kaufman, S.: The Nature of the Primary Oxydation Product Formed from Tetrahydropteridines during Phenylalanine Hydroxylation. J. Biol. Chem. 236, 804 (1961).Google Scholar
  168. 153.
    Kay, L. D., M. J. Osborn, Y. HATEFI and F. M. Huennekens: The Enzymatic Conversion of N5-Formyltetrahydrofolic Acid (Folinic Acid) to N10-Formyl-tetrahydrofolic Acid. J. Biol. Chem. 235, 195 (1960).Google Scholar
  169. 153a.
    Kenkare, U. W. and B. M. Braganca: Flavin Requirement and Partial Separation of Enzymes Catalysing the Reduction of Folic Acid to Tetra-hydrofolic Acid in Liver. Biochemic. J. 86, 160 (1963).Google Scholar
  170. 154.
    Keresztesy, J. C. and K. O. Donaldson: Synthetic Prefolic A. Biochem. Biophys. Res. Comm. 5, 286 (1961).Google Scholar
  171. 155.
    Keresztesy, J. C. and M. Silverman: Crystalline Citrovorum Factor from Liver. J. Amer. Chem. Soc.73, 5510 (1951).Google Scholar
  172. 156.
    Enzymatic Cleavage of the Citrovorum Factor. J. Amer. Chem. Soc.75, 1512 (1953).Google Scholar
  173. 157.
    Kidder, G. W.: Studies on the Biochemistry of Tetrahymena. VI. Folic Acid as a Growth Factor for T. geleii W. Arch. Biochemistry 9, 51 (1946).Google Scholar
  174. 158.
    King, F. E. and P. C. Spensley: The Use of Nitro-and Halogenoketones in the Synthesis of Pteridines, including Pteroic Acid, from 2,4,5-Triamino-6-hydroxy-pyrimidine. J. Chem. Soc. (London) 1952, 2144.Google Scholar
  175. 159.
    Kisliuk, R. L.: Mechanism of Formaldehyde Incorporation into Serine. Federat. Proc. (Amer. Soc. exp. Biol.) 15, 289 (1956).Google Scholar
  176. 160.
    Kisliuk, R. L. Studies on the Mechanism of Formaldehyde Incorporation into Serine. J. Biol. Chem.227, 805 (1957).Google Scholar
  177. 161.
    Kisliuk, R. L. Reduced Folic Acid Analogues as Antimetabolites. Nature (London) 188, 584 (1960).Google Scholar
  178. 162.
    Kisliuk, R. L. Further Studies on the Relationship of Vitamin B12 to Methionine Synthesis in Extracts of Escherichia coli. J. Biol. Chem. 236, 817 (1961).Google Scholar
  179. 162a.
    Kisliuk, R. L. The Source of Hydrogen for Methionine Methyl Formation. J. Biol. Chem. 238, 397 (1963).Google Scholar
  180. 163.
    Kisliuk, R. L. and W. Sakami: The Stimulation of Serine Biosynthesis in Pigeon Liver Extracts by Tetrahydrofolic Acid. J. Amer. Chem. Soc.76, 1456 (1954).Google Scholar
  181. 164.
    A Study of the Mechanism of Serine Biosynthesis. J. Biol. Chem. 214, 47 (1955).Google Scholar
  182. 165.
    Kisliuk, R. L. and D. D. Woods: Interrelationships between Folic Acid and Cobalamin in the Synthesis of Methionine by Extracts of E. coli. Biochemic. J. 75, 467 (1960).Google Scholar
  183. 166.
    Klopotowski, T., M. LUZZATI and P. P. Slonimski: Evidence for a new Step between ATP and 5-Amino-4-imidazolcarboxamide Ribotide in the Cyclic Process of Histidine Biosynthesis. Biochem. Biophys. Res. Comm. 3, 150 (1960).Google Scholar
  184. 166a.
    Koeppe, R. E., Jr. M. L. Minthorn and R. J. Hill: Formation of Serine from Glycerol-1, 3-C14. Arch. Biochem. Biophys. 68, 355 (1957).Google Scholar
  185. 167.
    Kohn, J., D. L. MOLLIN and L. M. Rosenbach: Conventional Voltage Electro-phoresis for Formiminoglutamic Acid Determination in Folic Acid Deficiency. J. Clin. Pathology 14, 345 (1961).Google Scholar
  186. 168.
    Komendh, J.: Detection oi Folic Acid by Paper Chromatography. Chem. Listy 47, 1877 (1953) [Chem. Abstr. 48, 3850 (1954)].Google Scholar
  187. 169.
    Kornberg, A., S. B. Zimmerman, S. R. KORNBERG and J. Josse: Enzymatic Synthesis of Desoxyribonucleic Acid. VI. Influence of Bacteriophage T 2 on the Synthetic Pathway in Host Cells. Proc. Nat. Acad. Sci. (USA) 45, 772 (1959).Google Scholar
  188. 170.
    Korte, F., H. BARKEMEYER und G. Synnatschke: Heterocyclen im Stoffwechsel. XI. Umwandlung von Xanthopterin-(8 a-14C) und P-Aminobenzoe-säure-(2,6-14C) durch Mikroorganismen. Z. physiol. Chem. (Hoppe-Seyler) 314, 106 (1959).Google Scholar
  189. 171.
    Larrabee, A. R. and J. M. Buchanan: A New Intermediate of Methionine Biosynthesis. Federat. Proc. (Amer. Soc. exp. Biol.) 20, 9 (1961).Google Scholar
  190. 171a.
    Larrabee, A. R., S. Rosenthal, R. E. CATHOU and J. M. Buchanan: A Methylated Derivative of Tetrahydrofolate as an Intermediate of Methionine Biosynthesis. J. Amer. Chem. Soc.83, 4094 (1961).Google Scholar
  191. 172.
    Lascelles, J. and D. D. Woods: The Synthesis of “Folic Acid” by Bacterium coli and Staphylococcus aureus and its Inhibition by Sulfonamides. Brit. J. Exp. Pathol. 33, 288 (1952).Google Scholar
  192. 173.
    The Synthesis of Serine and Leuconostoc citrovorum Factor by Cell Suspensions of Streptococcus faecalis R. Biochemic. J. 58, 486 (1954).Google Scholar
  193. 174.
    Levenberg, B.: Enzymatic Deamination of Pterins. Federat. Proc. (Amer. Soc. exp. Biol.) 17, 263 (1958).Google Scholar
  194. 175.
    Levy, C. C. and W. S. Mcnutt: The Degradation of Xanthopterin by a Bacterium Isolated from the Soil. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 369 (1962).Google Scholar
  195. 176.
    Lowry, O. H., O. A. BESSEY and E. J. Crawford: Photolytic and Enzymatic Transformations of Pteroylglutamic Acid. J. Biol. Chem. 180, 389 (1949).Google Scholar
  196. 177.
