Sulfonium compounds have been known to the organic chemist for almost 90 years. During most of this period they remained curiosities, well suited for didactic purposes to illustrate certain similarities to ether adducts and to organic ammonium compounds. Their exploration remained largely in the academic realm, because no unusual practical applications were found in spite of a steady increase in the attention paid to them. An event that occasionally puts a class of compounds into the center of interest is the recognition of its occurrence in nature and of special biological significance. The first natural sulfonium compound was discovered less than 20 years ago, somewhat by chance rather than as the climax of some coveted biochemical problem. Gradually, however, the unique role of sulfonium compounds, especially of S-adenosyl-methionine, in enzymatic group transfer reactions such as transmethylation was recognized, and the recent upsurge of interest has been exceptional.


Sulfonium Group Adenosine Triphosphate Methyl Iodide Methyl Donor Homoserine Lactone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamson, L. and S. K. Shapiro: Biosynthesis of Methionine; Partial Purification and Properties of Homocysteine Methyl transferase of Jack Bean Meal. Arch. Biochem. Biophys. 109, 376 (1965).Google Scholar
  2. 2.
    Artom, C. and N. H. Eudy: Methylation of Phosphatidyl Monomethylethanol-amine in Liver Preparations. Biochem. Biophys. Res. Comm. 15, 201 (1964).CrossRefGoogle Scholar
  3. 3.
    Atkinson, R. O. and F. Poppelsdorf: Sulfonium Derivatives of DL-Methionine and 5-(2-Methyl-thioethyl)hydantoin. J. Chem. Soc. (London) 1951, 1378.Google Scholar
  4. 4.
    Axelrod, J.: The Formation and Metabolism of Physiologically Active Compounds by N- and O-Methyltransferases. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 71. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  5. 5.
    Baddiley, J.: Adenine 5’-Deoxy-5’-methylthiopentoside ( Adenine Thiomethyl Pentoside ): A Proof of Structure and Synthesis. J. Chem. Soc. (London) 1951, 1348.Google Scholar
  6. 6.
    Baddiley, J., G. L. Cantoni and G. A. Jamieson: Structural Observations on “Active Methionine”. J. Chem. Soc. (London) 1953, 2662.Google Scholar
  7. 7.
    Baddiley, J., W. Frank, N. A, Hughes and J. Wieczorkowski: The Hydrolysis of Sulphonium Nucleosides and Glycosides by Alkali. J. Chem. Soc. (London) 1, 62, 1999.Google Scholar
  8. 8.
    Baddiley, J. and G. A. Jamieson: Synthesis of Active Methionine. J. Chem. Soc. (London) 1954, 4280.Google Scholar
  9. 9.
    Baddiley, J. and G. A. Jamieson: Synthesis of S-(5’-Deoxyadenosine-5’) -homocysteine, a Product from Enzymic Methylations Involving “Active Methionine”. J. Chem. Soc. (London) 1955, 1085.Google Scholar
  10. 10.
    Baernstein, H. D.: The Sulfur Distribution in Proteins. II. The Combined Methods for the Determination of Cystine, Methionine, and Sulfates in Hydriodic Acid Digests. J. Biol. Chem. 115, 33 (1936).Google Scholar
  11. 11.
    Baldessarini, R. J. and I. J. Kopin: Assay of Tissue Levels of S-Adenosyl-methionine. Analyt. Biochem. 6, 289 (1963).Google Scholar
  12. 12.
    Bennett, M. A.: The Replaceability of DL-Methionine in the Diet of the Albino Rat with DL-Methionine Sulfone and DL-Methionine Methylsulfonium Chloride. J. Biol. Chem. 141, 573 (1941).Google Scholar
  13. 13.
    Blau, N. F. and C. G. Stuckwisch: A New Synthesis of Dimethyl-β-propio-thetin Hydrochloride. J. Amer. Chem. Soc. 73, 2355 (1951).CrossRefGoogle Scholar
  14. 14.
    Blau, N. F. and C. G. Stuckwisch: The Conjugative Effect of the Dimethylsulfonium Group in an Aliphatic System. J. Organ. Chem. (USA) 22, 82 (1957).Google Scholar
  15. 15.
    Böhme, H. und P. Heller: Über β- und γ-Ketosulfonium-Salze und ihren Zerfall in wäßriger Lösung. Chem. Ber. 86, 443 (1953).CrossRefGoogle Scholar
  16. 16.
    Böhme, H. und P. Heller: Über α- und β-Sulfonylsulfonium-Salze. Chem. Ber. 86, 785 (1953).CrossRefGoogle Scholar
  17. 17.
    Böhme, H. und W. Krause: Über Diallkyl-phenacyl-sulfoniumsalze und ihre Spaltung mit wäßrigen Laugen. 1. Mitt. über Sulfoniumsalze. Chem. Ber. 82, 426 (1949).CrossRefGoogle Scholar
  18. 18.
    Borek, E. and P. R. Srinivasan: Alteration of the Macromolecular Structure of Nucleic Acids by Transmethylation. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 115. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  19. 19.
    Borsook, H. and J. W. Dubnoff: On the Role of Oxidation in the Methylation of Guanidoacetic Acid. J. Biol. Chem. 171, 363 (1947).Google Scholar
  20. 20.
    Bremer, J. and Y. Natori: Behavior of. some Selenium Compounds in Trans methylation. Biochim. Biophys. Acta 44, 367 (1960).Google Scholar
  21. 21.
