Advertisement

Zusammenfassung

Of the major biosynthetic pathways of the plant, that associated with the synthesis of rubber has been among the last to be elucidated. All that we know today concerning isoprenoid biogenesis is information acquired since 1949, much of it since 1956. Today, however, rubber biosynthesis may be considered as a problem solved. We can plot out in intimate detail the complete pathway by which carbon atoms present in common plant metabolites such as carbohydrates are converted to the polyisoprene molecule.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1.
    Agranoff, B. W., H. Eggerer, U. Henning and F. Lynen: Biosynthesis of Terpenes. VII. Isopentenyl Pyrophosphate Isomerass. J. Biol. Chem. 235, 326 (1960).Google Scholar
  2. 2.
    Amdur, B. H., H. Rilling and K. Bloch: Enzymatic Conversion of Mevalonic Acid to Squalene. J. Amer. Chem. Soc. 79, 2646 (1957).CrossRefGoogle Scholar
  3. 3.
    Archer, B. L.,G. Ayrey, E. G. Cockbain and G. P. Mcsweeney: Incorporation of [I-C14]-Isopentenyl Pyrophosphate into Polyisoprene. Nature 189, 663(1961).CrossRefGoogle Scholar
  4. 4.
    Arreguin, B., J. Bonner and B. J. Wood: Studies on the Mechanism of Rubber Formation in the Guayule. III. Experiments with Isotopic Carbon. Arch. Biochem. Biophys. 31, 234 (1951).CrossRefGoogle Scholar
  5. 5.
    Asahina, Y.: Notiz über Seneciosäure. Arch. Pharm. 251, 355 (1913).CrossRefGoogle Scholar
  6. 6.
    Bachhawat, B. K., W. G. Robinson and M. J. Coon: CO2 Fixation in Heart Extracts by β-Hydroxy-Isovaleryl Coenzyme A. J. Amer. Chem. Soc. 76, 3098 (1954).CrossRefGoogle Scholar
  7. 7.
    Bandurski, R., T. Coyle and J. Bonner: Studies on the Mechanism of Rubber Biosynthesis. Biology 1953, Calif. Inst. of Tech., pp. 118/119.Google Scholar
  8. 8.
    Beinert, H., D. E. Green, P. Hele, H. Hift, R. W. VON Korff and C. V. Ramakrishnan: The Acetate Activating Enzyme System of Heart Muscle. J. Biol. Chem. 203, 35 (1953).Google Scholar
  9. 9.
    Bloch, K.: The Biological Synthesis of Cholesterol. Recent Progr. in Hormone Res. 6, 111 (1951).Google Scholar
  10. 10.
    Bonner, J.: Synthesis of Isoprenoid Compounds in Plants. J. Chem. Educ. 26, 628 (1949).CrossRefGoogle Scholar
  11. 11.
    Bonner, J.: Plant Biochemistry. New York: Academic Press. 1950, p. 27.Google Scholar
  12. 12.
    Bonner, J. and B. Arreguin: The Biochemistry of Rubber Formation in the Guayule. I. Rubber Formation in Seedlings. Arch. Biochem. 21, 109 (1949).Google Scholar
  13. 13.
    Bonner, J. and A. W. Galston: The Physiology and Biochemistry of Rubber Formation in Plants. Bot. Rev. 13, 543 (1947).CrossRefGoogle Scholar
  14. 14.
    Chaykin, S., J. Law, A. H. Phillips, T. T. Tchen and K. Bloch: Phosphorylated Intermediates in the Synthesis of Squalene. Proc. Nat. Acad. Sci. (USA) 44, 998 (1958).CrossRefGoogle Scholar
  15. 15.
    Chou, T. C. and F. Lipmann: Separation of Acetyl Transfer Enzymes in Pigeon Liver Extract. J. Biol. Chem. 196, 89 (1952).Google Scholar
  16. 16.
    Coon, M. J., W. G. Robinson and B. K. Bachhawat: Enzymatic Studies on the Biological Degradation of the Branched Chain Amino Acids. In: Amino Acid Metabolism, p. 431. Baltimore: Johns Hopkins Press. 1955.Google Scholar