    Lowy, D. A., G. B. BROWN and J. A. Rachele: A Study of Formaldehyde-C14, D2 as a One-carbon Metabolite in the Rat. J. Biol. Chem. 220, 325 (1956).Google Scholar
  197. 178.
    Mackenzie, C. G.: Conversion of N-Methyl-glycine to Active Formaldehyde and Serine. In: W. D. MCELROY and B. Glass, Amino Acid Metabolism, p. 684. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  198. 179.
    Mackenzie, C. G. and R. H. Abeles: Production of Active Formaldehyde in the Mitochondrial Oxidation of Sarcosine-CD3. J. Biol. Chem. 222, 145 (1956).Google Scholar
  199. 180.
    Mackenzie, C. G. and W. R. Frisell: The Metabolism of Dimethylglycine by Liver Mitochondria. J. Biol. Chem. 232, 417 (1958).Google Scholar
  200. 181.
    Mader, W. J. and H. A. Frediani: Polarographic Determination of Folic Acid. Analyt. Chemistry 20, 1199 (1948).Google Scholar
  201. 182.
    Maley, F.: Nucleotide Interconversions. VI. The Enzymic Formation of 5-Methyluridylic Acid. Arch. Biochem. Biophys. 96, 550 (1962).Google Scholar
  202. 183.
    Mangum, J. H. and K. G. Scrimgeour: Cofactor Requirements and Intermediates in Methionine Biosynthesis. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 242 (1962).Google Scholar
  203. 184.
    Martin, G. J.: Biological Antagonism. New York: Blakeston & Co. 1952.Google Scholar
  204. 185.
    Martin, G. J., L. Tolman and J. Moss: d-(−) Methylfolic Acid, Displacing Agent for Folic Acid. Arch. Biochemistry 12, 318 (1947).Google Scholar
  205. 186.
    Mason, S. F.: Some Aspects of the Ultraviolet Absorption Spectra of the Pteridines. In: G. E. W. WOLSTENHOLME and M. P. Cameron, Ciba Found. Sympos. Chemistry and Biology of Pteridines. London: Churchill. 1954.Google Scholar
  206. 187.
    Mathews, C. K.: Possible Alternate Forms of Dihydrofolate. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 242 (1962).Google Scholar
  207. 188.
    Mathews, C. K. and F. M. Huennekens: Enzymic Preparation of the l,L-Diastereoisomer of Tetrahydrofolic Acid. J. Biol. Chem. 235, 3304 (1960).Google Scholar
  208. 188a.
    Further Studies on Dihydrofolic Reductase. Federat. Proc. (Amer. Soc. exp. Biol.) 20, 453 (1961).Google Scholar
  209. 189.
    May, M., T. J. Bardos, F. L. Barger, M. Lansford, J. M. Ravel, G. L. SUTHERLAND and W. Shive: Synthetic and Degradative Investigations oi the Structure of Folinic Acid-SF. J. Amer. Chem. Soc.73, 3067 (1951).Google Scholar
  210. 190.
    Mcdougall, B. M. and R. L. Blakley: Mechanism of the Action of Thymidylate Synthetase. Nature (London) 188, 944 (1960).Google Scholar
  211. 191.
    Rôle of Reduced DPNH and Tetrahydropteroylglutamate in the Synthesis of Thymidylic Acid. Biochim. Biophys. Acta 39, 176 (1960).Google Scholar
  212. 192.
    Rôle of Reduced DPNH and Tetrahydropteroylglutamate in the Synthesis of Thymidylic Acid. The Biosynthesis of Thymidylic Acid. I. Preliminary Studies with Extracts of Streptococcus faecalis R. J. Biol. Chem. 236, 832 (1961).Google Scholar
  213. 193.
    Mehler, A. H. and W. E. Knox: The Conversion of Tryptophan to Kynurenine in Liver. II. The Enzymatic Hydrolysis of Formylkynurenine. J. Biol. Chem. 187, 431 (1950).Google Scholar
  214. 194.
    Meister, A.: Biochemistry of the Amino Acids. New York: Academic Press. 1957.Google Scholar
  215. 195.
    Metzler, D. E., M. IKAWA and E. E. Snell: A General Mechanism for Vitamin B6-Catalyzed Reactions. J. Amer. Chem. Soc.76, 648 (1954).Google Scholar
  216. 196.
    Miller, A. and H. Waelsch: The Conversion of Urocanic Acid to Form-amidinoglutaric Acid. J. Biol. Chem.228, 365 (1957).Google Scholar
  217. 197.
    Formimino Transfer from Formamidinoglutaric Acid to Tetrahydrofolic Acid. J. Biol. Chem.228, 397 (1957).Google Scholar
  218. 198.
    Mims, V. and M. Laskowski: Studies on Vitamin Bc Conjugase from Chicken Pancreas. J. Biol. Chem.160, 493 (1945).Google Scholar
  219. 198a.
    Misra, D. K., S. R. Humphreys, M. Friedkin, A. GOLDIN and E. J. Crawford: Increased Dihydrofolate Reductase Activity as a possible Basis of Drug Resistance in Leukaemia. Nature (London) 189, 39 (1961).Google Scholar
  220. 199.
    Mitchell, H. K., E. E. SNELL and R. J. Williams: The Concentration of “Folic Acid”. J. Amer. Chem. Soc.63, 2284 (1941).Google Scholar
  221. 200.
    Mitchell, H. K., E. E. SNELL and R. J. Williams: Folic Acid. I. Concentration from Spinach. J. Amer. Chem. Soc.66, 267 (1944).Google Scholar
  222. 201.
    Mitchell, H. K. and R. J. Williams: Folic Acid. III. Chemical and Physiological Properties. J. Amer. Chem. Soc.66, 271 (1944).Google Scholar
  223. 202.
    Mitoma, C. and D. M. Greenberg: Studies on the Mechanism of the Biosynthesis of Serine. J. Biol. Chem.196, 599 (1952).Google Scholar
  224. 203.
    Mitoma, C. and E. E. Snell: The Rôle of Purine Bases as Histidine Precursors in Lactobacillus casei. Proc. Nat. Acad. Sci.(USA) 41, 891 (1955).Google Scholar
  225. 204.
    Mollin, D. L., A. H. Waters and E. Harriss: Clinical Aspects of the Metabolic Interrelationships between Folic Acid and Vitamin B12. In: H. C. Heinrich, Vitamin B12 and Intrinsic Factor, p. 737. Stuttgart: F. Enke.1962.Google Scholar
  226. 205.
    Mowat, J. H., J. H. Boothe, B. L. Hutchings, E. L. R. Stokstad, C. W. Waller, R. B. Angier, J. Semb, D. B. Cosulich and Y. Subbarow: The Structure of the Liver L. casei Factor. J. Amer. Chem. Soc.70, 14 (1948).Google Scholar
  227. 206.
