Advertisement

Abstract

The concluding sentence of an earlier article on hemoglobin in 1959 (213) stated that “Many years of effort by many investigators will no doubt be required before the last amino acid residue [of hemoglobin] is placed in the sequence and before the nature of the hemeglobin linkage becomes apparent, but it is not too much to expect that this goal will be achieved”. Prophecy clearly is an uncertain art: within three years after the sentence was written, the complete amino acid sequence of human hemoglobins A and F was known and the hemeglobin linkage appeared to be clearly defined. Yet a grain of truth was in the statement. The man-years of effort that were required to attain the goal within so short a time are not easily calculated.

Keywords

Tryptic Peptide Heme Group Fetal Hemoglobin Human Hemoglobin Bovine Hemoglobin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adair, G. S.: A Theory of Partial Osmotic Pressures and Membrane Equilibria with Special Reference to the Application of Dalton’s Law to Haemoglobin Solutions in the Presence of Salts. Proc. Roy. Soc. (London) A 120, 573 (1928).Google Scholar
  2. 2.
    Allen, D. W., W. A. Schroeder and J. Balog: Observations on the Chromatographic Heterogeneity of Normal Adult and Fetal Human Hemoglobin: A Study of the Effects of Crystallization and Chromatography on the Heterogeneity and Isoleucine Content. J. Amer. Chem. Soc. 80, 1628 (1958).Google Scholar
  3. 3.
    Ames, B. N. and R. G. Martin: Biochemical Aspects of Genetics: The Operon. Annu. Rev. Biochem. 33, 235 (1964).Google Scholar
  4. 4.
    Anfinsen, C. B.: Macromolecular Considerations of Cellular Organization. Canadian Cancer Conference, Vol. 5, p. 3. New York: Academic Press. 1963.Google Scholar
  5. 5.
    Anonymous: Nomenclature of Abnormal Hemoglobins. Blood 17, 125 (1961).Google Scholar
  6. 6.
    Anson, M. L. and A. E. Mirsky: Protein Coagulation and its Reversal. The Preparation of Insoluble Globin, Soluble Globin, and Heme. J. Gen. Physiol. 13, 469 (1929/30).Google Scholar
  7. 7.
    Antonini, E., J. Wyman, R. Zito, A. Rossi-Fanelli and A. Caputo: Studies of Carboxypeptidase Digests of Human Hemoglobin. J. Biol. Chem. 236, PC 60 (1961).Google Scholar
  8. 8.
    Arlinghaus, R., J. Shaeffer and R. Schweet: Mechanism of Peptide Bond Formation in Polypeptide Synthesis. Proc. Nat. Acad. Sci. (USA) 51, 1291 (1964).Google Scholar
  9. 9.
    Armstrong, D. H., W. A. Schroeder and W. D. Fenninger: A Comparison of the Percentage of Fetal Hemoglobin in Human Umbilical Cord Blood as Determined by Chromatography and by Alkali Denaturation. Blood 22, 554 (1963).Google Scholar
  10. 10.
    Arnstein, H. R. V., R. A. Cox and J. A. Hunt: The Function of High Molecular-Weight Ribonucleic Acid from Rabbit Reticulocytes in Haemoglobin Biosynthesis. Biochem. J. 92, 648 (1964).Google Scholar
  11. 11.
    Atwater, J., I. R. Schwartz and L. M. Tocantins: A Variety of Human Hemoglobin with Four Distinct Electrophoretic Components. Blood 15, 901 (1960).Google Scholar
  12. 12.
    Babin, D. R., R. T. Jones and W. A. Schroeder: Hemoglobin DLos Angeles: α 2A β 2lgluNH2. Biochim. Biophys. Acta 86, 136 (1964).Google Scholar
  13. 13.
    Babin, D. R., W. A. Schroeder, J. R. Shelton, J. B. Shelton and B. Rob-berson: Unpublished results.Google Scholar
  14. 14.
    Baglioni, C.: An Improved Method for the Fingerprinting of Human Hemoglobin. Biochim. Biophys. Acta 48, 392 (1961).Google Scholar
  15. 15.
    Baglioni, C.: Abnormal Human Haemoglobins. VIII. Chemical Studies on Haemoglobin D. Biochim. Biophys. Acta 59, 437 (1962).Google Scholar
  16. 16.
    Baglioni, C.: A Chemical Study of Hemoglobin Norfolk. J. Biol. Chem. 237, 69 (1962).Google Scholar
  17. 17.
    Baglioni, C.: The Fusion of Two Peptide Chains in Hemoglobin Lepore and its Inter-pretation as a Genetic Deletion. Proc. Nat. Acad. Sci. (USA) 48, 1880 (1962). See also Biochim. Biophys. Acta 97, 37 (1965).Google Scholar
  18. 18.
    Baglioni, C.: Correlations between Genetics and Chemistry of Human Hemoglobins. In: J. H. Taylor (Edit.), Molecular Genetics, Parti, p. 405. New York: Academic Press. 1963.Google Scholar
  19. 19.
    Baglioni, C. and V. M. Ingram: Abnormal Human Haemoglobins. V. Chemical Investigation of Haemoglobins A, G, C, X from one Individual. Biochim. Biophys. Acta 48, 253 (1961).Google Scholar
  20. 20.
    Baglioni, C. and V. M. Ingram: Four Adult Haemoglobin Types in One Person. Nature 189, 465 (1961).Google Scholar
  21. 21.
    Baglioni, C. and H. Lehmann: Chemical Heterogeneity of Haemoglobin O. Nature 196, 229 (1962).Google Scholar
  22. 22.
    Baglioni, C. and D. J. Weatherall: Abnormal Human Hemoglobins. IX. Chemistry of Hemoglobin J Baltimore- Biochim. Biophys. Acta 78, 637 (1963).Google Scholar
  23. 23.
    Bangham, A. D.: Distribution of Electrophoretically Different Haemoglobins among Cattle Breeds of Great Britain. Nature 179, 467 (1957).Google Scholar
  24. 24.
    Bangham, A. D. and H. Lehmann: “Multiple” Haemoglobins in the Horse. Nature 181, 267 (1958).Google Scholar
  25. 25.
    Bannerman, R. M.: Thalassemia — A Survey of Some Aspects. New York: Grune and Stratton. 1961.Google Scholar
  26. 26.
    Barnabas, J. and C. J. Muller: Haemoglobin Lepore Hollandia- Nature 194, 931 (1962).Google Scholar
  27. 27.
    Bayrakci, C., A. Josephson, L. Singer, P. Heller and R. D. Coleman: A New Fast Hemoglobin. Xth Congr. Int. Soc. Haematology, Stockholm, 1964, Abstract L: 6.Google Scholar
  28. 28.
    Beaven, G. H. and W. B. Gratzer: A Critical Review of Human Haemoglobin Variants. J. Clin. Pathol. 12, 1, 101 (1959).Google Scholar
  29. 29.
    Benesch, R. and R. E. Benesch: Some Relations between Structure and Function in Hemoglobin. J. Mol. Biol. 6, 498 (1963).Google Scholar
  30. 30.
    Benesch, R. E. and R. Benesch: The Influence of Oxygenation on the Reactivity of the —SH Groups of Hemoglobin. Biochemistry 1, 735 (1962).Google Scholar
  31. 31.
    Benesch, R. E., R. Benesch and G. Macduff: The Dissociation of Hemoglobins A and H in Concentrated Sodium Chloride. Biochemistry 3, 1132 (1964).Google Scholar
  32. 32.
    Benesch, R. E., H. M. Ranney, R. Benesch and G. M. Smith: The Chemistry of the Bohr Effect. II. Some Properties of Hemoglobin H. J. Biol. Chem. 236, 2926 (1961).Google Scholar
  33. 33.
