Advertisement

Abstract

In the last decade, the organic chemist’s approach to Natural Product Chemistry has undergone a considerable change. It is now apparent that the structures of the majority of natural products can be determined absolutely and in a surprisingly short time by the method of X-ray crystallography. This method is however expensive, and at present it is not feasible to determine the structures of many natural products, particularly simple ones, by this method. Even so, the organic chemist is now conscious that the expenditure of several years on the determination of a structure of a natural product is no longer justified. Fortunately recent developments in various spectroscopic methods now enable the organic chemist to solve structures much more efficiently than in the past.

Keywords

Chemical Shift Nuclear Magnetic Resonance Spectrum Applied Magnetic Field Proton Magnetic Resonance Spectroscopy Olefinic Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R. J., L.D. Hall, L. Hough and K. A. McLauchlan: A Proton Resonance Study of the Conformations of Carbohydrates in Solution. Part I. Derivatives of 1,2-O-Isopropylidene- α-D-xylohexofuranose. J. Chem. Soc. (London) 1962, 3699.Google Scholar
  2. 2.
    Abraham, R. J., K. A. McLauchlan, L. D. Hall and L. Hough: The Conformations of some Furanose Derivatives in Solution by Proton Magnetic Resonance. Chem. and Ind. 1962, 213.Google Scholar
  3. 3.
    Arthur, H. R. and W. D. Ollis: A Revised Structure for Avicennin. J. Chem. Soc. (London) 1963, 3910.Google Scholar
  4. 4.
    Ayer, W. A., C. E. McDonald and J. B. Stothers: The Stereochemistry of Maleopimaric Acid and the Long Range Shielding Effect of the Olefinic Bond. Canad. J. Chem. 41, 1113 (1963).Google Scholar
  5. 5.
    Balasubramanian, S. K., D. H. R. Barton and L. M. Jackman: Diterpenoid Bitter Principles. Part V. The Constitution of Palmarin and its Congeners. J. Chem. Soc. (London) 1962, 4816.Google Scholar
  6. 6.
    Banwell, C. N. and N. Sheppard: (H—H) Coupling Constants in the Nuclear Magnetic Resonance Spectra of Hydrocarbon Groupings. Discuss. Faraday Soc. No. 34, 115 (1962).CrossRefGoogle Scholar
  7. 7.
    Barber, M. S., J. B. Davis, L. M. Jackman and B. C. L. Weedon: Studies in Nuclear Magnetic Resonance. Part I. Methyl Groups of Carotenoids and Related Compounds. J. Chem. Soc. (London) 1960, 2870.Google Scholar
  8. 8.
    Barber, M. S., A. Hardisson, L. M. Jackman and B. C. L. Weedon: Studies in Nuclear Magnetic Resonance. Part IV. Stereochemistry of the Bixins. J. Chem. Soc. (London) 1961, 1625.Google Scholar
  9. 9.
    Barber, M. S., L. M. Jackman, C. K. Warren and B. C. L. Weedon: Carotenoids and Related Compounds. Part IX. The Structures of Capsanthin and Capsorubin. J. Chem. Soc. (London) 1961, 4019.Google Scholar
  10. 10.
    Barber, M.S., L. M. Jackman and B. C. L. Weedon: The Structures of Spirilloxanthin and Related Carotenoids. Proc. Chem. Soc. (London) 1959, 96.Google Scholar
  11. 11.
    Barton, D. H. R. and D. Elad: Colombo Root Bitter Principles. Part II. The Constitution of Columbin. J. Chem. Soc. (London) 1956, 2090.Google Scholar
  12. 12.
    Barton, D. H. R., K. H. Overton and A. Wylie: Diterpenoid Bitter Principles. Part IV. Investigations on the Constitution of Palmarin. J. Chem. Soc. (London) 1962, 4809.Google Scholar
  13. 13.
    Bates, R. B. and D. M. Gale: Stereochemistry of Trisubstituted Double Bonds in Terpenoids. J. Amer. Chem. Soc. 82, 5749 (1960).CrossRefGoogle Scholar
  14. 14.
    Batterham, T. J. and R. J. Highet: Nuclear Magnetic Resonance Spectra of Flavonoids. Austral. J. Chem. 17, 428 (1964).Google Scholar
  15. 15.
    Bhacca, N. S. and D.H.Williams: Applications of N. M. R. Spectroscopy in Organic Chemistry. Illustrations from the Steroid Field. San Francisco: Holden-Day, Inc. 1964.Google Scholar
  16. 16.
    Buchschacher, P., M. Cereghetti, H. Wehrli, K. Schaffner und O. Jeger: Über Steroide und Sexualhormone. 212. Mitt. Photochemische Umwandlungen von 20-Keto-pregnan-Verbindungen. Helv. Chim. Acta 42, 2122 (1959).CrossRefGoogle Scholar