    Mowat, J. H., B. L. Hutchings, R. B. Angier, E. L. R. Stokstad, J. H. Boothe, C. W. Waller, J. Semb and Y. Subbarow: Pteroic Acid Derivatives. I. Pteroyl-α-glutamylglutamic Acid and Pteroyl-α,γ-glutamylglutamic Acid. J. Amer. Chem. Soc.70, 1096 (1948).Google Scholar
  228. 207.
    Moyed, A. S. and B. Magasanik: The Biosynthesis of the Imidazole Ring of Histidine. J. Biol. Chem.235, 149 (1960).Google Scholar
  229. 208.
    Nakada, H. I. and I. P. Sund: Glyoxylic Acid Oxidation by Rat Liver. J. Biol. Chem.233, 8 (1958).Google Scholar
  230. 209.
    Nakada, H. I. and S. Weinhouse: Studies of Glycine Oxidation in Rat Tissues. Arch. Biochem. Biophys.42, 257 (1953).Google Scholar
  231. 210.
    Nakao, A. and D. M. Greenberg: Co-factor Requirements for the Incorporation of H2C14O and Serine-3-C14 into Methionine. J. Amer. Chem. Soc.77, 6715 (1955).Google Scholar
  232. 211.
    Nakao, A. and D. M. Greenberg: Studies on the Incorporation of Isotope from Formaldehyde-C14 and Serine-3-C14 into the Methyl Group of Methionine. J. Biol. Chem.230, 603 (1958).Google Scholar
  233. 212.
    Nath, R. and D. M. Greenberg: Dihydrofolic Acid Reductase of Calf Thymus. Biochemistry 1, 435 (1962).Google Scholar
  234. 213.
    Neidle, A. and H. Waelsch: The Origin of the Imidazole Ring of Histidine in Escherichia coli. J. Biol. Chem.234, 586 (1958).Google Scholar
  235. 214.
    Nichol, C. A.: Symposium on Vitamin Metabolism, No 13. New York: National Vitamin Foundation. 1956.Google Scholar
  236. 215.
    Nimmo-smith, R. H., J. Lascelles and D. D. Woods: The Synthesis of “Folic Acid” by Streptobacterium plantarum and its Inhibition by Sulfonamides. Brit J. Exp. Path.29, 264 (1948).Google Scholar
  237. 216.
    Nollstadt, K., L. Klein and I. Ukstins: Stimulation of Methionine Methyl Synthesis in an Enzyme System from Pig Liver by P. Skermanii Boiled Extrakt. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 4 (1962).Google Scholar
  238. 217.
    Noronha, J. M. and M. Silverman: On Folic Acid, Vitamin B12, Methionine and Formiminoglutamic Acid Metabolism. In: H. C. Heinrich, Vitamin B12 and Intrinsic Factor, p. 728. Stuttgart: F. Enke. 1962.Google Scholar
  239. 217a.
    Distribution of Folic Acid Derivatives in Natural Material. I. Chicken Liver Folates. J. Biol. Chem.237, 3299 (1962).Google Scholar
  240. 218.
    Noronha, J. M. and A. Sreenivasan: In vitro Conversion of Pteroylglutamic Acid to Citrovorum Factor by Rat Liver Enzymes. Biochim. Biophys. Acta 44, 64 (1960).Google Scholar
  241. 219.
    O’dell, B. L., J. M. Vandenbelt, E. S. Bloom and J. J. Pfiffner: Hydrogénation of Vitamin Bc (Pteroylglutamic Acid) and Related Pteridines. J. Amer. Chem. Soc.69, 250 (1947).Google Scholar
  242. 220.
    Oliverio, V. T.: ChromatographiC Separation and Purification of Folic Acid Analogs. Analyt. Chemistry 33, 263 (1961).Google Scholar
  243. 221.
    Osborn, M. J., Y. Hatefi, L. D. Kay and F. M. Huennekens: Evidence for the Enzymic Deacylation of N10-Formyl Tetrahydrofolic Acid. Biochim. Biophys. Acta 26, 208 (1957).Google Scholar
  244. 222.
    Osborn, M. J. and F. M. Huennekens: Participation of Anhydroleucovorin in the Hydroxymethyl Tetrahydrofolate Dehydrogenase System. Biochim. Biophys. Acta 26, 646 (1957).Google Scholar
  245. 223.
    Enzymatic Reduction of Dihydrofolic Acid. J. Biol. Chem.233, 969 (1958).Google Scholar
  246. 224.
    Osborn, M. J., P. T. Talbert and F. M. Huennekens: The Structure of “Aktive Formaldehyde” (N5,N10-Methylene Tetrahydrofolic Acid). J. Amer. Chem. Soc.82, 4921 (1960).Google Scholar
  247. 225.
    Osborn, M. J., F. N. Vercamer, P. T. Talbert and F. M. Huennekens: The Enzymatic Synthesis of Hydroxymethyltetrahydrofolic Acid (Active Hydroxymethyl). J. Amer. Chem. Soc.79, 6565 (1957).Google Scholar
  248. 225a.
    Pastore, E. J. and M. Friedkin: The Enzymatic Synthesis of Thymidylate. II. Transfer of Tritium from Tetrahydrofolate to the Methyl Group of Thymidylate. J. Biol. Chem.237, 3802 (1962).Google Scholar
  249. 220.
    Patterson, A. M. and L. T. Capell: The Ring-Index. New York: Reinhold Publ. Co.1960.Google Scholar
  250. 227.
    Peel, J. L.: Vitamin B12 Derivatives and the CO2-Pyruvate Exchange Reaction. A Reappraisal. J. Biol. Chem.237, PC 236 (1962).Google Scholar
  251. 228.
    Perault, A.-M. and B. Pullman: Electronic Structure and Biochemical Function of Folic Acid Coenzymes. Biochim. Biophys. Acta 44, 251 (1960).Google Scholar
  252. 229.
    Perault, A.-M. and B. Pullman: Structure électronique et mode d’action des antimétabolites de l’acide folique. Biochim. Biophys. Acta 52, 266 (1961).Google Scholar
  253. 230.
    Peters, J. M. and D. M. Greenberg: Studies on the Conversion of Citrovorum Factor to a Serine Aldolase Cofactor. J. Biol. Chem.226, 329 (1957).Google Scholar
  254. 231.
    Citrovorum Factor Cyclodehydrase. J. Amer. Chem. Soc.80, 2719 (1958).Google Scholar
  255. 232.
    Dihydrofolic Acid Reductase. J. Amer. Chem. Soc.80, 6679 (1958).Google Scholar
  256. 233.
    Studies on Folic Acid Reduction. Biochim. Biophys. Acta 32, 273 (1959).Google Scholar
  257. 234.
    Pezer, L. I. and S. S. Cohen: Virus Induced Acquisition of Metabolic Function. V. Purification and Properties of the Deoxycytodylate Hydroxymethylase and Studies on its Origin. J. Biol. Chem.237, 1251 (1962).Google Scholar
  258. 235.