    Brown, C. and E. A. Letts: On Dimethylthetine and its Derivatives. Trans. Roy. Soc. Edinburgh 28, 571 (1878).Google Scholar
  22. 22.
    Burr, M. and Di E. Koshland, Jr.: Use of “Reporter Groups” in Structure— Function Studies of Proteins. Proc. Nat. Acad. Sci. (USA) 52, 1017 (1964).CrossRefGoogle Scholar
  23. 23.
    Cantoni, G. L.: Methylation of Nicotinamide with a Soluble Enzyme System from Rat Liver. J. Biol. Chem. 189, 203 (1951).Google Scholar
  24. 24.
    Cantoni, G. L.: Synthesis and Transfer of the Labile Methyl Group. In: W. D. McElroy and B. Glass (Edit.), Phosphorus Metabolism, Vol.11, p. 129. Baltimore: Johns Hopkins Press. 1952.Google Scholar
  25. 25.
    Cantoni, G. L.: S-Adenosylmethionine; a New Intermediate Formed Enzymatically from L-Methionine and Adenosine triphosphate. J. Biol. Chem. 204, 403 (1953).Google Scholar
  26. 26.
    Cantoni, G. L.: S-Adenosylmethionine (AMe). In: D. Shemin (Edit.), Biochemical Preparations, Vol. V, p. 58. New York: Wiley. 1957.Google Scholar
  27. 27.
    Cantoni, G. L.: Preparation of S-Adenosylmethionine. In: S. P. Colowick and N. O. Kaplan (Edit.), Methods in Enzymology, Vol. III, p. 600. New York: Academic Press. 1957.CrossRefGoogle Scholar
  28. 28.
    Cantoni, G. L.: Onium Compounds and their Biological Significance. In: M. Florkin and H. S. Mason (Edit.), Comparative Biochemistry, Vol.1, p. 181. Amsterdam: Elsevier, 1960.Google Scholar
  29. 29.
    Cantoni, G. L.: S-Adenosylmethionine—Revisited. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 21. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  30. 30.
    Cantoni, G. L. and D. G. Anderson: Enzymatic Cleavage of Dimethyl-propiothetin by Polysiphonia lanosa J. Biol. Chem. 222, 171 (1956).Google Scholar
  31. 31.
    Cantoni, G. L. and J. Durell: Activation of Methionine for Transmethylation. II. The Methionine-activating Enzyme; the Mechanism of the Reaction. J. Biol. Chem. 225, 1033 (1957).Google Scholar
  32. 32.
    Carrara, G.: Sopra alcune tetine isomere. Gazz. chim. ital. 23, 493 (1893).Google Scholar
  33. 33.
    Cerwenka, E. A., Jr. and W. C. Cooper: Toxicology of Selenium and Tellurium and their Compounds. Arch. Environmental Health 3, 189 (1961).Google Scholar
  34. 34.
    Challenger, F.: Aspects of the Organic Chemistry of Sulphur. New York: Academic Press. 1959.Google Scholar
  35. 35.
    Challenger, F., R. Bywood, P. Thomas and B. J. Hayward: Studies on Biological Methylation. XVII. The Natural Occurrence and Chemical Reactions of some Thetins. Arch. Biochem. Biophys. 69, 514 (1957).CrossRefGoogle Scholar
  36. 36.
    Challenger, F. and B. J. Hayward: Occurrence of a Methylsulf onium Derivative of Methionine-(α-aminodimethyl-γ-butyrothetin) in Asparagus. Chem. and Ind. 1954, 729.Google Scholar
  37. 37.
    Challenger, F. and C. Higginbottom: The Production of Trimethylarsine by Penicillium brevicaule Biochem. J. 29, 1757 (1935).Google Scholar
  38. 38.
    Challenger, F. and H. D. Hollingworth: The Abnormal Hydrolysis of Methyl β-Methylthio- and β-Ethylthio-propionate. J. Chem. Soc. (London) 1959, 61.Google Scholar
  39. 39.
    Challenger, F., D. B. Lisle and P. B. Dransfield: Studies on Biological Methylation. XIV. The Formation of Trimethylarsine and Dimethyl Selenide in Mould Cultures from Methyl Sources Containing 14C. J. Chem. Soc. (London) 1954, 1760.Google Scholar
  40. 40.
    Challenger, F. and Y. C. Liu: Elimination of Methanethiol and Methyl Sulfide from Methylmercapto and Dimethylsulfonium Compounds by Molds. Ree. trav. chim. Pays-Bas 69, 334 (1950).CrossRefGoogle Scholar
  41. 41.
    Challenger, F. and M. I. Simpson: Biological Methylation. XII. Precursor of the Dimethylsulfide Evolved by Polysiphonia fastigiata J. Chem. Soc. (London) 1948, 1591.Google Scholar
  42. 42.
    Challenger, F. and J. M. Walshe: Methyl Mercaptan in Relation to Foetor Hepaticus. Biochem. J. 59, 372 (1955).Google Scholar
  43. 43.
    Crane, W. C. and H. N. Rydon: The Alkaline Fission of some 2-Substituted Dimethylethylsulphonium Iodides. J. Chem. Soc. (London) 1947, 766.Google Scholar
  44. 44.