    Bennett, J. C. and W. J. Dreyer: Genetic Coding for Protein Structure. Annu. Rev. Biochem. 33, 205 (1964).Google Scholar
  34. 34.
    Benzer, S., V. M. Ingram and H. Lehmann: Three Varieties of Human Haemoglobin D. Nature 182, 852 (1958).Google Scholar
  35. 35.
    Bianco, I., G. Modiano, E. Bottini and R. Lucci: Alteration in the α-Chain of Haemoglobin LFerrara. Nature 198, 395 (1963).Google Scholar
  36. 36.
    Blow, D. M.: An X-ray Examination of Some Crystal forms of Pig and Rabbit Haemoglobin. Acta Crystallogr. 11, 125 (1958).Google Scholar
  37. 37.
    Borsook, H.: DNA, RNA and Protein Synthesis after Acute Severe Blood Loss: a Picture of Erythropoiesis at the Combined Morphological and Molecular Level. Ann. New York Acad. Sei. 199, 523 (1964).Google Scholar
  38. 38.
    Bowman, B. H., C. P. Oliver, D. R. Barnett, J. E. Cunningham and R. G. Schneider: Chemical Characterization of Three Hemoglobins G. Blood 23, 193 (1964).Google Scholar
  39. 39.
    Bragg, W. L. and M. F. Perutz: The External Form of the Haemoglobin Molecule. II. Acta Crystallogr. 5, 323 (1952).Google Scholar
  40. 40.
    Braunitzer, G.: Vergleichende Untersuchungen zur Primärstruktur der Proteinkomponente einiger Hämoglobine. Z. physiol. Chem. 312, 72 (1958).Google Scholar
  41. 41.
    Braunitzer, G., R. Gehring-Müller, N. Hilschmann, K. Hilse, G. Hobom, V. Rudloff und B. Wittmann-Liebold: Die Konstitution des normalen adulten Humanhämoglobins. Z. physiol. Chem. 325, 283 (1961).Google Scholar
  42. 42.
    Braunitzer, G., N. Hilschmann, V. Rudloff, K. Hilse, B. Liebold and R. Müller: The Haemoglobin Particles. Chemical and Genetic Aspects of their Structure. Nature 190, 480 (1961).Google Scholar
  43. 43.
    Braunitzer, G., K. Hilse, V. Rudloff and N. Hilschmann: The Hemoglobins. Adv. Protein Chem. 19, 1 (1964).Google Scholar
  44. 44.
    Braunitzer, G., V. Rudloff und N. Hilschmann: Hämoglobine. X. Die Analyse der oc-und ß-Ketten des adulten normalen Humanhämoglobins aus seinen tryptischen Spaltprodukten. Z. physiol. Chem. 331, 1 (1963).Google Scholar
  45. 44a.
    Bucci, E. and C. Fronticelli: A New Method for the Preparation of oc and ß Subunits of Human Hemoglobin. J. Biol. Chem. 240, PC 551 (1965).Google Scholar
  46. 44b.
    Buettner-Janusch, J. and R. L. Hill: Molecules and Monkeys. Science 147, 836 (1965).Google Scholar
  47. 45.
    Buhler, D. R.: Studies on Fish Hemoglobins. Chinook Salmon and Rainbow Trout. J. Biol. Chem. 238, 1665 (1963).Google Scholar
  48. 46.
    Cabannes, R. et Ch. Serain: Étude électrophorétique des hémoglobines des Mammifères domestiques d’Algérie. C. R. séances soc. biol. 149, 1193 (1955).Google Scholar
  49. 47.
    Ceppellini, R.: Ciba Foundation Symp., Biochemistry of Human Genetics, p. 133. Boston: Little, Brown & Co. 1959.Google Scholar
  50. 48.
    Chernoff, A. I.: Hemoglobin A4, a Naturally Occurring Hemoglobin Possessing only oc Chains. Xth Congr. Int. Soc. Haematology, Stockholm, 1964, Abstract L: 3.Google Scholar
  51. 49.
    Chernoff, A. I. and J. C. Liu: The Amino Acid Composition of Hemoglobin. II. Analytical Technics. Blood 17, 54 (1961).Google Scholar
  52. 50.
    Chernoff, A. I. and P. E. Perillie: The Amino Acid Composition of HGB New Haven 2 (HGB NNew Haven). Biochem. Biophys. Res. Comm. 16, 368 (1964).Google Scholar
  53. 50a.
    Chernoff, A. I. and N. M. Pettit, Jr.: The Amino Acid Composition of Hemoglobin. III. A Qualitative Method for Identifying Abnormalities of the Polypeptide Chains of Hemoglobin. Blood 24, 750 (1964).Google Scholar
  54. 51.
    Clegg, M. D. and W. A. Schroeder: A Chromatographic Study of the Minor Components of Normal Adult Human Hemoglobin Including a Comparison of Hemoglobin from Normal and Phenylketonuric Individuals. J. Amer. Chem. Soc. 81, 6065 (1959).Google Scholar
  55. 52.
    Conference on Hemoglobin. Nat. Acad. Sci. (USA), Nat. Research Council, Publ. No. 557, 1958.Google Scholar
  56. 53.
    Crestfield, A. M., W. H. Stein and S. Moore: Alkylation and Identification of the Histidine Residues at the Active Site of Ribonuclease. J. Biol. Chem. 238, 2413 (1963).Google Scholar
  57. 54.
    Crestfield, A. M., W. H. Stein and S. Moore: Properties and Conformation of the Histidine Residues at the Active Site of Ribonuclease. J. Biol. Chem. 238, 2421 (1963).Google Scholar
  58. 55.
    Cullis, A. F., H. Muirhead, M. F. Perutz, M. G. Rossmann and A. C. T. North: The Structure of Haemoglobin. IX. A Three-dimensional Fourier Synthesis at 5.5 A Resolution: Description of the Structure. Proc. Roy. Soc. (London) A 265, 161 (1962).Google Scholar
  59. 56.
    Curtain, C. C.: A Structural Study of Abnormal Haemoglobins Occurring in New Guinea. Austral. J. Exp. Biol. Med. Sci. 42, 89 (1964).Google Scholar
  60. 57.
    Dance, N., E. R. Huehns and G. H. Beaven: The Abnormal Haemoglobins in Haemoglobin-H Disease. Biochemic. J. 87, 240 (1963).Google Scholar
  61. 58.
    Dance, N., E. R. Huehns and E. M. Shooter: The Chemical Investigation of Haemoglobins Geristol and GBristol/C. Biochim. Biophys. Acta 86, 144 (1964).Google Scholar
  62. 59.
    Dance, N., E. R. Huehns and E. M. Shooter: Personal communication.Google Scholar
  63. 60.
    Diamond, J. M. and G. Braunitzer: α-Chain of Rabbit Haemoglobin. Nature 194, 1287 (1962).Google Scholar
  64. 61.
    Dintzis, H. M.: Assembly of the Peptide Chains of Hemoglobin. Proc. Nat. Acad. Sci. (USA) 47, 247 (1961).Google Scholar
  65. 62.
    Edmundson, A. B.: Amino-acid Sequence of Sperm Whale Myoglobin. Nature 205, 883 (1965).Google Scholar
  66. 63.
    Ehrenstein, G. v., B. Weisblum and S. Benzer: The Function of sRNA as Amino Acid Adaptor in the Synthesis of Hemoglobin. Proc. Nat. Acad. Sci. (USA) 49, 669 (1963).Google Scholar
  67. 64.