    Pfiffner, J. J., S. B. Binkley, E. S. Bloom, O. D. Bird, A. D. Emmett, A. G. Hogan and B. L. O’dell: Isolation of the Antianemia Factor (Vitamin Bc) in Crystalline Form from Liver. Science (Washington) 97, 404 (1943).Google Scholar
  259. 236.
    Pfiffner, J. J., S. B. Binkley, E. S. Bloom and B. L. O’dell: Isolation and Characterization of Vitamin Bc from Liver and Yeast. J. Amer. Chem. Soc.69, 1476 (1947).Google Scholar
  260. 237.
    Pfiffner, J. J., D. G. Calkins, E. S. Bloom and B. L. O’dell: On the Peptide Nature of Vitamin Bc Conjugate from Yeast. J. Amer. Chem. Soc.68, 1392 (1946).Google Scholar
  261. 238.
    Pfiffner, J. J., D. G. Calkins, B. L. O’dell, E. S. Bloom, R. A. Brown, C. J. Campbell and O. D. Bird: Isolation of an Antianemia Factor (Vitamin Bc Conjugate) in Crystalline Form from Yeast. Science (Washington) 102, 228 (1945).Google Scholar
  262. 239.
    Pfleiderer, W. and E. C. Taylor: Pteridines. XXII. 5,8-Dihydropteridines by Sodium Borohydride Reduction. J. Amer. Chem. Soc.82, 3765 (1960).Google Scholar
  263. 240.
    Pitts, J. D. and G. W. Crosbie: The Conversion of Glycine into C1Units by Escherichia coli. Biochemie. J.83, 35 P (1962).Google Scholar
  264. 241.
    Pitts, J. D., J. A. Stewart and G. W. Crosbie: Observations on Glycine Metabolism in Escherichia coli. Biochim. Biophys. Acta 50, 361 (1961).Google Scholar
  265. 242.
    Pohland, A., E. H. Flynn, R. G. Jones and W. Shive: A Proposed Structure for Folinic Acid-SF, a Growth Factor Derived from Pteroylglutamic Acid. J. Amer. Chem. Soc.73, 3247 (1951).Google Scholar
  266. 243.
    Quayle, J. R.: Metabolism of C1 Compounds in Autotrophic and Heterotrophic Microorganisms. Annu. Rev. Microbiol.15, 119 (1961).Google Scholar
  267. 243a.
    Quayle, J. R.: Enzymic Decarboxylation of Oxalylcoenzyme A to Formylcoenzyme A. Biochemie. J.87, 10 P (1963).Google Scholar
  268. 244.
    Rabinowitz, J. C.: Folic Acid. In: P. O. Boyer, H. A. Lardy and K. Myr-bäck, The Enzymes, Vol.11, p. 185. New York: Academic Press, 1960.Google Scholar
  269. 245.
    Rabinowitz, J. C. and R. H. Himes: Folic Acid Coenzymes. Federat. Proc. (Amer. Soc. exp. Biol.) 19, 963 (1960).Google Scholar
  270. 246.
    Rabinowitz, J. C. and W. E. Pricer, Jr.: ATP Formation Accompanying Formiminoglycine Utilization. J. Amer. Chem. Soc.78, 1513 (1956).Google Scholar
  271. 247.
    Rabinowitz, J. C. and W. E. Pricer, Jr.: The Enzymatic Synthesis of N10-Formyltetrahydrofolic Acid and its Rôle in ATP Formation during Formiminoglycine Degradation. J. Amer. Chem. Soc.78, 4176 (1956).Google Scholar
  272. 247a.
    Rabinowitz, J. C. and W. E. Pricer, Jr.: Formimino-tetrahydrofolic Acid and Methenyltetrahydrofolic Acid as Intermediates in the Formation of N10-Formyltetrahydrofolic Acid. J. Amer. Chem. Soc.78, 5702 (1956).Google Scholar
  273. 248.
    Rabinowitz, J. C. and W. E. Pricer, Jr.: An Enzymatic Method for the Determination of Formic Acid. J. Biol. Chem.229, 321 (1957).Google Scholar
  274. 249.
    Rabinowitz, J. C. and W. E. Pricer, Jr.Formation, Isolation and Properties of 5-Formiminotetrahydrofolic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 16, 236 (1957).Google Scholar
  275. 249a.
    Rabinowitz, J. C. and W. E. Pricer, Jr. Formyltetrahydrofolate Synthetase. I. Isolation and Crystallization of the Enzyme. J. Biol. Chem.237, 2898 (1962).Google Scholar
  276. 250.
    Ramasastri, B. V. and R. L. Blakley: 5,10-Methylene-tetrahydrofolate Dehydrogenase from Baker’s Yeast. I. Partial Purification and some Properties. J. Biol. Chem.237, 1982 (1962).Google Scholar
  277. 251.
    Rauen, H. M.: Transformylierungen und Transhydroxymethylierungen. I. Allgemeine Reaktionsbedingungen und Formyldonatoren der aeroben N10-Formylierung der Pteroylglutaminsäure. Biochem. Z.328, 562 (1957).Google Scholar
  278. 252.
    Rauen, H. M. und L. Jaenicke: Über “aktivierte Ameisensäure” und die fermentative Transformylierung. Z. physiol. Chem.(Hoppe-Seyler) 293, 46 (1953).Google Scholar
  279. 253.
    Rauen, H. M., W. Stamm und K.-H. Kimbel: N(12)-Formylfolsäure als fermentatives Umwandlungsprodukt der Folsäure. Z. physiol. Chem.(Hoppe-Seyler) 289, 80 (1952).Google Scholar
  280. 254.
    Rauen, H. M. und H. Waldmann: Über die Gegenstromverteilung von Pterinen. Z. physiol. Chem.(Hoppe-Seyler) 286, 180 (1950).Google Scholar
  281. 255.
    Reynolds, J. J. and G. M. Brown: Enzymatic Formation of the Pteridine Moiety of Folic Acid from Guanosine Compounds. J. Biol. Chem.237, PC 2713 (1962).Google Scholar
  282. 256.
    Rickes, E. L., L. Chaiet and J. C. Keresztesy: Isolation of Rhizopterin, a new Growth Factor for Streptococcus lactis R. J. Amer. Chem. Soc.69, 2749 (1947).Google Scholar
  283. 257.
    Robbins, E. A. and P. D. Boyer: Determination of the Equilibrium of the Hexokinase Reaction and the Free Energy of Hydrolysis of Adenosine Tri-phosphate. J. Biol. Chem.224, 121 (1957).Google Scholar
  284. 257a.
    Roberts, Dewayne: Cleavage of Folic Acid by Hydrogen Peroxide. Biochim. Biophys. Acta 54, 572 (1961).Google Scholar
  285. 257b.
    Roberts, Dewayne and C. A. Nichol: Biosynthesis of Thymine and Formyltetrahydrofolate by Vitamin B12-deficient Cells of L. leichmanii. J. Biol. Chem.237, 2278 (1962).Google Scholar
  286. 258.