    Dannley, R. L. and R. G. Taborsky: Synthesis of DL-S-Trifluoro-methyl-homocysteine (Trifluoromethylmethionine). J. Organ. Chem. (USA) 22, 1275 (1957).Google Scholar
  45. 45.
    Dransfield, P. B. and F. Challenger: Formation of Dimethylselenide in Mold Cultures in Presence of D- and L-Methionine. J. Chem. Soc. (London) 1955, 1153.Google Scholar
  46. 46.
    Dubnoff, J. W. and H. Borsook: Dimethylthetin and Dimethyl-β-propio-thetin in Methionine Synthesis. J. Biol. Chem. 176, 789 (1948).Google Scholar
  47. 47.
    Duerre, J. A. and F. Schlenk: Formation and Metabolism of S-Adenosyl-jL-homocysteine in Yeast. Arch. Biochem. Biophys. 96, 575 (1962).CrossRefGoogle Scholar
  48. 48.
    Durell, J., D. G. Anderson and G. L. Cantoni: The Synthesis of Methionine by Enzymic Transmethylation. I. Purification and Properties of Thetin Homocysteine Methylpherase. Biochim. Biophys. Acta 26, 270 (1957).CrossRefGoogle Scholar
  49. 49.
    Durell, J. and G. L. Cantoni: The Synthesis of Methionine by Enzymic Transmethylation. III. Mechanism of the Reversible Polymerization of Thetin-homocysteine Methylpherase and its Relation to the Mechanism of Methionine Synthesis. Biochim. Biophys. Acta 35, 515 (1959).CrossRefGoogle Scholar
  50. 50.
    Dyer, H. M.: Evidence of the Physiological Specificity of Methionine in Regard to the Methylthiol Group: The Synthesis of S-Ethylhomocysteine (Ethionine) and a Study of its Availability for Growth. J. Biol. Chem. 124, 519 (1938).Google Scholar
  51. 51.
    Farber, E., K. H. Shull, S. Yilla-Trevino, B. Lombardi and M. Thomas: Biochemical Pathology of Acute Hepatic Adenosine Triphosphate Deficiency. Nature 203, 34 (1964).CrossRefGoogle Scholar
  52. 52.
    Ferger, M. F. and V. du Vigneaud: Oxidation in vivo of the Methyl Groups of Choline, Betaine, Dimethylthetin, and Dimethyl-β-propiothetin. J. Biol. Chem. 185, 53 (1950).Google Scholar
  53. 53.
    Fisher, J. F. and M. F. Mallette: The Natural Occurrence of Ethionine in Bacteria. J. Gen. Physiol. 45, 1 (1961).CrossRefGoogle Scholar
  54. 54.
    Floyd, N. F. and T. F. Lavine: Isolation of Methionine from Protein Hydrolysates as the Methylsulfonium Salt. J. Biol. Chem. 207, 119 (1954).Google Scholar
  55. 55.
    Frank, W., J. Wieczorkowski, N. A. Hughes and J. Baddiley: The Alkali Hydrolysis of Sulphonium Nucleosides. Proc. Chem. Soc. (London) 1961, 449.Google Scholar
  56. 56.
    Fromm, H. J. and R. C. Nordlie: On the Purification and Kinetics of Rat Liver Thetin—Homocysteine Transme thy läse. Arch. Biochem. Biophys. 81, 363 (1959).Google Scholar
  57. 57.
    Goerdeler, J.: Methoden zur Herstellung und Umwandlung von Sulfonium-verbindungen. In: E. Müller (Edit.), Houben-Weyl, Methoden der organischen Chemie, Bd. 9, S. 171. Stuttgart: Thieme. 1955.Google Scholar
  58. 58.
    Greene, R. C.: Incorporation of the Carbon Chain of Methionine into Spermidine. J. Amer. Chem. Soc. 79, 3929 (1957).CrossRefGoogle Scholar
  59. 59.
    Greene, R. C.: Biosynthesis of Dime thy l-β-propio thetin. J. Biol. Chem. 237, 2251 (1962).Google Scholar
  60. 60.
    Greene, R. C. and N. B. Davis: Biosynthesis of S Methylmethionine in the Jack Bean. Biochim. Biophys. Acta 43, 360 (1960).Google Scholar
  61. 61.
    Gross, E. and B. Witkop: Selective Cleavage of the Methionyl Peptide Bonds in Ribonuclease with Cyanogen Bromide. J. Amer. Chem. Soc. 83, 1510 (1961).CrossRefGoogle Scholar
  62. 62.
    Gundlach, H. G., S. Moore and W. H. Stein: The Reaction of Iodoacetate with Methionine. J. Biol. Chem. 234, 1761 (1959).Google Scholar
  63. 63.
    Gundlach, H. G., W. H. Stein and S. Moore: The Nature of the Amino Acid Residues Involved in the Inactivation of Ribonuclease by Iodoacetate. J. Biol. Chem. 234, 1754 (1959).Google Scholar
  64. 64.
    Haagen-Smit, A. J., J. G. Kirchner, C. L. Deasy and A. N. Prater: Chemical Studies of Pineapple (Ananas sativus) II. Isolation and Identification of a Sulfur Containing Ester in Pineapple. J. Amer. Chem. Soc. 67, 1651 (1945).CrossRefGoogle Scholar
  65. 65.
    Haas, P.: The Liberation of Methyl Sulphide by Seaweed. Biochem. J. 29, 1297 (1935).Google Scholar
  66. 66.