    Epstein, C. J., R. F. Goldberger, D. M. Young and C. B. Anfinsen: A Study of the Factors Influencing the Rate and Extent of Enzymic Reactivation during Reoxidation of Reduced Ribonuclease. Arch. Biochem. Biophys. Suppl. 1, 223 (1962).Google Scholar
  68. 65.
    Evans, J. V., J. W. B. King, B. L. Cohen, H. Harris and F. L. Warren: Genetics of Haemoglobin and Blood Potassium Differences in Sheep. Nature 178, 849 (1956).Google Scholar
  69. 66.
    Fessas, Ph. and D. Loukopoulos: Alpha-Chain of Human Hemoglobin: Occurrence in vivo. Science 143, 590 (1964).Google Scholar
  70. 67.
    Fessas, Ph., G. Stamatoyannopoulos and A. Karaklis: Hemoglobin “Pylos”: Study of a Hemoglobinopathy Resembling Thalassemia in the Heterozygous, Homozygous and Double Heterozygous State. Blood 19, 1 (1962).Google Scholar
  71. 68.
    Field, E. O. and J. R. P. O’Brien: Dissociation of Human Haemoglobin at Low pH. Biochem. J. 60, 656 (1955).Google Scholar
  72. 69.
    Gammack, D. B., E. R. Huehns, H. Lehmann and E. M. Shooter: The Abnormal Polypeptide Chains in a Number of Haemoglobin Variants. Acta Genet. Statist. Med. 11, 1 (1961).Google Scholar
  73. 70.
    Gammack, D. B., E. R. Huehns, E. M. Shooter and P. S. Gerald: Identification of the Abnormal Polypeptide Chain of Haemoglobin GIb. J. Mol. Biol. 2, 372 (1960).Google Scholar
  74. 71.
    Gerald, P. S.: Starch Electrophoresis of Hemoglobin: Findings in Thalassemia Syndromes. In: Conference on Hemoglobin, p. 212. Washington, D. C.: Nat. Acad. Sei., Nat. Research Council, Publication No. 557, 1958.Google Scholar
  75. 72.
    Gerald, P. S. and M. L. Efron: Chemical Studies of Several Varieties ot Hb M. Proc. Nat. Acad. Sei. (USA) 47, 1758 (1961).Google Scholar
  76. 73.
    Gerald, P. S. and V. M. Ingram: Recommendations for the Nomenclature of Hemoglobins. J. Biol. Chem. 236, 2155 (1961).Google Scholar
  77. 74.
    Gierer, A.: Function of Aggregated Reticulocyte Ribosomes in Protein Synthesis. J. Mol. Biol. 6, 148 (1963).Google Scholar
  78. 75.
    Goldstein, J., G. Guidotti, W. Königsberg and R. J. Hill: The Amino Acid Sequence around the “Reactive Sulfhydryl” Group of the ß Chain from Human Hemoglobin. J. Biol. Chem. 236, PC 77 (1961).Google Scholar
  79. 76.
    Gottlieb, A. J., A. Restrepo and H. A. Itano: HbjMedellin: Chemical and Genetic Study. Federat. Proc. (Amer. Soc. Exp. Biol.) 23, 172 (1964).Google Scholar
  80. 77.
    Granick, S. and R. D. Levere: Heme Synthesis in Erythroid Cells. Progr. Hematology 4, 1 (1964).Google Scholar
  81. 78.
    Gratzer, W. B. and A. C. Allison: Multiple Haemoglobins. Biol. Rev. 35, 459 (1960).Google Scholar
  82. 79.
    Guidotti, G. and L. C. Craig: Dialysis Studies. VIII. The Behavior of Solutes which Associate. Proc. Nat. Acad. Sei. (USA) 50, 46 (1963).Google Scholar
  83. 80.
    Guidotti, G. and W. Königsberg: The Characterization of Modified Human Hemoglobin. I. Reaction with Iodoacetamide and N-Ethylmaleimide. J. Biol. Chem. 239, 1474 (1964).Google Scholar
  84. 81.
    Guidotti, G. and W. Konigsberg: Personal communication.Google Scholar
  85. 82.
    Guidotti, G., W. Konigsberg and L. C. Craig: On the Dissociation of Normal Adult Human Hemoglobin. Proc. Nat. Acad. Sei. (USA) 50, 774 (1963).Google Scholar
  86. 83.
    Gutter, F. J., H. A. Sober and E. A. Peterson: The Effect of Mercapto-ethanol and Urea on the Molecular Weight of Hemoglobin. Arch. Biochem. Biophys. 62, 427 (1956).Google Scholar
  87. 84.
    Hanada, M. and D. L. Rucknagel: The Characterization of Hemoglobin Shimonoseki. Blood 24, 624 (1964).Google Scholar
  88. 85.
    Hanada, M., D. L. Rucknagel and M. M. Cohen: Hemoglobin Abnormalities Characterized by Amino Acid Substitutions in the Sixth Tryptic Peptide of the a-Chain. Abstracts, Amer. Soc. Human Genetics. New York, July 1963.Google Scholar
  89. 86.
    Hasserodt, U. and J. (R.) Vinograd: Dissociation of Human Carbon-monoxyhemoglobin at High pH. Proc. Nat. Acad. Sci. (USA) 45, 12 (1959).Google Scholar
  90. 87.
    Haurowitz, F.: Das Gleichgewicht zwischen Hämoglobin und Sauerstoff. Z. physiol. Chem. 254, 266 (1938).Google Scholar
  91. 88.
    Hayashi, H.: A Simple Method for the Fractionation of Globins into their α- and β Chains. J. Biochemistry (Tokyo) 50, 70 (1961).Google Scholar
  92. 88a.
    Heller, P.: The Molecular Basis of the Pathogenicity of Abnormal Hemoglobins. Some Recent Developments. Blood 25, no (1965).Google Scholar
  93. 89.
    Hermans, J., Jr.: Normal and Abnormal Tyrosine Side-chains in Various Heme Proteins. Biochemistry 1, 193 (1962).Google Scholar
  94. 90.
    Hermans, J., Jr.: Spectrophotometric Titration Curves of Human Hemoglobin and Its Carboxypeptidase Digests. Biochemistry 2, 453 (1963).Google Scholar
  95. 91.
    Hill, R. J.: Personal communication. gia.Google Scholar
  96. 91a.
    Hill, R. J.: Discussion following Reference 134 a.Google Scholar
  97. 92.
    Hill, R. J. and W. Konigsberg: The Structure of Human Hemoglobin. IV. The Chymotryptic Digestion of the oc Chain of Human Hemoglobin. J. Biol. Chem. 237, 3151 (1962).Google Scholar
  98. 93.
    Hill, R. J., W. Konigsberg, G. Guidotti and L. C. Craig: The Structure of Human Hemoglobin. I. The Separation of the oc and ß Chains and their Amino Acid Composition. J. Biol. Chem. 237, 1549 (1962).Google Scholar
  99. 94.
    Hill, R. J. and A. P. Kraus: Studies on the Amino Acid Sequence of HbA2. Federat. Proc. (Amer. Soc. Exp. Biol.) 22, 597 (1963).Google Scholar
  100. 95.
    Hill, R. L.: The Abnormal Human Hemoglobins. Lab. Invest. 10, 1012 (1961).Google Scholar
  101. 96.
    Hill, R. L., J. Buettner-Janusch and V. Buettner-Janusch: Evolution of Hemoglobin in Primates. Proc. Nat. Acad. Sei. (USA) 50, 885 (1963).Google Scholar
  102. 97.
    Hill, R. L., R. T. Swenson and H. C. Schwartz: Characterization of a Chemical Abnormality in Hemoglobin G. J. Biol. Chem. 235, 3182 (1960).Google Scholar
  103. 98.
