Skip to main content

Methoden und Ergebnisse der Sequenzanalyse von Ribonucleinsäuren

  • Chapter

Zusammenfassung

Eines der erstaunlichsten Phänomene der Biologie ist die Tatsache, daβ die Kontinuität der Lebewesen, d. h. ihre Fähigkeit zur Reproduktion, letzten Endes auf dem Wechselspiel zweier Typen von linearen Makromolekülen in den Zellen beruht, den Nucleinsäuren und Proteinen. Die für diese Kontinuität verantwortliche genetische Information einer Zelle ist als eindimensionale 4-Buchstaben-Schrift in den Nucleotid-sequenzen der Deoxyribonucleinsäuren (DNA’s) verschlüsselt und wird im Verlauf der Proteinsynthese in die eindimensionale 20-Buchstaben-Schrift der Aminosäuresequenzen von Proteinmolekülen übersetzt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Anticodon :

Sequenz von 3 benachbarten Nucleotiden einer tRNA, die sich in antiparalleler Weise mit dem Codon einer mRNA paaren lähßt.

Cistron oder Gen :

Abschnitt auf dem Doppelstrang der DNA, der eine Einheit der Information und Funktion darstellt.

Codon :

Eine Sequenz von 3 benachbarten Nucleotiden einer mRNA, die I Aminosäure (oder Kettenabbruch) codiert.

DEAE-:

Diäthylaminoäthyl-.

Deoxyribonucleosid :

der Pentose-Zucker des (→) Nucleosids ist β-D-Deoxyribose.

DNA :

Deoxyribonucleinsäure.

EDTA :

Äthylendiamintetraessigsäure.

Gen :

siehe Cistron.

Genetische Information :

Die in der Nucleotidsequenz einer DNA oder mRNA enthaltene Information.

Komplementäre Basenpaarung :

Wasserstoffbrückenbindung zwischen Adenin und Thymin (oder Uracil) sowie Guanin und Cytosin in einer Nucleinsäure-Doppelhelix.

Mutation :

Veränderung der Basensequenz eines Gens:

1. Punktmutation, Umwandlung einer Base in eine andere (es gibt Transitionen und Transversionen);

2. Deletion, Verlust eines oder mehrerer Nucleotide;

3. Insertion, Einfügung eines oder mehrerer Nucleotide;

4. Inversion, Umkehrung einer Nucleotidsequenz.

Nucleosid :

Besteht aus einem Pentose-Zucker, mit dem in N-glycosidischer Bindung eine Purin- oder Pyrimidin-Base verknüpft ist.

Nucleotid :

Grundbaustein der Nucleinsäuren, Phosphorsäureester eines Nucleosids.

p und —:

bezeichnen eine Phosphatgruppe, und zwar links von der Abkürzung eines Nucleosids ein 5′-Phosphat (z. B. pA oder —A = Adenosin-5′-phosphat), rechts davon ein 3′-Phosphat (z. B. Gp oder G— = Guanosin-3′-phosphat).

p!:

2′,3′-Cyclophosphat, z. B. Ip! = Inosin-2′,3′-cyclophosphat.

PDE :

Phosphodiesterase, spaltet vom 3′- oder 5′-Ende der Polynucleotide schrittweise Mononucleotide ab.

PME :

Phosphomonoesterase, spaltet endständige Phosphatgruppen von Polynucleotiden ab bzw. überführt Mononucleotide in Nucleoside; im allgemeinen wird die alkalische Phosphomonoesterase aus Escherichia coli verwendet.

Polynucleotid :

Eine lineare Sequenz von Nucleotiden, deren Pentose-Einheiten durch 3′,5′-Phosphodiesterbrücken verbunden sind.

PP :

Pyrophosphat.

Ribonucleosid :

Der Pentose-Zucker des (→) Nucleosids ist β-D-Ribose. In Abb. 7 (S. 377) sind die in den tRNA’s aus Hefe gefundenen Ribonucleoside mit ihren Abkürzungen zusammengestellt. Die Art der Verknüpfung von Base und Ribose (R) ist in Abb. 3 (S. 364) zu sehen. Zusätzliche Abkürzungen: U*, Gemisch von U und UH2; rT und T (in RNA), Ribothymidin.