    Haba, G. de la, G. A. Jamieson, S. H. Mudd and H. H. Richards: S Adenosylmethionine: The Relation of Configuration at the Sulfonium Center to Enzymatic Reactivity. J. Amer. Chem. Soc. 81, 3975 (1959).CrossRefGoogle Scholar
  67. 67.
    Hauser, C. R., S. W. Kantor and W. R. Brasen: Rearrangement of Benzyl Sulfides to Mercaptans and of Sulfonium Ions to Sulfides Involving the Aromatic Ring by Alkali Amides. J. Amer. Chem. Soc. 75, 2660 (1953).CrossRefGoogle Scholar
  68. 68.
    His, W.: Über das Stoffwechselprodukt des Pyridins. Arch. exp. Pathol. Pharmakol. 22, 253 (1887).Google Scholar
  69. 69.
    Ingold, G. K.: Structure and Mechanism in Organic Chemistry. Ithaca, N. Y.: Cornell Univ. Press. 1953.Google Scholar
  70. 70.
    Jaenicke, L. und C. Kutzbach: Folsäure und Folat-Enzyme. Fortschr. Chem. organ. Naturstoffe 21, 183 (1963).Google Scholar
  71. 71.
    Jamieson, G. A.: The Synthesis of 5,-Deoxy-5/-S-(3-methylthiopropylamine) sulfoniumadenosine (“Decarboxylated S-Adenosylmethionine”). J. Organ. Chem. (USA) 28, 2397 (1963).Google Scholar
  72. 72.
    Joshi, J. G. and P. Handler: Biosynthesis of Trigonelline. J. Biol. Chem. 235, 2981 (1960).Google Scholar
  73. 73.
    Kaneshiro, T. and J. H. Law: Phosphatidylcholine Synthesis in Agrobacterium tumefaciensJ. Biol. Chem. 239, 1705 (1964).Google Scholar
  74. 74.
    Kaplan, N. O.: The Pyridine Coenzymes. In: P. D. Boyer, H. Lardy and K. Myrbäck (Edit.), The Enzymes, Vol. 3 b, p. 105. New York: Academic Press, 1960.Google Scholar
  75. 75.
    Kaplan, N. O., S. P. Colowick and C. C. Barnes: Effect of Alkali on Diphosphopyridine Nucleotide. J. Biol. Chem. 191, 461 (1951).Google Scholar
  76. 76.
    Karrer, P., C. H. Eugster und D. K. Patel: Über Inhaltsstoffe einiger Equisetum Arten. Helv. Chim. Acta 32, 2397 (1949).CrossRefGoogle Scholar
  77. 77.
    Kiribuchi, T. and T. Yamanishi: Studies on the Flavor of Green Tea. IV. Dimethylsulfide and its Precursor. Agr. Biol. Chem. (Tokyo) 27, 56 (1963).Google Scholar
  78. 78.
    Klee, W. A.: Thetinhomocysteine Methylpherase: A Study in Molecular Organization. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 220. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  79. 79.
    Kuhn, R., L. Birkofer und F. W. Quackenbush: Jodometrische Titration von SH- Gruppen; Mikromethode zur Bestimmung von Cystein und Methionin in Proteinen. Ber. dtsch. chem. Ges. 72, 407 (1939).Google Scholar
  80. 80.
    Kuhn, R. und K. Henkel: Über die Senkung der Körpertemperatur durch Adenylthiomethylpentose. Z. physiol. Chem. 269, 41 (1941).CrossRefGoogle Scholar
  81. 81.
    Lavine, T. F. and N. F. Floyd: The Decomposition of Methionine in Sulfuric Acid. J. Biol. Chem. 207, 97 (1954).Google Scholar
  82. 82.
    Lavine, T. F., N. F. Floyd and M. S. Cammaroti: The Formation of Sulfonium Salts from Alcohols and Methionine in Sulfuric Acid. J. Biol. Chem. 207, 107 (1954).Google Scholar
  83. 83.
    Lavine, T. F., N. F. Floyd and M. S. Cammaroti: Decomposition of 5’ Methylthioadenosine. Biochem. Biophys. Res. Comm. 1, 156 (1959).CrossRefGoogle Scholar
  84. 84.
    Lawley, P. D. and P. Brookes: Further Studies on the Alkylation of Nucleic Acids and their Constituent Nucleotides. Biochem. J. 89, 127 (1963).Google Scholar
  85. 85.
    Lawson, W. B., E. Gross, C. M. Foltz and B. Witkop: Specific Cleavage of Methionyl Peptides. J. Amer. Chem. Soc. 83, 1509 (1961).CrossRefGoogle Scholar
  86. 86.
    Leaver, D. and F. Challenger: Biological Methylation. XVI. Alkyl MethyL Sulfides Evolved from the Urine of Dogs by Boiling Alkali. J. Chem. Soc. (London) 1957, 39.Google Scholar
  87. 87.
    Letts, E. A.: Action of Iodoacetic and Bromoacetic Ethyl Ether on Sulphide of Methyl. Trans. Roy. Soc. Edinburgh 28, 618 (1878).Google Scholar
  88. 88.
    Lieben, F.: Geschichte der physiologischen Chemie. Wien: Deuticke. 1935.Google Scholar
  89. 89.
    Lipmann, F.: Metabolie Generation and Utilization of Phosphate Bond Energy. Adv. Enzymology 1, 99 (1941).Google Scholar
  90. 90.