  17. 17.
    Burrell, J. W. K., R. F. Garwood, L. M. Jackman, E. Oskay and B. C. L. Weedon: Carotenoids and Related Compounds. Part XIII. Stereochemistry and Synthesis of Geraniol, Nerol, Farnesol and Phytol. J. Chem. Soc. (London) (in press, 1965).Google Scholar
  18. 18.
    Burrell, J.W.K., L. M. Jackman and B. C. L. Weedon: Stereochemistry and Synthesis of Phytol, Geraniol and Nerol. Proc. Chem. Soc. (London) 1959, 263.Google Scholar
  19. 19.
    Burrows, B. F., W. D. Ollis and L. M. Jackman: Sericetin. Proc. Chem. Soc. (London) 1960, 177.Google Scholar
  20. 20.
    Chamberlain, N. F.: Determining Molecular Structure by Nuclear Magnetic Resonance of Hydrogen. Analyt. Chemistry 31, 56 (1959).CrossRefGoogle Scholar
  21. 21.
    Clark-Lewis, J. W., L. M. Jackman and T. M. Spotswood: Nuclear Magnetic Resonance Spectra, Stereochemistry and Conformation of Flavan Derivatives. Austral. J. Chem. 17, 632 (1964).CrossRefGoogle Scholar
  22. 22.
    Conroy, H.: Nuclear Magnetic Resonance in Organic Structural Elucidation. Adv. Organ. Chem. 2, 265 (1960).Google Scholar
  23. 23.
    Cooper, R. D. G., L. M. Jackman and B. C. L. Weedon: Stereochemistry of Capsorubin and Synthesis of its Optically Inactive Epimers. Proc. Chem. Soc. (London) 1962, 215.Google Scholar
  24. 24.
    Corey, E. J., E. M. Philbin and T. S. Wheeler: Stereochemistry of Flavan- 3,4-diols. Tetrahedron Letters 1961, 429.Google Scholar
  25. 25.
    Cox, J. S. G., E. O. Bishop and R. E. Richards: Proton Resonance Spectra of Some 11-Keto-steroids. J. Chem. Soc. (London) 1960, 5118.Google Scholar
  26. 26.
    Crombie, L. and J.W. Lown: Proton Magnetic Studies of Rotenone and Related Compounds. J. Chem. Soc. (London) 1962, 775.Google Scholar
  27. 27.
    Davis, J. B., L. M. Jackman, P. T. Siddons and B. C. L. Weedon: The Structures of Phytoene, Phytofluene, ζ-Carotene and Neurosporene. Proc. Chem. Soc. (London) 1961, 261.Google Scholar
  28. 28.
    Fräser, R. R.: The Establishment of Configuration of Diels-Alder Adducts by N. M. R. Spectroscopy. Canad. J. Chem. 40, 78 (1962).CrossRefGoogle Scholar
  29. 29.
    Hall, L. D., L. Hough, K. A. McLauchlan and K. Pachler: A Proton Resonance Study of the Conformation of Carbohydrates in Solution. Some Pyranose Derivatives. Chem. and Ind. 1962, 1465.Google Scholar
  30. 30.
    Hofheinz, W. und H. Grisebach: Zur Biogenese der Makrolide. VII. Die Stereochemie der Mycaminose. Z. Naturforsch. 17B, 355 (1962).Google Scholar
  31. 31.
    Jackman, L. M.: Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry. London: Pergamon. 1959.Google Scholar
  32. 32.
    Jackman, L. M. and S. L. Jensen: Bacterial Carotenoids. IX. The Constitution of the Third Member of the P 481-Group (3,4-Dehydro-rhodopin). Acta. Chem. Scand. 15, 2058 (1961).CrossRefGoogle Scholar
  33. 33.
    Jackman, L. M. and R. H. Wiley: Studies in Nuclear Magnetic Resonance. Part III. Assignment of Configurations of αβ-Unsaturated Esters and the Isolation of Pure traws-β-Methyl-glutaconic Acid. J. Chem. Soc. (London) 1960, 2886.Google Scholar
  34. 34.
    Jardetzky, C. D.: Proton Magnetic Resonance Studies on Purines, Pyrimidines, Ribose Nucleosides and Nucleotides. III. Ribose Conformation. J. Amer. Chem. Soc. 82, 229 (1960).CrossRefGoogle Scholar
  35. 35.
    Johnson, C. E., Jr. and F. A. Bovey: Calculation of Nuclear Magnetic Resonance Spectra of Aromatic Hydrocarbons. J. Chem. Physics 29, 1012 (1958).CrossRefGoogle Scholar
  36. 36.
    Karplus, M.: The Analysis of Molecular Wave Functions by Nuclear Magnetic Resonance Spectroscopy. J. Physic. Chem. 64, 1793 (1960).CrossRefGoogle Scholar
  37. 37.
    Karrer, P. and E. Jucker: Carotenoids. New York: Elsevier. 1950.Google Scholar
  38. 38.
    Kartha, G., G. N. Ramachandran, H. B. Bhat, P. M. Nair, V. K. V. Ragha-van and K. Venkataraman: The Constitution of Morellin. Tetrahedron Letters 1963, 459.Google Scholar