RNA :

Ribonucleinsäure.

mRNA :

Messenger-Ribonucleinsäure, Matrizen-RNA, die zur Nucleotidsequenz eines Gens oder Gen-Komplexes komplementär ist und die Synthese einer oder mehrerer Aminosäuresequenzen dirigiert.

sRNA :

Lösliche Ribonucleinsäure, Gemisch verschiedener tRNA’s.

tRNA :

Transfer-Ribonucleinsäure, bi-funktionelle RNA mit einer Akzeptor-Funktion (Bindung einer bestimmten Aminosäure am 3′-Hydroxy-Ende des 3′-terminalen Adenosins) und einer Transfer-Funktion (Wechselwirkung mit dem für die übertragene Aminosäure spezifischen Codon der mRNA im aktiven Proteinsynthese-Komplex) .

RNase :

Ribonuclease, Enzym, das bestimmte Phosphodiesterbindungen von Ribopolynucleotiden spaltet (vgl. Abb. 3, S. 364).

T1-RNase :

Ribonuclease T1 aus Takadiastase.

T2-RNase :

Ribonuclease T2 aus Takadiastase.

Literaturverzeichnis

  1. Anraku, Y.: A New Cyclic Phosphodiesterase Having a 3’-Nucleotidase Activity from Escherichia coli B. I. Purification and Some Properties of the Enzyme. J. Biol. Chem. 239, 3412 (1964).

    CAS  Google Scholar 

  2. Apgar, J., G. A. Everett and R. W. Holley: Analyses of Large Oligonucleo-tide Fragments Obtained from a Yeast Alanine Transfer Ribonucleic Acid by Partial Digestion with Ribonuclease T i. J. Biol. Chem. 241, 1206 (1966).

    CAS  Google Scholar 

  3. Apgar, J., R. W. Holley and S. H. Merrill: Purification of Alanine-, Valine-, Histidine-, and Tyrosine-Acceptor Ribonucleic Acids from Yeast. J. Biol. Chem. 237, 796 (1962).

    CAS  Google Scholar 

  4. Augusti-Tocco, G. and G. L. Brown: Reaction of N-Cyclohexyl, N’-β(4-Methylmorpholinium) Ethyl Carbodiimide Iodide with Nucleic Acids and Poly-nucleotides. Nature 206, 683 (1965).

    Article  CAS  Google Scholar 

  5. Bassel, B. A., Jr. and S. Spiegelman: Specific Cleavage of Qβ-RNA and Identification of the Fragment Carrying the 3’-OH Terminus. Proc. Nat. Acad. Sci. (USA) 58, 1155 (1967).

    Article  CAS  Google Scholar 

  6. Batt, R. D., J. K. Martin, J. McT. Ploeser and J. Murray: Chemistry of Dihydropyrimidines. Ultraviolet Spectra and Alkaline Decomposition. J. Amer. Chem. Soc. 76, 3663 (1954).

    Article  CAS  Google Scholar 

  7. Bayev, A., T. Venkstern, A. Mirzabekov, A. Krutilina, V. Axelrod, L. Li and V. Engelhardt: Primary Structure of the Valine Transfer RNA. Partial Reconstruction of its Molecule. In: D. Shugar (ed.), Properties and Function of Genetic Elements, p. 287. Sympos. Federat. Europ. Biochem. Soc, Warsaw 1966. New York: Academic Press. 1967.

    Google Scholar 

  8. Beaven, G. H., E. R. Holiday and E. A. Johnson: Optical Properties of Nucleic Acids and Their Components. In: E. Chargaff and J. N. Davidson (ed.), The Nucleic Acids, Vol. I, p. 493. New York: Academic Press. 1955.

    Google Scholar 

  9. Berg, P., F. H. Bergmann, E. J. Ofengand and M. Dieckmann: The Enzymic Synthesis of Amino Acyl Derivatives of Ribonucleic Acid. I. J. Biol. Chem. 236, 1726 (1961).

    CAS  Google Scholar 

  10. Berg, P., U. Lagerkvist and M. Dieckmann: The Enzymic Synthesis of Amino Acyl Derivatives of Ribonucleic Acid. VI. Nucleotide Sequences Adjacent to the … pCpCpA End Groups of Isoleucine-and Leucine-Specific Chains. J. Mol. Biol. 5, 159 (1962).

    Article  CAS  Google Scholar 

  11. Bernardi, G.: Spleen Acid Ribonuclease. In: G. L. Cantoni and D. R. Davies (ed.), Procedures in Nucleic Acid Research, p. 37. New York: Harper and Row. 1966.

    Google Scholar 

  12. Blemann, K., S. Tsunakawa, J. Sonnenbichler, H. Feldmann, D. Düt--Ting Und H. G. Zachau: Struktur eines ungewöhnlichen Nucleosids aus serin-spezifischer Transfer-Ribonucleinsäure. Angew. Chem. 78, 600 (1966).