  17. 17.
    Cornforth, J. W. and G. Popjäk: Mechanism of Biosynthesis of Squalene from Sesquiterpenoids. Tetrahedron Letters 19, 29 (1959).CrossRefGoogle Scholar
  18. 18.
    Dituri, F., J. L. Rabinowitz, R. P. Hullin and S. Gurin: Precursors of Squalene and Cholesterol. J. Biol. Chem. 229, 825 (1957).Google Scholar
  19. 19.
    Ferguson, J. J., Jr., I. F. Durr and H. Rudney: The Biosynthesis of Mevalonic Acid. Proc. Nat. Acad. Sci. (USA) 45, 499 (1959).CrossRefGoogle Scholar
  20. 20.
    Hendricks, S. B., S. G. Wildman and E. J. Jones: Differentiation of Rubber and Gutta Hydrocarbons in Plant Materials. Arch. Biochem. 7, 427 (1945).Google Scholar
  21. 21.
    Henning, U., E. M. MÖslein> and F. Lynen: Biosynthesis of Terpenes. V. Formation of 5-Pyrophospho Mevalonic Acid by Phospho Mevalonic Kinase. Arch. Biochem. Biophys. 83, 259 (1959).CrossRefGoogle Scholar
  22. 22.
    Hoffman, C. H., A. F. Wagner, A. N. Wilson, E. Walton, C. H. Shunk, D. E. Wolf, F. W. Holly and K. Folkers: Synthesis of DL-3,5-Dihydroxy-3-Methylpentanoic Acid (Mevalonic Acid). J. Amer. Chem. Soc. 79, 2316 (1957).CrossRefGoogle Scholar
  23. 23.
    Johnston, J. A., D. W. Racusen and J. Bonner: Metabolism of Isoprenoid Precursors in a Plant System. Proc. Nat. Acad. Sci. (USA) 40, 1031 (1954).CrossRefGoogle Scholar
  24. 24.
    Kaplan, N. O. and F. Lipmann: The Assay and Distribution of Coenzyme A. J. Biol. Chem. 174, 37 (1948).Google Scholar
  25. 25.
    Kekwick, R. G. O., B. L. Archer, D. Barnard, G. M. C. Higgins, G. P. MCSweeney and C. G. Moore: Incorporation of DL-(2 C14) Mevalonic Acid Lactone into Polyisoprene. Nature 184, 268 (1959).CrossRefGoogle Scholar
  26. 26.
    Klosterman, H. J. and F. Smith: Isolation of β-Hydroxy-β-Methylglutaric Acid from the Seed of Flax (Linum usitatissimum). J. Amer. Chem. Soc. 76, 1229 (1954).CrossRefGoogle Scholar
  27. 27.
    Lipmann, F.: Acetylation of Sulfanilimide by Liver Homogenates and Extracts. J. Biol. Chem. 160, 173 (1945).Google Scholar
  28. 28.
    Lipmann, F., M. E. Jones, S. Black and R. M. Flynn: Enzymatic Pyrophosphory-lation of Coenzyme A by Adenosine Triphosphate. J. Amer. Chem. Soc. 74, 2384 (1952).CrossRefGoogle Scholar
  29. 29.
    Lynen, F., B. W. Agranoff, H. Eggerer, U. Henning und E. M. Möslein: γ,γ-Dimethyl-Allyl-Pyrophosphat und Geranyl-pyrophosphat, biologische Vorstufen des Squalens (Zur Biosynthese der Terpene, VI). Angew. Chem. 71, 657 (1959).CrossRefGoogle Scholar
  30. 30.
    Lynen, F., H. Eggerer, U. Henning und I. Kessel: Farnesyl-Pyrophosphat und 3-Methyl-Δ3-Butenyl-I-Pyrophosphat, die biologischen Vorstufen des Squalens (Zur Biosynthese der Terpene, III). Angew. Chem. 70, 738 (1958).CrossRefGoogle Scholar
  31. 31.
    Lynen, F. und U. Henning: Über den biologischen Weg zum Naturkautschuk. Angew. Chem. 72, 820 (1960).CrossRefGoogle Scholar
  32. 32.
    Lynen, F., E. Reichert und L. Rueff: Zum biologischen Abbau der Essigsäure VI (“Aktivierte Essigsäure”, ihre Isolierung aus Hefe und ihre chemische Natur). Liebigs Ann. Chem. 574, 1 (1951).CrossRefGoogle Scholar
  33. 33.
    Lynen, F., L. Wessely, O. Wieland und L. Rueff: β-Oxydation der Fettsäuren. Angew. Chem. 64, 687 (1952).CrossRefGoogle Scholar