  39. 39.
    Kevill, D. N., G. A. Coppens, M. Coppens and N. H. Cromwell: Reactions of 2-Bromo-2-(α-halogenobenzyl).i-indanones. J. Organ. Chem. (USA) 29, 382 (1964).Google Scholar
  40. 40.
    Lemieux, R. U., R. K. Kullnig, H. J. Bernstein and W. G. Schneider: Configurational Effects on the Proton Magnetic Resonance Spectra of Six-membered Ring Compounds. J. Amer. Chem. Soc. 80, 6098 (1958).CrossRefGoogle Scholar
  41. 41.
    McLean, S. and Mei-Sie Lin: Ochotensimine: A Novel Benzyl-isoquinoline Alkaloid. Tetrahedron Letters 1964, 3819.Google Scholar
  42. 42.
    Massicot, J. et J.-P. Marthe: Résonance magnétique nucléaire de produits naturels. III. Étude de quelques dérivés flavoniques et substances apparentées. Bull. soc. chim. France 1962, 1962.Google Scholar
  43. 43.
    Miyamoto, M., Y. Kawamatsu, M. Shinohara, Y. Asahi, Y. Nakadaira, H. Kakisawa, K. Nakanishi and N. S. Bhacca: Chromose A. Tetrahedron Letters 1963, 693.Google Scholar
  44. 44.
    Nair, M. D. and R. Adams: The Structure of Ridellic Acid and the Stereochemistry of Necic Acids. J. Amer. Chem. Soc. 83, 922 (1961).CrossRefGoogle Scholar
  45. 45.
    Pople, J. A., W. G. Schneider and H. J. Bernstein: High Resolution Nuclear Magnetic Resonance, p. 98. New York: McGraw-Hill. 1959.Google Scholar
  46. 46.
    Roberts, J. D.: An Introduction to the Analysis of Spin-Spin Splitting in High-resolution Nuclear Magnetic Resonance Spectra. New York: W. A. Benjamin. 1961. Nuclear Magnetic Resonance. Applications to Organic Chemistry. New York, Toronto, London: McGraw-Hill. 1959.Google Scholar
  47. 47.
    Schwarz, J. S. P., A. I. Cohen, W. D. Ollis, E. A. Kaczka and L. M. Jackman: The Extractives of Piscidia erythrina L. I. The Constitution of Ichthynone. Tetrahedron 20, 1317 (1964).CrossRefGoogle Scholar
  48. 48.
    Shoolery, J. N.: Recent Applications of High Resolution N. M. R. to the Determination of Molecular Structure. Discuss. Faraday Soc. No. 34, 104 (1962).CrossRefGoogle Scholar
  49. 49.
    Shoolery, J.N. and M. T. Rogers: Nuclear Magnetic Resonance Spectra of Steroids. J. Amer. Chem. Soc. 80, 5121 (1958).CrossRefGoogle Scholar
  50. 50.
    Silverstein, R. M. and G. C. Bassler: Spectrometric Identification of Organic Compounds. New York: Wiley and Sons. 1963.Google Scholar
  51. 51.
    Slomp, G., Jr. and B. R. McGarvey: Nuclear Magnetic Resonance Studies on 6-Methyl Steroids. J. Amer. Chem. Soc. 81, 2200 (1959).CrossRefGoogle Scholar
  52. 52.
    Slomp, G. and F. A. MacKellar: Nuclear Magnetic Resonance Studies using Pyridine Solutions. J. Amer. Chem. Soc. 82, 999 (1960).CrossRefGoogle Scholar
  53. 53.
    Slomp, G. and F. A. MacKellar: Nuclear Magnetic Resonance Studies on Some Hydrocarbon Side Chains of Steroids. J. Amer. Chem. Soc. 84, 204 (1962).CrossRefGoogle Scholar
  54. 54.
    Sternhell, S.: Long-range H’—H’ Spin-Spin Coupling in Nuclear Magnetic Resonance Spectroscopy. Rev. Pure and Appl. Chem. 14, 15 (1964).Google Scholar
  55. 55.
    Trenner, N. R., B. H. Arison, D. Taub and N. L. Wendler: Proton Magnetic Resonance Shifts in Steroid D-Homoannulation. Proc. Chem. Soc. (London) 1961, 214.Google Scholar
  56. 56.
    Woo, P. W. K., H.W.Dion and L. F. Johnson: The Stereochemistry of Chalcose, a Degradation Product of Chalcomycin. J. Amer. Chem. Soc. 84, 1066 (1962).CrossRefGoogle Scholar
  57. 57.
    Zechmeister, L. und L. v. Cholnoky: Untersuchungen über den Paprika- Farbstoff. X. Citraurin aus Capsanthin. Liebigs Ann. Chem. 530, 291 (1937).Google Scholar
  58. 58.
    Zeitschel, O.: Über das Nerol und seine Darstellung aus Linalool. Ber. dtsch. chem. Ges. 39, 1780 (1906).CrossRefGoogle Scholar
  59. 59.
    Zürcher, R. F.: Protonenresonanzspektroskopie und Steroidstruktur. I. Das C-19-Methylsignal in Funktion der Substituenten. Helv. Chim. Acta 44, 1380 (1961).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1965

Authors and Affiliations

  • L. M. Jackman
    • 1
  1. 1.MelbourneAustralia

Personalised recommendations