    Hilschmann, N. und G. Braunitzer: Über Hämoglobine. XII. Die Sequenzanalyse des Humanhämoglobins. Die Analyse des ß-Core-Peptids und des Peptids oc Tp 6. Z. physiol. Chem. 335, 21 (1964).Google Scholar
  104. 99.
    Holmquist, W. R.: Personal communication.Google Scholar
  105. 100.
    Holmquist, W. R. and W. A. Schroeder: Properties and Partial Characterization of Adult Human Hemoglobin AIC. Biochem. Biophys. Acta 82, 639 (1964).Google Scholar
  106. 101.
    Horton, B. F. and T. H. J. Huisman: Linkages of the ß-Chain and ¿-Chain Structural Genes of Human Hemoglobins. Amer. J. Human Genet. 15, 394 (1963).Google Scholar
  107. 101.
    Horton, B. F. and T. H. J. Huisman: Linkages of the ß-Chain and ¿-Chain Structural Genes of Human Hemoglobins. Amer. J. Human Genet. 15, 394 (1963).Google Scholar
  108. 102.
    Horton, B. (F.), R. A. Payne, M. T. Bridges and T. H. J. Huisman: Studies on an Abnormal Minor Hemoglobin Component (Hb-B2). Clin. Chim. Acta 6, 246 (1961).Google Scholar
  109. 103.
    Horton, B. F., R. B. Thompson, A. M. Dozy, C. M. Nechtman, E. Nichols and T. H. J. Huisman: Inhomogeneity of Hemoglobin. VI. The Minor Hemoglobin Components of Cord Blood. Blood 20, 302 (1962).Google Scholar
  110. 104.
    Huehns, E. R., G. H. Beaven and B. L. Stevens: Recombination Studies on Haemoglobin at Neutral pH. Biochemie. J. 92, 440 (1964).Google Scholar
  111. 105.
    Huehns, E. R., G. H. Beaven and B. L. Stevens: Reaction of Haemoglobin aA with Haemoglobin β4A, γ4F, and δA2. Biochemie. J. 92, 444 (1964).Google Scholar
  112. 106.
    Huehns, E. R., A. Buchanan, P. Barkhan, P. E. Crome and P. L. Hollison: Personal communication.Google Scholar
  113. 107.
    Huehns, E. R., H. Hartman, F. Hecht and A. G. Motulsky: Personal communication.Google Scholar
  114. 108.
    Huehns, E. R. and E. M. Shooter: Polypeptide Chains of Haemoglobin A2. Nature 189, 918 (1961).Google Scholar
  115. 109.
    Huehns, E. R. and E. M. Shooter: Reaction of Haemoglobin aA with Haemoglobin H. Nature 193, 1083 (1962).Google Scholar
  116. 110.
    Huehns, E. R. and E. M. Shooter: Haemoglobin. Science Progr. 52, 353 (1964).Google Scholar
  117. 111.
    Huisman, T. H. J.: Genetic Aspects of Two Different Minor Haemoglobin Components Found in Cord Blood Samples of Negro Babies. Nature 188, 589 (1960).Google Scholar
  118. 112.
    Huisman, T. H. J.: Normal and Abnormal Human Hemoglobins. Adv. Clin. Chem. 6, 231 (1963).Google Scholar
  119. 113.
    Huisman, T. H. J.: Personal communication.Google Scholar
  120. 114.
    Huisman, T. H. J. and A. M. Dozy: Studies on the Heterogeneity of Hemoglobin. IV. Chromatographic Behavior of Different Human Hemoglobins on Anion-exchange Cellulose (DEAE-cellulose). J. Chromatogr. 7, 180 (1962).Google Scholar
  121. 115.
    Huisman, T. H. J. and B. F. Horton: Studies on the Heterogeneity of Hemoglobin. VIII. Chromatographic and Electrophoretic Investigations of Various Minor Hemoglobin Fractions Present in Normal and in vitro Modified Red Blood Cell Hemolysates. J. Chromatogr. (in press).Google Scholar
  122. 116.
    Huisman, T. H. J. and R. C. Lee: Two δ-Chain Abnormal Hemoglobins in One Individual. (To be published.)Google Scholar
  123. 117.
    Huisman, T. H. J. and C. A. Meyering: Studies on the Heterogeneity of Hemoglobin. I. The Heterogeneity of Different Human Hemoglobin Types in Carboxymethylcellulose and in Amberlite IRC-50 Chromatography: Qualitative Aspects. Clin. Chim. Acta 5, 103 (1960).Google Scholar
  124. 118.
    Huisman, T. H. J. and V. P. Sydenstricker: Difference in Gross Structure of two Electrophoretically Identical “Minor” Haemoglobin Components. Nature 193, 489 (1962).Google Scholar
  125. 119.
    Huisman, T. H. J., G. van Vliet and T. Sebens: Sheep Haemoglobins. Nature 182, 171 (1958).Google Scholar
  126. 120.
    Hunt, J. A.: Identity of the oc-Chains of Adult and Foetal Human Haemoglobins. Nature 183, 1373 (1959).Google Scholar
  127. 121.
    Hunt, J. A. and V. M. Ingram: Allelomorphism and the Chemical Differences of the Human Haemoglobins A, S and C. Nature 181, 1062 (1958).Google Scholar
  128. 122.
    Hunt, J. A. and V. M. Ingram: Abnormal Human Haemoglobins. IV. The Chemical Difference between Normal Human Haemoglobin and Haemoglobin C. Biochim. Biophys. Acta 42, 409 (1960).Google Scholar
  129. 123.
    Hunt, J. A. and V. M. Ingram: Abnormal Human Haemoglobins. VI. Ihe Chemical Difference between Haemoglobins A and E. Biochim. Biophys. Acta 49, 520 (1961).Google Scholar
  130. 124.
    Hunt, J. A. and H. Lehmann: Haemoglobin “Bart’s”: a Foetal Haemoglobin without ¿x-Chains. Nature 184, 872 (1959).Google Scholar
  131. 125.
    Huntsman, R. G., M. Hall, H. Lehmann and P. K. Sukumaran: A Second and a Third Abnormal Haemoglobin in Norfolk. Haemoglobin GNorfolk and Haemoglobin DNorfolk. Brit. Med. J. 1963, I, 720.Google Scholar
  132. 126.
    Hutton, J. J., J. Bishop, R. Schweet and E. S. Russell: Hemoglobin Inheritance in Inbred Mouse Strains. II. Genetic Studies. Proc. Nat. Acad. Sci. (USA) 48, 1718 (1962).Google Scholar
  133. 127.
    Ingram, V. M.: A Specific Chemical Difference between the Globins of Normal. Human and Sickle-cell Anaemia Haemoglobin. Nature 178, 792 (1956).Google Scholar
  134. 128.
    Ingram, V. M.: Gene Mutations in Human Haemoglobin: The Chemical Difference Between Normal and Sickle Cell Haemoglobin. Nature 180, 326 (1957).Google Scholar
  135. 129.
    Ingram, V. M.: Abnormal Human Haemoglobins. III. The Chemical Difference between Normal and Sickle Cell Haemoglobins. Biochim. Biophys. Acta 36, 402 (1959).Google Scholar
  136. 130.
    Ingram, V. M.: Hemoglobin and Its Abnormalities. Springfield, Ill.: Charles C. Thomas. 1961.Google Scholar
  137. 131.
    Ingram, V. M.: The Hemoglobins in Genetics and Evolution. New York: Columbia Univ. Press. 1963.Google Scholar
  138. 132.
    Itano, H. A.: The Human Hemoglobins: Their Properties and Genetic Control. Adv. Protein Chem. 12, 215 (1957).Google Scholar
  139. 133.