    Loerch, J. D. and M. F. Mallette: Ethionine Biosynthesis in EscherichiacoliArch. Biochem. Biophys. 103, 272 (1963).Google Scholar
  91. 91.
    McRorie, R. A., M. R. Glazener, C. G. Skinner and W. Shive: Microbiological Activity of the Methylsulfonium Derivative of Methionine. J. BioL Chem. 211, 489 (1954).Google Scholar
  92. 92.
    McRorie, R. A., G. L. Sutherland, M. S. Lewis, A. D. Barton, M. R. Glazener and W. Shive: Isolation and Identification of a Naturally Occurring Analog of Methionine. J. Amer. Chem. Soc. 76, 115 (1954).CrossRefGoogle Scholar
  93. 93.
    Mamalis, P. and H. N. Rydon: The Alkaline Fission of 2-Aroyloxyethyl-dimethylsulphonium Iodides: The Evaluation of Hammett’s Substituent Constants for some ortho-Substituents. J. Chem. Soc. (London) 1955, 1049.Google Scholar
  94. 94.
    Mann, J. D., H. M. Fales and S. H. Mudd: Alkaloids and Plant Metabolism. VI. O-Methylation in vitroof Norbelladine, a Precursor of Amarvllidaceae Alkaloids. J. Biol. Chem. 238, 3820 (1963).Google Scholar
  95. 95.
    Maw, G. A.: Thetin—Homocysteine Transmethylase. Biochem. J. 63, 116 (1956).Google Scholar
  96. 96.
    Maw, G. A.: Thetin—Homocysteine Transmethylase. Some Further Characteristics of the Enzyme. Biochem. J. 70, 168 (1958).Google Scholar
  97. 97.
    Maw, G. A. and V. du Vigneaud: An Investigation of the Biological Behavior of the Sulfur Analogue of Choline. J. Biol. Chem. 176, 1029 (1948).Google Scholar
  98. 98.
    Maw, G. A. and V. du Vigneaud: Compounds Related to Dimethylthetin as Sources of Labile Methyl Groups. J. Biol. Chem. 176, 1037 (1948).Google Scholar
  99. 99.
    Motohiro, T.: Petroleum Odor in Canned Chum Salmon. Mem. Fac. Fisheries Hokkaido Univ. 10, no. 1 (1962) [Chem. Abstr. 59, 12090 (1963)].Google Scholar
  100. 100.
    Mudd, S. H.: Enzymatic Cleavage of S-Adenosylmethionine. J. Biol. Chem. 234. 87 (1959).Google Scholar
  101. 101.
    Mudd, S. H.: The Mechanism of the Enzymatic Cleavage of S-Adenosylmethionine to α-Amino-γ-butyrolactone. J. Biol. Chem. 234, 1784 (1959).Google Scholar
  102. 102.
    Mudd, S. H.: S-Adenosylmethionine Requirement for Plant Transmethylations. Biochim. Biophys. Acta 37, 164 (1960).Google Scholar
  103. 103.
    Mudd, S. H.: S-Adenosylmethionine Formation by Barley Extracts. Biochim. Biophys. Acta 38, 354 (1960).Google Scholar
  104. 104.
    Mudd, S. H.: The Mechanism of the Enzymatic Synthesis of S-Adenosylmethionine. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 33. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  105. 105.
    Mudd, S. H. and G. L. Cantoni: Selenomethionine in Enzymatic Trans methylations. Nature 180, 1052 (1957).CrossRefGoogle Scholar
  106. 106.
    Mudd, S. H. and G. L. Cantoni: Activation of Methionine for Transmethylation. III. The Methionine-activating Enzyme of Baker’s Yeast. J. Biol. Chem. 231, 481 (1958).Google Scholar
  107. 107.
    Mudd, S. H. and G. L. Cantoni: Biological Transmethylation, Methyl Group Neogenesis and other “One-carbon” Metabolic Reactions Dependent upon Tetrahydrofolic Acid. In: M. Florkin and E. H. Stotz (Edit.), Comprehensive Biochemistry, Vol. 15, p. i. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  108. 108.
    Mueller, J. H.: A New Sulfur-containing Amino Acid Isolated from the Hydrolytic Products of Protein. J. Biol. Chem. 56, 157 (1923).Google Scholar
  109. 109.
    Neumann, N. P., S. Moore and W. H. Stein: Modification of the Methionine Residues in Ribonuclease. Biochemistry 1, 68 (1962).CrossRefGoogle Scholar
  110. 110.
    O’Leary, W. M.: S-Adenosylmethionine in the Biosynthesis of Bacterial Fatty Acids. J. Bacteriol. 84, 967 (1962).Google Scholar
  111. 111.
    O’Leary, W. M.: Transmethylation in the Biosynthesis of Cyclopropane Fatty Acids. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 94. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  112. 112.
    Pansuwana, P.: S-Adenosylmethionine in Rat Liver. Summary Report, Biol, and Med. Research Div., Argonne National Laboratory, ANL-6368, p. 100 (1963).Google Scholar
  113. 113.
    Parks, L. W.: S-Adenosylmethionine and Ergosterol Synthesis. J. Amer. Chem. Soc. 80, 2023 (1958).CrossRefGoogle Scholar
  114. 114.
    Parks, L. W.: S-Adenosylethionine and Ethionine Inhibition. J. Biol. Chem. 232, 169 (1958).Google Scholar
  115. 115.