    Rohrbaugh, T.: Study of the Utilization of Methyl-THF for Methionine Biosynthesis. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 4 (1962).Google Scholar
  287. 259.
    Rooze, V., W. Sakami and D. Blair: The Rôle of Methyltetrahydrofolate in Methionine Biosynthesis in Pig Liver. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 4 (1962).Google Scholar
  288. 260.
    Rosenthal, S. and J. M. Buchanan: Studies on ATP Function in Methionine Biosynthesis. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 470 (1962).Google Scholar
  289. 261.
    Roth, B., M. E. Hultquist, M. J. Fahrenbach, D. B. Cosulich, H. P. Broquist, J. A. Brockman, JR., J. M. Smith, JR., R. P. Parker, E. L. R. Stokstad and T. H. Jukes: Synthesis of Leucovorin. J. Amer. Chem. Soc.74, 3247 (1952).Google Scholar
  290. 262.
    Sägers, R. D., J. V. Beck, W. Gruber and I. C. Gunsalus: A Tetrahydrofolic Acid Linked Formimino Transfer Enzyme. J. Amer. Chem. Soc.78, 694 (1956).Google Scholar
  291. 263.
    Sägers, R. D. and I. C. Gunsalus: Intermediary Metabolism of Diplococcus glycinophilus. J. Bacteriol.81, 541 (1961).Google Scholar
  292. 264.
    Sakami, W.: The Conversion of Formate and Glycine to Serine and Glycogen in the Intact Rat. J. Biol. Chem.176, 995 (1948).Google Scholar
  293. 265.
    Sakami, W.: The Conversion of Glycine into Serine in the Intact Rat. J. Biol. Chem.178, 519 (1949).Google Scholar
  294. 266.
    Sakami, W.: The Biochemical Relationship between Glycine and Serine. In: W. D. Mcelroy and B. Glass, Amino Acid Metabolism, p. 658. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  295. 267.
    Sakami, W. and R. Knowles: Purification of Folic Acid. Science (Washington) 129, 274 (1959).Google Scholar
  296. 268.
    Sakami, W. and I. Ukstins: Enzymatic Methylation of Homocysteine by a Synthetic Tetrahydrofolate Derivative. J. Biol. Chem.236, PC 50 (1961).Google Scholar
  297. 269.
    Sauberlich, H. E.: Comparative Studies with the Natural and Synthetic Citrovorum Factor. J. Biol. Chem.195, 337 (1952).Google Scholar
  298. 270.
    Scheindlin, S., A. Lee and I. Griffith: The Action of Riboflavin on Folic Acid. J. Amer. Pharm. Assoc.41, 420 (1952).Google Scholar
  299. 271.
    Scrimgeour, K. G. and F. M. Huennekens: Occurrence of a DPN-linked, N5-N10-Methylene Tetrahydrofolic Dehydrogenase in Ehrlich Ascites Tumor Cells. Biochem. Biophys. Res. Comm.2, 230 (1960).Google Scholar
  300. 272.
    Seeger, D. R., D. B. Cosulich, J. M. Smith, Jr. and M. E. Hultquist: Analogs of Pteroylglutamic Acid. III. 4-Amino Derivatives. J. Amer. Chem. Soc.71, 1753 (1949).Google Scholar
  301. 273.
    Seeger, D. R., J. M. Smith, Jr. and M. E. Hultquist: Antagonist for Pteroylglutamic Acid. J. Amer. Chem. Soc.69, 2567 (1947).Google Scholar
  302. 274.
    Seegmiller, J. E., M. Silverman, H. Tabor and A. H. Mehler: Synthesis of a Metabolic Product of Histidine. J. Amer. Chem. Soc.76, 6205 (1954).Google Scholar
  303. 275.
    Shemin, D.: The Biological Conversion of L-Serine to Glycine. J. Biol. Chem.162, 297 (1946).Google Scholar
  304. 276.
    Shimazono, H. and O. Hayaishi: Enzymatic Decarboxylation of Oxalic Acid. J. Biol. Chem.227, 151 (1957).Google Scholar
  305. 277.
    Shiota, T.: Enzymic Synthesis of Folic Acid-like Compounds by Cell-iree Extracts o± Lactobacillus arabinosus. Arch. Biochem. Biophys.80, 155 (1959).Google Scholar
  306. 278.
    Shiota, T. and H. N. Disraely: The Enzymic Synthesis of Dihydrofolate from 2-Amino-4-hydroxymethyl-dihydropteridine and p-Aminobenzoylglut-amate by Extracts of Lactobacillus plantarum. Biochim. Biophys. Acta 52, 457 (1961).Google Scholar
  307. 279.
    Shiota, T., H. N. Disraely and M. P. Mccann: Preparation of Dihydro-pteridine Diphosphate, an Intermediate in Dihydrofolate Synthesis. Biochem. Biophys. Res. Comm.7, 194 (1962).Google Scholar
  308. 280.
    Shive, W.: Utilization of Antimetabolites in the Study of Biochemical Processes in Living Organisms. Ann. New York Acad. Sci.52, 1212 (1950).Google Scholar
  309. 281.
    Silber, R., F. M. Huennekens and B. W. Gabrio: Dihydrofolic Reductase and Thymidylate Synthetase in the Leukocyte. Federat. Proc. (Amer. Soc. exp. Biol.) 21, 241 (1962).Google Scholar
  310. 282.
    Silverman, M.: N5-Formyltetrahydrofolic Acid—Glutamic Acid Trans-formylase from Hog Liver. In: S. P. Colowick and N. O. Kaplan, Methods in Enzymology, Vol. V, p. 790. New York: Academic Press. 1962.Google Scholar
  311. 283.
    Silverman, M., F. G. Ebaugh, Jr. and R. C. Gardiner: The Nature of Labile Citrovorum Factor in Human Urine. J. Biol. Chem.223, 259 (1956).Google Scholar
  312. 284.
    Silverman, M. and R. C. Gardiner: Labile Citrovorum Factor in Urine. J. Bacteriol.71, 433 (1956).Google Scholar
  313. 285.
    Silverman, M., J. C. Keresztesy and G. J. Koval: Isolation of N-10-Formyl-folic Acid. J. Biol. Chem.211, 53 (1954).Google Scholar
  314. 286.
    Silverman, M., J. C. Keresztesy, G. J. Koval and R. C. Gardiner: Citrovorum Factor and the Synthesis of Formylglutamic Acid. J. Biol. Chem.226, 83 (1957).Google Scholar
  315. 287.
    Silverman, M., L. W. Law and B. Kaufman: The Distribution of Folic Acid Activities in Lines of Leucemic Cells of the Mouse. J. Biol. Chem.236, 253a (1961).Google Scholar
  316. 288.
    Silverman, M. and J. M. Noronha: A Method for the Preparation of Tetra-hydrofolic Acid. Biochem. Biophys. Res. Comm.4, 180 (1961).Google Scholar
  317. 289.