    Itano, H. A. and E. (A.) Robinson: Electrophoretic Separation of Intermediate Compounds in Two Reactions of Ferrihemoglobin. Biochim. Biophys. Acta 29, 545 (1958).Google Scholar
  140. 134.
    Itano, H. A. and E. (A.) Robinson: Genetic Control of the α- and β-Chains of Hemoglobin. Proc. Nat. Acad. Sci. (USA) 46, 1492 (1960).Google Scholar
  141. 134a.
    Itano, H. A., E. A. Robinson and A. J. Gottlieb: Dissociation and Association of Hemoglobin Subunits. In: Subunit Structure of Proteins. Biochemical and Genetic Aspects. Brookhaven Sympos. Biol., No. 17, p. 194. Washington: Office of Technical Serv., Dept. Commerce. 1964.Google Scholar
  142. 135.
    Itano, H. A. and S. J. Singer: On Dissociation and Recombination of Humaa Adult Hemoglobins A, S, and C. Proc. Nat. Acad. Sei. (USA) 44, 522 (1958).Google Scholar
  143. 136.
    Itano, H. A., S. J. Singer and E. (A.) Robinson: Chemical and Genetica! Units of the Haemoglobin Molecule. Ciba Foundation Symp., Biochemistry of Human Genetics, p. 96. Boston: Little, Brown & Co. 1959.Google Scholar
  144. 137.
    Jones, R. T.: Chromatographic and Chemical Studies of Some Abnormal Human Hemoglobins and Some Minor Hemoglobin Components. Ph. D. Thesis, Calif. Instit. of Technology, Pasadena, 1961.Google Scholar
  145. 138.
    Jones, R. T.: Structural Studies of Aminoethylated Hemoglobins by Automatic Peptide Chromatography. Cold Spring Harbor Sympos. Quant. Biol. 29, 297 (1964).Google Scholar
  146. 139.
    Jones, R. T., R. D. Coleman and P. Heller: The Chemical Structure of Miwate (MKankakee). Federat. Proc. (Amer. Soc. Exp. Biol.) 23, 173 (1964).Google Scholar
  147. 140.
    Jones, R. T. and R. L. Hill: Personal communication.Google Scholar
  148. 141.
    Jones, R. T., R. D. Koler and R. Lisker: The Chemical Structure of Hemoglobin Mexico by Automatic Peptide Chromatography and Subunit Hybridization. Clin. Res. 11, 105 (1963).Google Scholar
  149. 142.
    Jones, R. T. and W. A. Schroeder: Chromatography of Human Hemoglobin. Factors influencing Chromatography and Differentiation of Similar Hemoglobins. J. Chromatogr. 10, 421 (1963).Google Scholar
  150. 143.
    Jones, R. T. and W. A. Schroeder: Chemical Characterization and Subunit Hybridization of Human Hemoglobin H and Associated Compounds. Biochemistry 2, 1357 (1963).Google Scholar
  151. 144.
    Jones, R. T. and W. A. Schroeder: Unpublished.Google Scholar
  152. 145.
    Jones, R. T., W. A. Schroeder, J. E. Balog and J. R. Vinograd: Gross Structure of Hemoglobin H. J. Amer. Chem. Soc. 81, 3161 (1959).Google Scholar
  153. 146.
    Jones, R. T., W. A. Schroeder and J. R. Vinograd: Identity of the ot Chains of Hemoglobins A and F. J. Amer. Chem. Soc. 81, 4749 (1959).Google Scholar
  154. 147.
    Jonxis, J. H. P. and J. F. Delafresnaye (Edit.): Abnormal Haemoglobins - A Symposium. Springfield, Ill.: Charles C. Thomas. 1959.Google Scholar
  155. 148.
    Karlson, P.: Introduction to Modern Biochemistry. (Translated by C. H. Doering.) New York: Academic Press. 1963.Google Scholar
  156. 149.
    Karpatkin, S.: Globin Synthesis in Human Reticulocytes. J. Lab. Clin. Med. 62, 121 (1963).Google Scholar
  157. 150.
    Kendrew, J. C.: Side-chain Interactions in Myoglobin. In: Enzyme Models and Enzyme Structure. Brookhaven Symp. in Biol., No. 15, p. 216 (1962). Washington: Office of Technical Serv., Dept. Commerce. 1962.Google Scholar
  158. 151.
    Kendrew, J. C., R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, D. C. Phillips and V. C. Shore: Structure of Myoglobin. A Three-dimensional Fourier Synthesis at 2 A Resolution. Nature 185, 422 (1960).Google Scholar
  159. 152.
    Kersten, H. G. and E. Kleihauer: Hemoglobin M Cologne, a New Hemoglobin Variant. The Differential Diagnosis of Cyanosis. Med. Welt 1964, 1607 [Chem. Abstr. 61, 10901 (1964)].Google Scholar
  160. 153.
    Kirshner, A. G. and C. Tanford: The Dissociation of Hemoglobin by Inorganic Salts. Biochemistry 3, 291 (1964).Google Scholar
  161. 154.
    Konagaya, S.: N-Terminal Amino Acid Sequences of Hemoglobin of Blue- White Dolphin (Prodelphinus coeruleo-albus). J. Biochemistry (Tokyo) 54, 189 (1963).Google Scholar
  162. 155.
    Konigsberg, W.: The Reaction of Hemoglobin with a Bifunctional Maleimide Derivative. Federat. Proc. (Amer. Soc. Exp. Biol.) 23, 173 (1964).Google Scholar
  163. 156.
    Konigsberg, W., J. Goldstein and R. J. Hill: The Structure of Human Hemoglobin. VII. The Digestion of the ß Chain of Human Hemoglobin with Pepsin. J. Biol. Chem. 238, 2028 (1963).Google Scholar
  164. 157.
    Kraus, L. M.: Personal communication.Google Scholar
  165. 158.
    Kunkel, H. G. and G. Wallenius: New Hemoglobin in Normal Adult Blood. Science 122, 288 (1955).Google Scholar
  166. 159.
    Lehmann, H. and J. A. M. Ager: The Hemoglobinopathies and Thalassemia. In: J. B. Stanbury, J. B. Wyngaarden and D. S. Frederickson (Edit.), The Metabolic Basis of Inherited Disease, p. 1086. New York: McGraw-Hill. 1960.Google Scholar
  167. 160.
    Lehmann, H., D. Beale and F. S. Boi-Doku: Haemoglobin GAccra. Nature 203, 363 (1964).Google Scholar
  168. 161.
    Liddell, J., D. Brown, D. Beale, H. Lehmann and R. G. Huntsman: A New Haemoglobin Ja Oxford Found during a Survey of an English Population. Nature 204, 269 (1964).Google Scholar
  169. 162.
    Manwell, C.: Comparative Physiology: Blood Pigments. Annu. Rev. Physiol. 22, 191 (1960).Google Scholar
  170. 163.
    Margoliash, E.: Porphyrins and Hemoproteins. Annu. Rev. Biochem. 30, 549 (1961).Google Scholar
  171. 164.
    Marks, P. A., E. R. Burka and D. Schlessinger: Protein Synthesis in Erythroid Cells. I. Reticulocyte Ribosomes Active in Stimulating Amino Acid Incorporation. Proc. Nat. Acad. Sei. (USA) 48, 2163 (1962).Google Scholar
  172. 165.
    Mathias, A. P., R. Williamson, H. E. Huxley and S. Page: Occurrence and Function of Polysomes in Rabbit Reticulocytes. J. Mol. Biol. 9, 154 (1964).Google Scholar
  173. 166.
    Matsuda, G., R. Gehring-Müller und G. Braunitzer: Die vollständige Sequenz der α-Kette der langsamen Komponente des Pferdehämoglobins. Biochem. Z. 338, 669 (1963).Google Scholar
  174. 167.