    Parks, L. W. and F. Schlenk: Formation of α-Amino-γ-butyrolactone from S-Adenosylmethionine. Arch. Biochem. Biophys. 75, 291 (1958).Google Scholar
  116. 116.
    Parks, L. W. and F. Schlenk: The Stability and Hydrolysis of S-Adenosylmethionine; Isolation of S-Ribosylmethionine. J. Biol. Chem. 230, 295 (1958).Google Scholar
  117. 117.
    Parks, L. W., J. R. Turner and R. L. Larson: Transmethylation in Yeast Sterol Synthesis. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 85. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  118. 119.
    Peyron, L.: Precursors of Certain Sulfur Compounds Encountered with Essential Oils. Bull. Soc. Franc. Physiol. Végétale 7, 46 (1961) [Chem. Abstr. 56, 12014 (1962)].Google Scholar
  119. 119.
    Pfiffner, J. J. and H. B. North: Dimethylsulfone, a Constituent of the Adrenal Gland. J. Biol. Chem. 134, 781 (1940).Google Scholar
  120. 120.
    Pohl, S., J. H. Law and R. Ryhage: The Path of Hydrogen in the Formation of Cyclopropane Fatty Acids. Biochim. Biophys. Acta 70, 583 (1963).CrossRefGoogle Scholar
  121. 121.
    Pope, W. J. and S. J. Peachey: Asymmetric Optically Active Sulphur Compounds. D-Methylethylthetine Platinichloride. J. Chem. Soc. (London) 77, 1072 (1900).Google Scholar
  122. 121a.
    Price, C. C. and S. Oae: Sulfur Bonding. New York: Ronald Press. 1962.Google Scholar
  123. 122.
    Rachele, J. R., E. J. Kuchinskas, F. H. Kratzer and V. du Vigneaud: Hydrogen Isotope Effect in the Oxidation in vivoof Methionine Labeled in the Methyl Group. J. Biol. Chem. 215, 593 (1955).Google Scholar
  124. 123.
    Ragland, J. B. and J. L. Liverman: S-Methyl-L-cysteine as a Naturally Occurring Metabolite in Neurospora crassaArch. Biochem. Biophys. 65, 574 (1956).CrossRefGoogle Scholar
  125. 124.
    Ray, W. J., Jr., H. G. Latham, Jr., M. Katsoulis and D. E. Koshland, Jr.: Evidence for Involvement of a Methionine Residue in the Enzymatic Action of Phosphoglucomutase and Chymotrypsin. J. Amer. Chem. Soc. 82, 4743. (1960).CrossRefGoogle Scholar
  126. 125.
    Raymond, A. L.: Thiosugars. J. Biol. Chem. 107, 85 (1934).Google Scholar
  127. 126.
    Remy, C. N.: Methylation of Synthetic and Normal Purines, Pyrimidines., and Ribonucleosides. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 107. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  128. 126a.
    Rosenfeld, I. and O. A. Beath: Selenium: Geobotany, Biochemistry Toxicity and Nutrition. New York: Academic Press. 1964.Google Scholar
  129. 127.
    Ruzicka, L., M. W. Goldberg und H. Meister: Inhaltsstoffe des Blutes, i. Mitt. Isolierung von Dimethylsulfon aus Rinderblut. Helv. Chim. Acta 23., 559 (1940).CrossRefGoogle Scholar
  130. 128.
    Sakami, W.: S-Adenosyl-L-homocysteine. In: A. Meister (Edit.), Biochemical Preparations, Vol. 8, p. 8. New York: Wiley and Sons. 1961.Google Scholar
  131. 129.
    Salvatore, F. and F. Schlenk: A New Assay of Guanidinoacetate Methyl-transferase. Biochim. Biophys. Acta 59, 700 (1962).Google Scholar
  132. 130.
    Satoh, K.: The Structure of Adenylthiomethylpentose. I, II, and III. J. Biochemistry (Tokyo) 40, 485, 557, 563 (1953).Google Scholar
  133. 131.
    Schachter, H. and G. H. Dixon: Identification of the Methionine Involved in the Active.Center of Chymotrypsin. Biochem. Biophys. Res. Comm. 9, 132 (1962).CrossRefGoogle Scholar
  134. 132.
    Schlenk, F.: Nicotinamide Riboside. Arch. Biochem. 3, 93 (1943).Google Scholar
  135. 133.
    Schlenk, F.: Biochemical and Cytological Studies with Sulfonium Compounds. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 48. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  136. 134.
    Schlenk, F. and J. L. Dainko: The Alkaline Hydrolysis of S-Adenosyl-methionine in Tritiated Water. Biochem. Biophys. Res. Comm. 8, 24 (1962).Google Scholar
  137. 135.
    Schlenk, F., J. L. Dainko and S. M. Stanford: Improved Procedure for the Isolation of S-Adenosylmethionine and S-Adenosylethionine. Arch. Biochem. Biophys. 83, 28 (1959).Google Scholar
  138. 136.
    Schlenk, F. and R. E. de Palma: The Formation of S-Adenosylmethionine in Yeast. J. Biol. Chem. 229, 1037 (1957).Google Scholar
  139. 137.
    Schlenk, F. and R. E. de Palma: The Preparation of S-Adenosylmethionine. J. Biol. Chem. 229, 1051 (1957).Google Scholar
  140. 138.