    Slavik, K., V. Slavíková and Z. Kolman: Metabolism of Folic Acid. VI. Preparation of Intermediary Antimetabolites of Folic Acid. Coll. Czech. Chem. Commun.25, 1929 (1960).Google Scholar
  318. 290.
    Slavíková, V. and K. Slavák: On the Mechanism of Action of some 4-Aminoanalogues of Folic Acid. Experientia 17, 113 (1961).Google Scholar
  319. 291.
    Sletzinger, M., D. Reinhold, J. Grier, M. Beachem and M. Tishler: The Synthesis of Pteroylglutamic Acid. J. Amer. Chem. Soc.77, 6365 (1955).Google Scholar
  320. 292.
    Smith, C. W., R. S. Rasmussen and S. A. Ballard: Assignment of Amide Structures to the Supposed 2,3-Dihydro-2-benzimidazolols and their Acylation Products. J. Amer. Chem. Soc.71, 1082 (1949).Google Scholar
  321. 293.
    Snell, E. E.: Microbiological Methods in Vitamin Research. In: P. György, Vitamin Methods, Vol. I, p. 327. New York: Academic Press. 1950.Google Scholar
  322. 294.
    Snell, E. E. and H. K. Mitchell: Purine and Pyrimidine Bases as Growth Substances for Lactic Acid Bacteria. Proc. Nat. Acad. Sci.(USA) 27, 1 (1941).Google Scholar
  323. 295.
    Snell, E. E. and W. H. Peterson: Growth Factors for Bacteria. X. Additional Factors Required by Certain Lactic Acid Bacteria. J. Bacteriol.39, 273 (1940).Google Scholar
  324. 296.
    Sober, H. A. and E. A. Peterson: Chromatography of Proteins on Cellulose Ion-exchangers. J. Amer. Chem. Soc.76, 1711 (1954).Google Scholar
  325. 297.
    Sprinson, D. B.: On the Formation of C1 Fragments from Serine. In: W. D. MCELROY and B. Glass, Amino Acid Metabolism, p. 608. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  326. 298.
    Stekol, J. A., S. Weiss, E. I. Anderson, P. T. Hsu and A. Watjen2: Vitamin B12 and Folic Acid in Relation to Methionine Synthesis from Betaine in vivo and in vitro. J. Biol. Chem.226, 95 (1957).Google Scholar
  327. 299.
    Stevens, A. and W. Sakami: Biosynthesis of Methionine in Liver. J. Biol. Chem.234, 2063 (1959).Google Scholar
  328. 300.
    Stokes, J. L. and A. Larsen: Transformation of the Streptococcus lactis R Factor to “Folic Acid” by Resting Cell Suspensions of Enterococci. J. Bacteriol.50, 219 (1945).Google Scholar
  329. 301.
    Stokstad, E. L. R.: Some Properties of a Growth Factor for Lactobacillus casei. J. Biol. Chem.149, 573 (1943).Google Scholar
  330. 302.
    _Stokstad, E. L. R.: Pteroylglutamic Acid. In: W. H. Sebrell, Jr. and R. S. Harris, The Vitamins, Vol. III, p. 89. New York: Academic Press. 1954.Google Scholar
  331. 303.
    Stokstad, E. L. R., B. L. Hutchings, J. H. Mowat, J. H. Boothe, C. W. Waller, R. B. Angier, J. Semb and Y. Subbarow: The Degradation of the Fermentation Lactobacillus casei Factor. I.J. Amer. Chem. Soc.70, 5 (1948).Google Scholar
  332. 304.
    Stokstad, E. L. R., B. L. Hutchings and Y. Subbarow: The Isolation of the Lactobacillus casei Factor from Liver. J. Amer. Chem. Soc.70, 3 (1948).Google Scholar
  333. 305.
    Strecker, H. J.: Formate Fixation in Pyruvate by Escherichia coli. J. Biol. Chem.189, 815 (1951).Google Scholar
  334. 306.
    Tabor, H.: Histidine Degradation. In: S. P. Colowick and N. O. Kaplan, Methods in Enzymology, Vol. V, p. 784. New York: Academic Press. 1962.Google Scholar
  335. 307.
    Tabor, H. and J. C. Rabinowitz: Intermediate Steps in the Formylation of Tetrahydrofolic Acid by Formimino-glutamic Acid in Rabbit Liver. J. Amer. Chem. Soc.78, 5705 (1956).Google Scholar
  336. 308.
    Tabor, H., M. Silverman, A. H. Mehler, F. S. Daft and H. Bauer: L-Histidine Conversion to Urinary Glutamic Acid Derivatives in Folic-deficient Rats. J. Amer. Chem. Soc.75, 756 (1953).Google Scholar
  337. 309.
    Tabor, H. and C. Wyngaarden: Determination of Formimidoyl-glutamic Acid in Urine. J. Clin. Invest.37, 824 (1958).Google Scholar
  338. 310.
    Tabor, H. and C. Wyngaarden: The Enzymatic Formation of Formimino-tetrahydrofolic Acid, 5,10-Methinyltetrahydrofolic Acid, and 10-Formyltetrahydrofolic Acid in the Metabolism of Formiminoglutamic Acid. J. Biol. Chem.234, 1830 (1959).Google Scholar
  339. 311.
    Takeyama, S. and J. M. Buchanan: Enzymatic Synthesis of the Methyl Group of Methionine. III. Spectral and Electrophoretic Studies of the Prosthetic Group of the B12 Enzyme. J. Biochemistry (Tokyo) 49, 578 (1961).Google Scholar
  340. 312.
    Takeyama, S., F. T. Hatch and J. M. Buchanan: Enzymatic Synthesis of the Methyl Group of Methionine. II. Involvement of Vitamin B12. J. Biol. Chem.236, 1102 (1961).Google Scholar
  341. 313.
    Torii, M.: Enzymic Hydrolysis of a Glutamyl Peptide of Bacillus megatherium. J. Biochemistry (Tokyo) 46, 513 (1959).Google Scholar
  342. 314.
    Tschesche, R.: Eine neue Deutung des antibakteriellen Wirkungsmechanismus der Sulfonamide. Z. Naturforsch.26, 10 (1947).Google Scholar
  343. 314a.
    Urbahn, H. und S. Rapoport: Über den Abbau von Glyzin in roten Blutzellen. Acta biol. Med. Germanica 6, 16 (1961).Google Scholar
  344. 375.
    Usdin, E.: Blood Folie Acid Studies. VI. Chromatographic Resolution of Folie Acid Active Substances Obtained from Blood. J. Biol. Chem.234, 2373 (1959).Google Scholar
  345. 316.
    Usdin, E. and J. Porath: Separation of Folic Acid and Derivatives by Electrophoresis and Anion Exchange Chromatography. Ark. Kemi 11, 41 (1957).Google Scholar
  346. 377.
    Usdin, E., G. H. Shockman and G. Toennies: Tetrazolium Bioautography. Appl. Microbiol.2, 29 (1954).Google Scholar
  347. 318.