  34. 34.
    Millerd, A. and J. Bonner: Acetate Activation and Acetoacetate Formation in Plant Systems. Arch. Biochem. Biophys. 49, 343 (1954).CrossRefGoogle Scholar
  35. 35.
    Ottke, R. C, E. L. Tatum, I. Zabin and K. Bloch: Ergosterol Synthesis in Neurospora. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 212 (1950).Google Scholar
  36. 36.
    Park, R. B. and J. Bonner: Enzymatic Synthesis of Rubber from Mevalonic Acid. J. Biol. Chem. 233, 340 (1958).Google Scholar
  37. 37.
    Pollard, C, J. Bonner, A. J. Haagen-Smit and C. C. Nimmo: Transformations of Mevalonic Acid by an Enzyme System from Peas. Plant Physiol.(In press.)Google Scholar
  38. 38.
    Popjak, G.: Biosynthesis of Derivatives of Allylic Alcohols from 2 C14 Mevalo-nate in Liver Enzyme Preparations and Their Relation to Synthesis of Squalene. Tetrahedron Letters 19, 19 (1959).CrossRefGoogle Scholar
  39. 39.
    Purcell, A. E., G. A. Thompson, Jr. and J. Bonner: The Incorporation of Mevalonic Acid into Tomato Carotenoids. J. Biol. Chem. 234, 1081 (1959).Google Scholar
  40. 40.
    Rabinowitz, J. L. and S. Gurin: Biosynthesis of Cholesterol and β-Hydroxy-β-Methylglutaric Acid by Extracts of Liver. J. Biol. Chem. 208, 307 (1954).Google Scholar
  41. 41.
    Rudney, H.: The Synthesis of β-Hydroxy-β-Methylglutaric Acid in Rat Liver Homogenates. J. Amer. Chem. Soc. 76, 2595 (1954).CrossRefGoogle Scholar
  42. 41a.
    Skeggs, H. R., L. D. Wright, E. L. Cresson, G. D. E. MacRae, C. H. Hoffman, D. E. Wolf and K. Folkers: Discovery of a New Acetate-replacing Factor. J. Bacteriol. 72, 519 (1956).Google Scholar
  43. 42.
    Stadtman, E. R., M. Doudoroff and F. Lipmann: The Mechanism of Acetoacetate Synthesis. J. Biol. Chem.191, 377 (1951).Google Scholar
  44. 43.
    Stanley, R. G.: Terpene Formation in Pine from Mevalonic Acid. Nature 182, 738 (1958).CrossRefGoogle Scholar
  45. 44.
    Tamura, G.: Hiochic Acid or New Growth Factor for Lactobacillus homo-hiochi and L. heterohiochi. J. Gen. Appl. Microbiol. 2, 431 (1956).CrossRefGoogle Scholar
  46. 45.
    Tavormina, P. A., M. H. Gibbs and J. W. Huff: The Utilization of β-Hydroxy-β-Methyl-(δ-Valerolactone in Cholesterol Biosynthesis. J. Amer. Chem. Soc.78, 4498 (1956).CrossRefGoogle Scholar
  47. 46.
    Tchen, T. T.: Mevalonic Kinase: Purification and Properties. J. Biol. Chem.233, 1100 (1958).Google Scholar
  48. 47.
    Teas, H. J. and J. Bonner: Rubber Biosynthesis. Revue Generale du Caoutchouc 37, 1143 (1960).Google Scholar
  49. 48.
    Teas, H. J., L. Polhemus and J. C. Montermoso: Abstr., Conference on Radioactive Isotopes in Agriculture, (U. S. Dept. of Agric), January, 1956.Google Scholar
  50. 49.
    Thompson, G. A., Jr., A. E. Purcell and J. Bonner: A Carotene Precursor; its Proposed Structure and Place in Biosynthetic Sequence. Plant Physiol. 35, 678 (1960).CrossRefGoogle Scholar
  51. 50.
    Witting, L. A. and J. W. Porter: A Geraniol Derivative—An Intermediate in the Biosynthesis of Squalene by a Rat Liver Enzyme System. Biochem. Biophys. Res. Comm.1, 341 (1959).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1963

Authors and Affiliations

  • James Bonner
    • 1
  1. 1.PasadenaUSA

Personalised recommendations