    Schlenk, F. and D. J. Ehninger: Observations on the Metabolism of 5’- Methylthioadenosine. Arch. Biochem. Biophys. 106, 95 (1964).Google Scholar
  141. 139.
    Schlenk, F., H. v. Euler, H. Heiwinkel, W. Gleim und H. Nyström: Die Einwirkung von Alkali auf Cozymase. Z. physiol. Chem. 247, 23 (1937).CrossRefGoogle Scholar
  142. 140.
    Schöberl, A. und G. Lange: Über eine Sulfoniumsalzbildung bei der Addition von Mercaptocarbonsäuren an ungesättigte Säuren. Angew. Chem. 64, 224 (1952).CrossRefGoogle Scholar
  143. 141.
    Schöberl, A. und G. Lange: Über die Addition von Mercaptocarbonsäuren an ungesättigten Säuren und eine neue Darstellungsweise von Sulfoniumsalzen. Liebigs Ann. Chem. 599, 140 (1956).CrossRefGoogle Scholar
  144. 142.
    Schramm, H. J. und W. B. Lawson: Modifizierung eines Methioninrestes in Chymotrypsin durch einfache Benzolderivate. Z. physiol. Chem. 332, 97 (1963).CrossRefGoogle Scholar
  145. 143.
    Shapiro, S. K.: The Biosynthesis of Methionine from Homocysteine and Methylmethionine Sulfonium Salt. Biochim. Biophys. Acta 18, 134 (1955).Google Scholar
  146. 144.
    Shapiro, S. K.: Biosynthesis of Methionine from Homocysteine and S-Methylmethionine in Bacteria. J. Bacteriol. 72, 730 (1956).Google Scholar
  147. 145.
    Shapiro, S. K.: Adenosylmethionine-Homocysteine Transmethylase. Biochim. Biophys. Acta 29, 405 (1958).Google Scholar
  148. 146.
    Shapiro, S. K.: The Function of S-Adenosylmethionine in Methionine Biosynthesis. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 200. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  149. 147.
    Shapiro, S. K., P. Lohmar and M. Hertenstein: Utilization of S-Adenosylmethionine for the Biosynthesis of Methionine. Arch. Biochem. Biophys. 100, 74 (1963).Google Scholar
  150. 148.
    Shapiro, S. K. and A. N. Mather: The Enzymatic Decomposition of S-Adenosyl-L-methionine. J. Biol. Chem. 233, 631 (1958).Google Scholar
  151. 149.
    Shapiro, S. K. and F. Schlenk (Edit.): Transmethylation and Methionine Biosynthesis. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  152. 150.
    Shapiro, S. K. and D. A. Yphantis: Evidence for the Participation of Metals in a Transmethylation. Arch. Biochem. Biophys. 82, 477 (1959).Google Scholar
  153. 151.
    Shapiro, S. K. and D. A. Yphantis: Assay of S-Methylmethionine and S-Adenosylmethionine Homocysteine Transmethylases. Biochim. Biophys. Acta 36, 241 (1959).Google Scholar
  154. 152.
    Shapiro, S. K., D. A. Yphantis and A. Almenas: Partial Purification and Properties of S-Adenosylmethionine—Homocysteine Methyl transferase. J. Biol. Chem. 239, 1551 (1964).Google Scholar
  155. 153.
    Shrift, A.: Biological Activities of Selenium Compounds. Bot. Rev. 24, 550 (1958).Google Scholar
  156. 154.
    Smiles, S.: A Contribution to the Stereochemistry of Sulphur. An Optically Active Sulphine Base. J. Chem. Soc. (London) 77, 1174 (1900).Google Scholar
  157. 155.
    Smith, R. L., E. E. Anderson, Jr., R. N. Overland and F. Schlenk: The Occurrence, Formation, and Isolation of Thiomethyladenosine. Arch. Biochem. Biophys. 42, 72 (1953).Google Scholar
  158. 158.
    Snow, G. A.: The Metabolism of Compounds Related to Ethane thiol. Biochem. J. 65, 77 (1957).Google Scholar
  159. 157.
    Stark, G. R. and W. H. Stein: Alkylation of the Methionine Residues of Ribonuclease in 8 M Urea. J. Biol. Chem. 239, 3755 (1964).Google Scholar
  160. 158.
    Stekol, J. A.: Biochemical Basis for Ethionine Effects on Tissues. Adv. Enzymology 25, 369 (1963).Google Scholar
  161. 159.
    Stekol, J. A.: Newer Methods for Preparation of S-Adenosylmethionine and Derivatives, In: S. P. Colowick and N. O. Kaplan (Edit.), Methods in Enzymology, Vol. 6, p. 566. New York: Academic Press. 1963.Google Scholar
  162. 160.
    Stekol, J. A.: Formation and Metabolism of S-Adenosyl Derivatives of S-Alkylhomo-cysteines in the Rat and Mouse. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Metabolism, p. 231. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  163. 161.
    Stekol, J. A., S. Weiss and C. Somerville: A Study of the Comparative Metabolism of Ethionine and Methionine in the Male and Female Rat. Arch. Biochem. Biophys. 100, 86 (1963).Google Scholar
  164. 162.
    Suzuki, U., S. Odake und T. Mori: Über einen neuen schwefelhaltigen Bestandteil der Hefe. Biochem. Z. 154, 278 (1924).Google Scholar
  165. 163.