    Vieira, E. and E. Shaw: The Utilization of Purines in the Biosynthesis of Folic Acid. J. Biol. Chem.236, 2507 (1961).Google Scholar
  348. 319.
    Vigneaud, V. Du: A Trail of Research. Ithaka, N. Y.: Cornell Univ. Press. 1952.Google Scholar
  349. 320.
    Volcani, B. E. and P. Margalith: A New Species (Flavobacterium poly-glutamicum) which Hydrolyzes the γ-Glutamyl Bond in Polypeptides. J. Bacteriol.74, 646 (1957).Google Scholar
  350. 320a.
    Wacker, A., H. Grisebach, A. Trebst und F. Weygand: Wirkungsmechanismus der Sulfonamide. I. Mitt, über Coenzym F. Angew. Chem.66, 326 (1954).Google Scholar
  351. 321.
    Wahba, A. J. and M. Friedkin: Direct Spectrophotometric Evidence for the Oxidation of Tetrahydrofolate during the Enzymatic Synthesis of Thymidylate. J. Biol. Chem.236, PC 11 (1961).Google Scholar
  352. 321a.
    Wahba, A. J. and M. Friedkin: The Enzymatic Synthesis of Thymidylate. I. Early Steps in the Purification of Thymidylate Synthetase of E. coli. J. Biol. Chem.237, 3794 (1962).Google Scholar
  353. 322.
    Waller, C. W., A. A. Goldman, R. B. Angier, J. H. Boothe, B. L. Hutchings, J. H. Mowat and J. Semb: 2-Amino-4-hydroxy-6-pteridine-carboxaldehyde. J. Amer. Chem. Soc.72, 4630 (1950).Google Scholar
  354. 323.
    Waller, C. W., B. L. Hutchings, J. H. Mowat, E. L. R. Stokstad, J. H. Boothe, R. B. Angier, J. Semb, Y. Subbarow, D. B. Cosulich, M. J. Fahrenbach, M. E. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sickels and J. M. Smith, Jr.: Synthesis of Pteroylglutamic Acid (Liver L. casei Factor) and Pteroic Acid. I.J. Amer. Chem. Soc.70, 19 (1948).Google Scholar
  355. 324.
    Wanzlick, H. W. und W. Löchel: 1,2-Dianilinoäthan als Aldehyd-Reagenz. Chem. Ber.86, 1463 (1953).Google Scholar
  356. 325.
    Waters, A. H. and D. L. Mollin: Studies on the Folic Acid Activity of Human Serum. J. Clin. Pathology 14, 335 (1961).Google Scholar
  357. 326.
    Webb, M.: Aminopterin Inhibition in Aerobacter aerogenes: Alanine and Valine Accumulation during the Inhibition and their Utilization on Recovery. Biochemic. J.70, 472 (1958).Google Scholar
  358. 327.
    Webb, M.: The Valine Carboxyl Group as a Source of Active Formate in Aerobacter aerogenes. J. Gen. Microbiol.18, XIV (1958).Google Scholar
  359. 328.
    Weinhouse, S.: The Synthesis and Degradation of Glycine. In: W. D. Mcelroy and B. Glass, Amino Acid Metabolism, p. 637. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  360. 329.
    Weislogel, O. and T. J. Bond: Studies on Cofactor Function of Folinic Acid using Radio-labeled Compounds. Arch. Biochem. Biophys.89, 221 (1960).Google Scholar
  361. 330.
    Welch, A. D. and C. A. Nichol: Water-soluble Vitamins Concerned with one-and two-Carbon Intermediates. Annu. Rev. Biochem.21, 633 (1952).Google Scholar
  362. 331.
    Welliky, I. and D. Shemin: Metabolism of α-Amino-β-ketoadipic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 16, 268 (1957).Google Scholar
  363. 332.
    Werkheiser, W. C.: Specific Binding of 4-Amino Folic Acid Analogues by Folic Acid Reductase. J. Biol. Chem.236, 888 (1961).Google Scholar
  364. 333.
    Weygand, F., E. F. Möller und A. Wacker: Mikrobiologische Synthese der Folinsäure aus 2-Amino-6-oxy-pterinaldehyd-8-und p-Aminobenzoyl-L-glutaminsäure. Z. Naturforsch.4b, 269 (1949).Google Scholar
  365. 334.
    Weygand, F. und G. Schäfer: Synthese von Pteroyl-I-glutaminsäure [II-C14] (Folinsäure [II-C14]). Chem. Ber.85, 307 (1952).Google Scholar
  366. 335.
    Weygand, F. und V. Schmied-kowarzik: Weitere Folinsäure-Synthesen. Chem. Ber.82, 333 (19Google Scholar
  367. 336.
    Weygand, F., V. Schmied-kowarzik, A. Wacker und W. Rupp: Weitere Synthesen von Pteridinen. Chem. Ber. 83, 460 (1950).Google Scholar
  368. 337.
    Weygand, F. und H. Simon: Herstellung isotopenhaltiger organischer Verbindungen. In: Houben-weyl, Methoden der organischen Chemie, IV. Aufl., Bd. 4, 2. Teil. Stuttgart: Thieme. 1955.Google Scholar
  369. 338.
    Weygand, F., H. Simon, G. Dahms, M. Waldschmidt, H. J. Schliep und H. Wacker: Über die Biogenese des Leucopterins. Angew. Chem.73, 402 (1961).Google Scholar
  370. 339.
    Weygand, F. und O. P. Swoboda: Verlauf der Folsäure-Synthese mit 1,1,3-Tribromaceton [3-14C]. Chem. Ber. 89, 18 (1956).Google Scholar
  371. 340.
    Weygand, F., A. WACKER und V. Schmied-kowarzik: Kondensationsprodukte von Oxyketonen und Aminoketonen mit 2,4,5-Triamino-6-oxy-pyrimidin. Experientia 4, 427 (1948).Google Scholar
  372. 340a.
    Weygand, F., A. WACKER und V. Schmied-kowarzik: Über die Kondensationsprodukte von p-Tolyl-d-isoglucosamin und Zuckern mit 6-Oxy-2,4,5-triaminopyrimidin; eine neue Folinsäure-Synthese. Chem. Ber. 82, 25 (1949).Google Scholar
  373. 341.
    Whiteley, H. R. and F. M. Huennekens: Mechanism of the Reaction Catalyzed by the Formate Activating Enzyme from Micrococcus aerogenes. J. Biol. Chem.237, 1290 (1962).Google Scholar
  374. 342.
    Whiteley, H. R., M. J. Osborn and F. M. Huennekens: The Mechanism of Formate Activation. J. Amer. Chem. Soc.80, 757 (1958).Google Scholar
  375. 343.
    Whiteley, H. R., M. J. Osborn and F. M. Huennekens: Purification and Properties of the Formate Activating Enzyme from Micrococcus aerogenes. J. Biol. Chem.234, 1538 (1959).Google Scholar
  376. 344.