    Matsuda, G., R. T. Jones and W. A. Schroeder: Characterization of Hemoglobin A from Human Umbilical Cord Blood. Biochim. Biophys. Acta 82, 180 (1964).Google Scholar
  175. 168.
    Minnich, V., J.K. Cordonnier, W. J. Williams and C. V. Moore: Alpha, Beta and Gamma Hemoglobin Polypeptide Chains During the Neonatal Period with Description of a Fetal Form of Hemoglobin D α St. Louis. Blood 19, 137 (1962).Google Scholar
  176. 169.
    Miyagi, T., I. Iuchi, S. Shibata, I. Takeda and A. Tamura: Possible Amino Acid Substitution in the a Chain (α87 try) of HbMiwate- Acta Haem. Jap. 26, 538 (1963).Google Scholar
  177. 170.
    Morris, A. J.: Terminal Stages in the Biosynthesis of Haemoglobin. The Release of Protein from Reticulocyte Ribosomes. Biochem. J. 91, 611 (1964).Google Scholar
  178. 171.
    Morrison, M. and J. L. Cook: Chromatographic Fractionation of Normal Adult Oxyhemoglobin. Science 122, 920 (1955).Google Scholar
  179. 172.
    Muirhead, H. and M. F. Perutz: Structure of Haemoglobin. A Three- Dimensional Fourier Synthesis of Reduced Human Haemoglobin at 5.5 Ä Resolution. Nature 199, 633 (1963).Google Scholar
  180. 173.
    Muller, C. J.: Molecular Evolution. Assen: Van Gorcum. 1961.Google Scholar
  181. 174.
    Muller, C. J. and S. Kingma: Hemoglobin Zürich: α2A β263Arg. Biochim. Biophys. Acta 50, 595 (1961).Google Scholar
  182. 175.
    Murayama, M.: Chemical Difference between Normal Human Haemoglobin and Haemoglobin-I. Nature 196, 276 (1962).Google Scholar
  183. 176.
    Murayama, M.: A Molecular Mechanism of Sickled Erythrocyte Formation. Nature 202, 258 (1964).Google Scholar
  184. 177.
    Naiman, J. L. and P. S. Gerald: Fetal Hemoglobin: Improved Separation by a Modified Agar Gel Electrophoresis. J. Lab. Clin. Med. 61, 508 (1963).Google Scholar
  185. 177a.
    Nance, W. E.: Genetic Control of Hemoglobin Synthesis. Science 141, 123. (1963).Google Scholar
  186. 178.
    Naughton, M. A. and H. M. Dintzis: Sequential Biosynthesis of the Protein. Chains of Hemoglobin. Proc. Nat. Acad. Sci. (USA) 48, 1822 (1962).Google Scholar
  187. 179.
    Nechtman, C. M. and T. H. J. Huisman: Comparative Studies of OxygerL Equilibria of Human Adult and Cord Blood Red Cell Hemolyzates and Suspensions. Clin. Chim. Acta 10, 165 (1964).Google Scholar
  188. 180.
    Neel, J. V.: The Genetics of Human Haemoglobin Differences: Problems and Perspectives. Ann. Human Genet. 21, 1 (1956/57).Google Scholar
  189. 181.
    O’Gorman, P., H. Lehmann, K- M. Allsopp and P. K. Sukumaran: Sickle-cell Haemoglobin K Disease. Brit. Med. J. 1963, II, 1381.Google Scholar
  190. 182.
    Ozawa, H. and K. Satake: On the Species Difference of N-Terminal Amino- Acid Sequence in Hemoglobin. I. J. Biochemistry (Tokyo) 42, 641 (1955).Google Scholar
  191. 183.
    Pauling, L., H. A. Itano, S. J. Singer and I. C. Wells: Sickle Cell Anemia,, a Molecular Disease. Science no, 543 (1949).Google Scholar
  192. 184.
    Pedersen, K. O. and K. J. I. Anderssen: Unpublished data, cited by T. Sved-berg and K. O. Pedersen, in: The Ultracentrifuge, p. 407. Oxford: Clarendon Press and New York: Johnson Reprint Corp. 1940.Google Scholar
  193. 185.
    Perutz, M. F.: Proteins and Nucleic Acids: Structure and Function. Amsterdam: Elsevier. 1962.Google Scholar
  194. 186.
    Perutz, M. F., W. Bolton, R. Diamond, H. Muirhead and H. C. Watson: Structure of Haemoglobin. An X-Ray Examination of Reduced Horse Haemoglobin. Nature 203, 687 (1964).Google Scholar
  195. 187.
    Perutz, M. F., A. M. Liquori and F. Finch: X-Ray and Solubility Studies of the Haemoglobin of Sickle-cell Anemia Patients. Nature 167, 929 (1951).Google Scholar
  196. 188.
    Perutz, M. F. and L. Mazzarella: A Preliminary X-Ray Analysis of Haemoglobin H. Nature 199, 639 (1963).Google Scholar
  197. 189.
    Perutz, M. F., I. F. Trotter, E. R. Howells and D. W. Green: An X-Ray Study of Reduced Human Haemoglobin. Acta Cristallogr. 8, 241 (1955).Google Scholar
  198. 189a.
    Philipps, G. R.: Haemoglobin Synthesis and Polysomes in Intact Reticulocytes. Nature 205, 567 (1965).Google Scholar
  199. 190.
    Pierce, L. E., C. E. Rath and K. McCoy: A New Hemoglobin Variant with Sickling Properties. New England J. Med. 268, 862 (1963).Google Scholar
  200. 191.
    Porter, R. R. and F. Sanger: The Free Amino Groups of Haemoglobins. Biochemic. J. 42, 287 (1948).Google Scholar
  201. 192.
    Raftery, M. A. and R. D. Cole: Tryptic Cleavage at Cysteinyl Peptide Bonds. Biochem. Biophys. Res. Comm. 10, 467 (1963).Google Scholar
  202. 193.
    Ranney, H. M.: Observations on the Inheritance of Sickle Cell Hemoglobin and Hemoglobin C. J. C.in. Invest. 33, 1634 (1954).Google Scholar
  203. 193a.
    Ranney, H. M., R. E. Benesch, R. Benesch and A. S. Jacobs: Hybridization of Deoxygenated Human Hemoglobin. Biochim. Biophys. Acta 74, 544 (1963).Google Scholar
  204. 194.
    Ranney, H. M., A. S. Jacobs, T. B. Bradley and F. A. Cordova: A “New” Variant of Haemoglobin A2 and its Segregation in a Family with Haemoglobin S. Nature 197, 164 (1963).Google Scholar
  205. 195.
    Ranney, H. M., C. O’Brien and A. S. Jacobs: An Abnormal Human Fetal Haemoglobin with an Abnormal Alpha-Polypeptide Chain. Nature 194, 743 (1962).Google Scholar
  206. 196.
    Raper, A. B., D. B. Gammack, E. R. Huehns and E. M. Shooter: Four Haemoglobins in One Individual. A Study of the Genetic Interaction of Hb-G and Hb-C. Brit. Med. J. 1960, II, 1257.Google Scholar
  207. 197.
    Rhinesmith, H. S., W. A. Schroeder and N. Martin: The N-Terminal Sequence of the β Chains of Normal Adult Human Hemoglobin. J. Amer. Chem. Soc. 80, 3358 (1958).Google Scholar
  208. 198.
    Rhinesmith, H. S., W. A. Schroeder and L. Pauling: A Quantitative Study of the Hydrolysis of Human Dinitrophenyl(DNP)globin: The Number and Kind of Polypeptide Chains in Normal Adult Human Hemoglobin. J. Amer. Chem. Soc. 79, 4682 (1957).Google Scholar
  209. 199.