    Svihla, G. and F. Schlenk: S-Adenosylmethionine in the Vacuole of Candida utilisJ. Bacteriol. 79, 841 (1960).Google Scholar
  166. 164.
    Tabor, H., S. M. Rosenthal and C. W. Tabor: Role of Putrescine and Methionine in the Enzymic Synthesis of Spermidine in Escherichia coliExtracts. J. Amer. Chem. Soc. 79, 2978 (1957).CrossRefGoogle Scholar
  167. 165.
    Tabor, H., S. M. Rosenthal and C. W. Tabor: The Biosynthesis of Spermidine and Spermine from Putrescine and Methionine. J. Biol. Chem. 233, 907 (1958).Google Scholar
  168. 166.
    Tabor, H. and C. W. Tabor: Spermidine, Spermine, and Related Amines. Pharmacol. Rev. 16, 245 (1964).Google Scholar
  169. 167.
    Tait, G. H. and K. D. Gibson: The Enzymic Formation of Magnesium Protoporphyrin Monomethylester. Biochim. Biophys. Acta 52, 614 (1961).Google Scholar
  170. 168.
    Tashjian, A. H., Jr., D. A. Ontjes and P. L. Munson: Alkylation and Oxidation of Methionine in Bovine Parathyroid Hormone: Effects on Hormonal Activity and Antigenicity. Biochemistry 3, 1175 (1964).CrossRefGoogle Scholar
  171. 169.
    Toennies, G.: Sulfonium Reactions of Methionine and their Possible Metabolic Significance. J. Biol. Chem. 132, 455 (1940).Google Scholar
  172. 170.
    Toennies, G. and J. J. Kolb: Methionine Studies. VII. Sulfonium Derivatives. J. Amer. Chem. Soc. 67, 849 (1945).CrossRefGoogle Scholar
  173. 171.
    Toennies, G. and J. J. Kolb: Methionine Studies. VIII. Regeneration of Sulfides from Sulfonium Derivatives. J. Amer. Chem. Soc. 67, 1141 (1945).CrossRefGoogle Scholar
  174. 172.
    Toennies, G. and J. J. Kolb: Techniques and Reagents for Paper Chromatography. Analyt. Chemistry 23, 823 (1951).Google Scholar
  175. 173.
    Verly, W. G.: Contribution à l’étude du métabolisme du groupe méthyle labile. Arch, internat, physiol. et biochim. 64, 309 (1956).CrossRefGoogle Scholar
  176. 174.
    Vigneaud, V. du: The Significance of Labile Methyl Groups in the Diet, and their Relation to Transmethylation. Harvey Lect. 38, 39 (1942/43).Google Scholar
  177. 175.
    Vigneaud, V. du: Trail of Research in Sulfur Chemistry and Metabolism, and Related Fields. Ithaca, N. Y.: Cornell Univ. Press. 1952.Google Scholar
  178. 176.
    Vigneaud, V. du and J. R. Rachele: The Concept of Transmethylation in Mammalian Metabolism and its Establishment by Isotopic Labeling through in vivo Experimentation. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 1. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar
  179. 177.
    Vigneaud, V. du, J. R. Rachele and A. M. White: A Crucial Test of Transmethylation in vivoby Intramolecular Isotopic Labeling. J. Amer. Chem, Soc. 78, 5131 (1956).CrossRefGoogle Scholar
  180. 178.
    Wagner, C. and E. R. Stadtman: Bacterial Fermentation of Dimethyl-ß-propiothetin. Arch. Biochem. Biophys. 98, 331 (1962).Google Scholar
  181. 179.
    Weiss, S., E. I. Anderson, P. T. Hsu and J. A. Sterol: An Adaptation of the Floyd-Lavine Procedure for the Isolation of Methionine to Tracer Work. J. Biol. Chem. 214, 239 (1955).Google Scholar
  182. 180.
    Wendt, G.: Über den Thiozucker der Hefe. Z. physiol. Chem. 272, 152 (1942).CrossRefGoogle Scholar
  183. 181.
    Weygand, F., R. Junk und D. Leber: Adenylthiomethylpentose. Z. physiol. Chem. 291, 191 (1952).Google Scholar
  184. 182.
    Weygand, F. und O. Trauth: Synthese der Adenylthiomethylpentose. Chem. Ber. 84, 633 (1951).CrossRefGoogle Scholar
  185. 183.
    Weygand, F., O. Trauth und R. Löwenfeld: Konstitutionsaufklärung des Thiozuckers-der Adenylthiomethylpentose. Chem. Ber. 83, 563 (1950).CrossRefGoogle Scholar
  186. 184.
    Windmueller, H. G., C. J. Ackerman and R. W. Engel: Reaction of Ethylene Oxide with Histidine, Methionine, and Cysteine. J. Biol. Chem. 234, 895 (1959).Google Scholar
  187. 185.
    Woods, D. D., M. A. Foster and J. R. Guest: Cobalamin-dependent and -independent Methyl Transfer in Methionine Biosynthesis. In: S. K. Shapiro and F. Schlenk (Edit.), Transmethylation and Methionine Biosynthesis, p. 138. Chicago and London: Univ. of Chicago Press. 1965.Google Scholar

Copyright information

© Springer-Verlag/Wien 1965

Authors and Affiliations

  • Fritz Schlenk
    • 1
  1. 1.ArgonneUSA

Personalised recommendations