    Whittaker, V. K. and R. L. Blakley: The Biosynthesis of Thymidylic Acid. II. Preliminary Studies with Calf Thymus Extracts. J. Biol. Chem.236, 838 (1961).Google Scholar
  377. 345.
    Wieland, O. P., B. L. Hutchings and J. H. Williams: Studies on the Natural Occurrence of Folic Acid and the Citrovorum Factor. Arch. Biochemistry 40, 105 (1952).Google Scholar
  378. 346.
    Williams, R. J., R. E. Eakin, E. Beerstecher, Jr. and W. Shive: The Biochemistry of the B-Vitamins. New York: Reinhold Publ. Co.1950.Google Scholar
  379. 347.
    Wilmanns, W.: Die Tetrahydrofolsäure-abhängige Aktivierung von Einkohlenstoffeinheiten in normalen und pathologischen weiβen Blutzellen. Klin. Wschr.39, 884 (1961).Google Scholar
  380. 347a.
    Wilmanns, W.: Bestimmung, Eigenschaften und Bedeutung der Dihydrofolsäure-Reduktase in den weiβen Blutzellen bei Leukämien. Klin. Wschr.40, 533 (1962).Google Scholar
  381. 348.
    Wilmanns, W., B. Rücker und L. Jaenicke: Zur Biogenese von Methionin. Z. physiol. Chem. (Hoppe-Seyler) 322, 283 (1960).Google Scholar
  382. 348a.
    Wilson, E. M. and E. E. Snell: Metabolism of α-Methylserine. I. α-Methyl-serine Hydroxymethylase. J. Biol. Chem.237, 3171 (1962).Google Scholar
  383. 349.
    Winkler, K. C. and P. C. DE Haan: On the Action of Sulfanilamide. XII. A Set of Non-competitive Sulfanilamide Antagonists for Escherichia coli. Arch. Biochemistry 18, 97 (1948).Google Scholar
  384. 350.
    Winstein, W. A. and E. Eigen: Bioautographic Studies with Use of Leuco-nostoc citrovorum 8081. J. Biol. Chem.184, 155 (1950).Google Scholar
  385. 351.
    Wittenberg, J. B., J. M. Noronha and M. Silverman: Folic Acid Derivatives in the Gas Gland of Physalia physalis L. Biochemic. J.85, 9 (1962).Google Scholar
  386. 352.
    Wittle, E. L., B. L. O’dell, J. M. Vandenbelt and J. J. Pfiffner: Oxidative Degradation of Vitamin Bc (Pteroylglutamic Acid). J. Amer. Chem. Soc.69, 1786 (1947).Google Scholar
  387. 353.
    Woernley, D. L.: The Magnetochemistry of Vitamins. Arch. Biochem. Biophys.54, 378 (1955).Google Scholar
  388. 354.
    Wolf, B. and R. D. Hotchkiss: Genetically Modified Folic Acid Synthesizing Enzymes of Pneumococcus. Biochemistry 2, 145 (1963).Google Scholar
  389. 355.
    Wolf, D. E., R. C. Anderson, E. A. Kaczka, S. A. Harris, G. E. Arth, P. L. Southwick, R. Mozingo and K. Folkers: The Structure of Rhizopterin. J. Amer. Chem. Soc.69, 2753 (1947).Google Scholar
  390. 356.
    Wood, R. C. and G. H. Hitchings: Nature of the Citrovorum Factor Requirement of Pediococcus cerevisiae. J. Bacteriol. 79, 524 (1960).Google Scholar
  391. 357.
    Woods, D. D.: Biosynthesis and Breakdown of Folic Acid. Proc. 4th Internat. Congr. Biochemistry, Vol. XI, p. 97. London: Pergamon Press. 1958.Google Scholar
  392. 358.
    Wright, B. E.: Poly-glutamyl Pteridine Coenzymes. J. Amer. Chem. Soc.77, 3930 (1955).Google Scholar
  393. 358a.
    Woods, D. D.: The Rôle of Polyglutamyl Pteridine Coenzymes in Serine Metabolism. II. A Comparison of Various Pteridine Derivatives. J. Biol. Chem.219, 873 (1956).Google Scholar
  394. 359.
    Woods, D. D.: Folic Acid Coenzyme Forms and Function. Proc. 4th Internat. Congr. Biochemistry, Vol. XI, p. 266. London: Pergamon Press. 1958.Google Scholar
  395. 360.
    Wright, B. E. and M. L. Anderson: Pteridine Reductase. Biochim. Biophys. Acta 28, 370 (1958).Google Scholar
  396. 361.
    Wright, B. E., M. L. Anderson and E. C. Herman: The Rôle of Polyglutamyl Pteridine Coenzymes in Serine Metabolism. III. The Enzymatic Formation of Dihydrofolic Acid and Dihydropterin. J. Biol. Chem.230, 271 (1958).Google Scholar
  397. 362.
    Wright, B. E. and T. C. Stadtman: The Rôle of Polyglutamyl Pteridine Coenzymes in Serine Metabolism. I. Cofactor Requirements in the Conversion of Serine to Glycine. J. Biol. Chem.219, 863 (1956).Google Scholar
  398. 363.
    Wright, L. D., H. R. Skeggs and A. D. Welch: Observations on the Occurrence of “Folic Acid” in Liver and Muscle. Arch. Biochemistry 6, 15 (1945).Google Scholar
  399. 364.
    Zakrzewski, S. F.: Purification and Properties of Folic Acid Reductase from Chicken Liver. J. Biol. Chem.235, 1776 (1960).Google Scholar
  400. 365.
    Zakrzewski, S. F.: Studies on the Substrate Specificity of Folic Acid Reductase. J. Biol. Chem.235, 1780 (1960).Google Scholar
  401. 365a.
    Zakrzewski, S. F.: On the Structure of Dihydrofolate. Federat. Proc. (Amer. Soc. exp. Biol.) 22, 231 (1963).Google Scholar
  402. 365b.
    Zakrzewski, S. F., M. T. Hakala and C. A. Nichol: Preparation and Biological Activity of Dihydroaminopterin. Biochemistry 1, 842 (1962).Google Scholar
  403. 366.
    Zakrzewski, S. F. and C. A. Nichol: Labile Reduced Derivatives of Pteroyl-glutamic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 15, 390 (1956).Google Scholar
  404. 367.
    Zakrzewski, S. F. and C. A. Nichol: Evidence for a single Enzyme Reducing Folate and Dihydrofolate. J. Biol. Chem.235, 2984 (1960).Google Scholar
  405. 368.
    Ziegler, I.: Biosynthese der Folsäure aus natürlich vorkommenden hydrierten Biopterin-Derivaten. Naturwiss. 48, 458 (1961).Google Scholar

Copyright information

© Springer-Verlag/Wien 1963

Authors and Affiliations

  • L. Von Jaenicke
    • 1
  • C. Kutzbach
    • 1
  1. 1.KölnGermany

Personalised recommendations