    Rich, A., J. R. Warner and H. M. Goodman: The Structure and Function of Polyribosomes. Cold Spring Harbor Sympos. Quant. Biol. 28, 269 (1963).Google Scholar
  210. 200.
    Riggs, A.: The Binding of N-Ethylmaleimide by Human Hemoglobin and its Effect upon the Oxygen Equilibrium. J. Biol. Chem. 236, 1948 (1961).Google Scholar
  211. 201.
    Riggs, A.: The Amino Acid Composition of Some Mammalian Hemoglobins: Mouse, Guinea Pig and Elephant. J. Biol. Chem. 238, 2983 (1963).Google Scholar
  212. 202.
    Riggs, A. and M. Wells: The Identification of the Oxygenation-linked Acid Groups with the β-Chain of Human Hemoglobin. Federat. Proc. (Amer. Soc. Exp. Biol.) 19, 78 (1960).Google Scholar
  213. 203.
    Rossi-Fanelli, A., E. Antonini and A. Caputo: Studies on the Structure of Hemoglobin. I. Physico-chemical Properties of Human Globin. Biochem. Biophys. Acta 30, 608 (1958).Google Scholar
  214. 203a.
    Rossi-Fanelli, A., E. Antonini and A. Caputo: Studies on the Relations between Molecular and Functional Properties of Hemoglobin. I. The Effect of Salts on the Molecular Weight of Human Hemoglobin. J. Biol. Chem. 236, 391 (1961).Google Scholar
  215. 204.
    Hemoglobin and Myoglobin. Adv. Protein Chem. 19, 73 (1964).Google Scholar
  216. 205.
    Rucknagel, D. L. and J. V. Neel: The Hemoglobinopathies. Progr. Med. Genetics 1, 158 (1961).Google Scholar
  217. 206.
    Salomon, H., I. Tatarski, N. Dance, E. R. Huehns and E. M. Shooter: A New Hemoglobin Variant Found in a Beduin Tribe: Hemoglobin “Rambam”. Asian Congr. of Pathology, Israel, August 1964, and personal communication.Google Scholar
  218. 207.
    Satake, K. and S. Sasakawa: Studies on Hemoglobin. VIII. The Tryptic Peptides of Bovine Globin a. J. Biochemistry (Tokyo) 53, 201 (1963).Google Scholar
  219. 208.
    Schneider, R. G., F. Arat and M. E. Haggard: An Inhomogeneous Foetal Haemoglobin Variant (the Texas Type). Nature 202, 1346 (1964).Google Scholar
  220. 209.
    Schneider, R. G. and B. H. Bowman: Personal communication.Google Scholar
  221. 210.
    Schneider, R. G., M. E. Haggard, C. W. McNutt, J. E. Johnson, Jr., B. H. Bowman and D. R. Barnett: Hemoglobin GCoushatta: A New Variant in an American Indian Family. Science 143, 697 (1964).Google Scholar
  222. 211.
    Schneider, R. G. and R. T. Jones: Hemoglobin FTexas: Gamma-Chain Variant. Science 148, 240 (1965).Google Scholar
  223. 212.
    Schnek, A. G. and W. A. Schroeder: The Relation between the Minor Components of Whole Normal Human Adult Hemoglobin as Isolated by Chromatography and Starch Block Electrophoresis. J. Amer. Chem. Soc. 83, 1472 (1961).Google Scholar
  224. 213.
    Schroeder, W. A.: The Chemical Structure of the Normal Human Hemoglobins. Fortschr. Chem. organ. Naturstoffe 17, 322 (1959).Google Scholar
  225. 214.
    Schroeder, W. A.: The Hemoglobins. Annu. Rev. Biochem. 32, 301 (1963).Google Scholar
  226. 215.
    Schroeder, W. A., J. T. Cua, G. Matsuda and W. D. Fenninger: Hemoglobin Fj, an Acetyl-containing Hemoglobin. Biochim. Biophys. Acta 63, 532 (1962).Google Scholar
  227. 216.
    Schroeder, W. A., R. T. Jones, J. Cormick and K. McCalla: Chromatographic Separation of Peptides on Ion Exchange Resins. Separation of Peptides from Enzymatic Hydrolyzates of the oc, and y Chains of Human Hemoglobins. Anal. Chem. 34, 1570 (1962).Google Scholar
  228. 217.
    Schroeder, W. A., R. T. Jones, J. R. Shelton, J. B. Shelton, J. Cormick and K. McCalla: A Partial Sequence of the Amino Acid Residues in the y Chain of Human Hemoglobin F. Proc. Nat. Acad. Sei. (USA) 47, 811 (1961).Google Scholar
  229. 218.
    Schroeder, W. A. and G. Matsuda: N-Terminal Residues of Human Fetal Hemoglobin. J. Amer. Chem. Soc. 80, 1521 (1958).Google Scholar
  230. 219.
    Schroeder, W. A., J. R. Shelton, J. B. Shelton and J. Cormick: Further Sequences in the y Chain of Human Fetal Hemoglobin. Proc. Nat. Acad. Sei (USA) 48, 284 (1962).Google Scholar
  231. 220.
    Schroeder, W. A., J. R. Shelton, J. B. Shelton and J. Cormick: The Amino Acid Sequence of the oc Chain of Human Fetal Hemoglobin. Biochemistry 2, 1353 (1963).Google Scholar
  232. 221.
    Schroeder, W. A., J. R. Shelton, J. B. Shelton, J. Cormick and R. T. Jones: The Amino Acid Sequence of the y Chain of Human Fetal Hemoglobin. Biochemistry 2, 992 (1963).Google Scholar
  233. 222.
    Schwartz, H. C., R. Goudsmit, R. L. Hill, G. E. Cartwright and M. M. Wintrobe: The Biosynthesis of Hemoglobin from Iron, Protoporphyrin and Globin. J. Clin. Invest. 40, 188 (1961).Google Scholar
  234. 223.
    Shelton, J. R. and W. A. Schroeder: Further N-Terminal Sequences in Human Hemoglobins A, S and F by Edman’s Phenylthiohydantoin Method. J. Amer. Chem. Soc. 82, 3342 (1960).Google Scholar
  235. 224.
    Shibata, S., T. Miyaji, I. Iuchi, S. Ueda and I. Takeda: Hemoglobin Hikari (α2β261 asp NH2): A Fast Moving Hemoglobin Found in two Unrelated Japanese Families. Clin. Chim. Acta 10, 101 (1964).Google Scholar
  236. 225.
    Shooter, E. M., E. R. Skinner, J. P. Garlick and N. A. Barnicot: The Electrophoretic Characterization of Haemoglobin G and a New Minor Haemoglobin, G2. Brit. J. Haematol. 6, 140 (1960).Google Scholar
  237. 226.
    Silvestroni, E. and I. Bianco: A New Variant of Human Fetal Hemoglobin: HbFRoma. Blood 22, 545 (1963).Google Scholar
  238. 227.
    Simon, S. R. and W. H. Konigsberg: Investigation of Relations Among Molecular Structure, Oxygenation, and Dissociation with Cross-Linked Hemoglobin. Xth Congr. Int. Soc. Haematology, Stockholm, 1964, Abstr. L: 21.Google Scholar
  239. 228.
    Simpson, M. V.: Protein Biosynthesis. Annu. Rev. Biochem. 31, 333 (1962).Google Scholar
  240. 229.
    Singer, S. J. and H. A. Itano: On the Asymmetrical Dissociation of Human Hemoglobin. Proc. Nat. Acad. Sei. (USA) 45, 174 (1959).Google Scholar
  241. 230.
    Smith, D. B.: Some Aspects of the Structure of Hemoglobin. Canad. J. Biochem. Physiol. 42, 755 (1964), and personal communication.Google Scholar
  242. 231.
    Smith, D. B. and M. F. Perutz: Identification of the Black Sub-Unit of the Crystallographic Model of Horse Haemoglobin with the Valyl-Glutaminyl Polypeptide Chain. Nature 188, 406 (1960).Google Scholar
  243. 232.
    Smith, E. W. and J. V. Torbert: Study of Two Abnormal Hemoglobins with Evidence for a New Genetic Locus for Hemoglobin Formation. Bull. John Hopkins Hosp. 101, 38 (1958).Google Scholar
  244. 233.
    Spackman, D. H., W. H. Stein and S. Moore: Automatic Recording Apparatus for Use in the Chromatography of Amino Acids. Analyt. Chemistry 30, 1190 (1958).Google Scholar
  245. 234.
    St. George, R. C. C. and L. Pauling: The Combining Power of Hemoglobin for Alkyl Isocyanides, and the Nature of the Heme-Heme Interactions in Hemoglobin. Science 114, 629 (1951).Google Scholar
  246. 235.
    Stockell, A., M. F. Perutz, H. Muirhead and S. C. Glauser: A Comparison of Adult and Foetal Horse Haemoglobins. J. Mol. Biol. 3, 112 (1961).Google Scholar
  247. 236.
    Stretton, A. O. W.: Personal communication.Google Scholar
  248. 237.
    Swenson, R. T., R. L. Hill, H. Lehmann and R. T. S. Jim: A Chemical Abnormality in Hemoglobin G from Chinese Individuals. J. Biol. Chem. 237, 1517 (1962).Google Scholar
  249. 238.
    Symposium on Molecular Heterogeneity of Hemoglobin. Federat. Proc. (Amer. Soc. Exp. Biol.) 16, 740 (1957).Google Scholar
  250. 239.
    Tanford, C.: The Interpretation of Hydrogen Ion Titration Curves of Proteins. Adv. Protein Chem. 17, 69 (1962).Google Scholar
  251. 240.
    Tanford, C.: Cohesive Forces and Disruptive Reagents. In: Subunit Structure of Proteins. Biochemical and Genetic Aspects. Brookhaven Sympos. Biol. No 17, p. 154. Washington: Office of Technical Serv., Dept. Commerce. 1964.Google Scholar
  252. 241.
    Teale, F. W. J.: Cleavage of the Haem-Protein Link by Acid Methylethyl-ketone. Biochim. Biophys. Acta 35, 543 (1959).Google Scholar
  253. 242.
    Tschudy, D. P.: Porphyrin Biosynthesis. In: F. W. Sunderman and F. W. Sunderman, Jr. (Edit.), Hemoglobin, its Precursors and Metabolites, p. 159. Philadelphia: Lippincott. 1964.Google Scholar
  254. 243.
    Vinograd, J. R. and W. D. Hutchinson: Carbon-14 Labelled Hybrids of Haemoglobin. Nature 187, 216 (1960).Google Scholar
  255. 244.
    Vries, A. de, H. Joshua, H. Lehmann, R. L. Hill and R. E. Fellows: The First Observation of an Abnormal Haemoglobin in a Jewish Family: Haemoglobin Beilinson. Brit. J. Haematol. 9, 484 (1963).Google Scholar
  256. 245.
    Warner, J. R., P. M. Knopf and A. Rich: A Multiple Ribosomal Structure in Protein Synthesis. Proc. Nat. Acad. Sei. (USA) 49, 122 (1963).Google Scholar
  257. 246.
    Warner, J. R. and A. Rich: The Number of Soluble RNA Molecules on Reticulocyte Polyribosomes. Proc. Nat. Acad. Sei. (USA) 51, 1134 (1964).Google Scholar
  258. 246a.
    Warner, J. R. and A. Rich: The Number of Growing Polypeptide Chains on Reticulocyte Polyribosomes. J. Mol. Biol. 10, 202 (1964).Google Scholar
  259. 247.
    Weatherall, D. J. and C. Baglioni: A Fetal Hemoglobin Variant of Unusual Genetic Interest. Blood 20, 675 (1962).Google Scholar
  260. 248.
    White, J. C. and G. H. Beaven: Foetal Haemoglobin. Brit. Med. Bull. 15, 33 (1959).Google Scholar
  261. 249.
    Wilson, S. and D. B. Smith: Separation of the Valyl-leucyl-and Valyl-glutamyl-polypeptide Chains of Horse Globin by Fractional Precipitation and Column Chromatography. Canad. J. Biochem. Physiol. 37, 405 (1959).Google Scholar
  262. 250.
    Winterhalter, K. H.: Hemoglobin Synthesis. Pathol. Microbiol. 27, 508. (1964).Google Scholar
  263. 251.
    Winterhalter, K. H. and E. R. Huehns: Free Globin in Red Cells. J. Clin. Invest. 42, 995 (1963).Google Scholar
  264. 251a.
    Winterhalter, K. H. and E. R. Huehns: Preparation, Properties, and Specific Recombination of αβ-Globin Subunits. J. Biol. Chem. 239, 3699 (1964).Google Scholar
  265. 252.
    Winterhalter, K. H., E. R. Huehns and C. A. Finch: Free Globin in Normal Red Cells (quoted in 250).Google Scholar
  266. 253.
    Wintrobe, M. M.: Clinical Hematology. 5th ed. Philadelphia: Lea and Febiger. 1961.Google Scholar
  267. 254.
    Wood, W. B. and P. Berg: Studies on the “Messenger” Activity of RNA Synthesized with RNA Polymerase. Cold Spring Harbor Sympos. Quant. Biol. 28, 237 (1963).Google Scholar
  268. 255.
    Wyman, J., Jr.: Heme Proteins. Adv. Protein Chem. 4, 410 (1948).Google Scholar
  269. 256.
    Wyman, J., Jr.: Linked Functions and Reciprocal Effects in Hemoglobin: a Second Look. Adv. Protein Chem. 19, 223 (1964).Google Scholar
  270. 257.
    Yanofsky, C.: Discussion to W. Gilbert, Protein Synthesis in Escherichia coli. Cold Spring Harbor Sympos. Quant. Biol. 28, 287, 296 (1963).Google Scholar
  271. 258.
    Zuckerkandl, E.: Controller-Gene Diseases: The Operon Model as Applied to β-Thalassemia, Familial Fetal Hemoglobinemia and the Normal Switch from the Production of Fetal Hemoglobin to that of Adult Hemoglobin. J. Mol. Biol. 8, 128 (1964).Google Scholar
  272. 259.
    Zuckerkandl, E., R. T. Jones and L. Pauling: A Comparison of Anima Hemoglobins by Tryptic Peptide Pattern Analysis. Proc. Nat. Acad. Sei. 46, 1349 (1960).Google Scholar
  273. 260.
    Zuckerkandl, E. and L. Pauling: Molecular Disease, Evolution, and Genie Heterogeneity. In: M. Kasha and B. Pullman (Edit.), Horizons in Biochemistry, p. 189. New York: Academic Press. 1962.Google Scholar
  274. 261.
    Zuckerkandl, E. and W. A. Schroeder: Amino-Acid Composition of the Polypeptide Chains of Gorilla Haemoglobin. Nature 192, 984 (1961).Google Scholar

Copyright information

© Springer-Verlag/Wien 1965

Authors and Affiliations

  • Walter A. Schroeder
    • 1
  • Richard T. Jones
    • 2
  1. 1.PasadenaUSA
  2. 2.PortlandUSA

Personalised recommendations