    Article  Google Scholar 

  13. Blemann, K., S. Tsunakawa, J. Sonnenbichler, H. Feldmann, D. Düt-Ting und H. G. Zachau: Struktur eines ungewöhnlichen Nucleosids aus serin-spezifischer Transfer-Ribonucleinsäure. Angew. Chem. internat, edit. 5, 590 (1966).

    Article  Google Scholar 

  14. Borke, E.: The Methylation of Transfer RNA: Mechanism and Function. Cold Spring Harbor Sympos. Quant. Biol. 28, 139 (1963).

    Google Scholar 

  15. Brostoff, S. W. and V. M. Ingram: Chemical Modification of Yeast Alanine-tRNA with a Radioactive Carbodiimide. Science 158, 666 (1967).

    Article  CAS  Google Scholar 

  16. Brownlee, G. G. and F. Sanger: Nucleotide Sequences from the Low Molecular Weight Ribosomal RNA of Escherichia coli. J. Mol. Biol. 23, 337 (1967).

    Article  CAS  Google Scholar 

  17. Brownlee, G. G., F. Sanger and B. G. Barrell: Nucleotide Sequence of 5S-ribosomal RNA from Escherichia coli. Nature 215, 735 (1967).

    Article  CAS  Google Scholar 

  18. Cantor, C. R.: Possible Conformations of 5 S Ribosomal RNA. Nature 216, 513 (1967).

    Article  CAS  Google Scholar 

  19. Cantor, C. R., S. R. Jaskunas and J. Tinoco, Jr.: Optical Properties of Ribonucleic Acids Predicted from Oligomers. J. Mol. Biol. 20, 39 (1966).

    Article  CAS  Google Scholar 

  20. Chambers, R. W.: The Chemistry of Pseudouridine. IV. Cyanoethylation. Biochemistry 4, 219 (1965).

    CAS  Google Scholar 

  21. Chambers, R. W.: The Chemistry of Pseudouridine. Progr. Nucleic Acid Res. and Mol. Biol. 5, 368 (1966).

    Google Scholar 

  22. Cherayil, J. D. and R. M. Bock: A Column Chromatographie Procedure for the Fractionation of sRNA. Biochemistry 4, 1174 (1965).

    Article  CAS  Google Scholar 

  23. Cohn, W. E. and D. G. Doherty: The Catalytic Hydrogenation of Pyri-midine Nucleosides and Nucleotides and the Isolation of their Ribose and Respective Ribose Phosphates. J. Amer. Chem. Soc. 78, 2863 (1956).

    Article  CAS  Google Scholar 

  24. Crick, F. H. C.: Codon-Anticodon Pairing. The Wobble Hypothesis. J. Mol. Biol. 19, 548 (1966).

    Article  CAS  Google Scholar 

  25. Crick, F. H. C.: The Genetic Code. III. Scient. American 215, No. 4, 55 (1966).

    Google Scholar 

  26. Crick, F. H. C.: Discussion.In: E. M. Crook et al. (ed.), The Structure of Nucleic Acids and their Role in Protein Synthesis. Biochem. Soc. Sympos. No. 14, p. 25. Cambridge: Univ. Press. 1957.

    Google Scholar 

  27. Doctor, B. P.: Fractionation of RNA’s by Countercurrent Distribution. In: L. Grossman and K. Moldave (ed.), Methods in Enzymology-Nucleic Acids, Vol. 12, p. 644. New York: Academic Press. 1967.

    Google Scholar 

  28. Doctor, B. P. and C. M. Connelly: Separation of Yeast Amino Acid-Acceptor Ribonucleic Acids by Countercurrent Distribution in Modified Kirby’s System. Biochem. Biophys. Res. Commun. 6, 201 (1961).

    Article  CAS  Google Scholar 

  29. Dutta, S. K., A. S. Jones and M. Stacey: The Separation of Desoxypentose-nucleic Acids and Pentosenucleic Acids. Biochim. Biophys. Acta 10, 613 (1953).

    Article  CAS  Google Scholar 

  30. Dütting, D., H. Feldmann and H. G. Zachau: Partial Digestions of Serine Transfer Ribonucleic Acids with Pancreatic and T i-Ribonucleases. Z. physiol. Chem. 347, 249 (1966).

    Article  Google Scholar 

  31. Dütting, D., W. Karau, F. Melchers und H. G. Zachau: Nucleotidsequenzen in Serinspezifischen Transfer-Ribonucleinsäuren. Biochim. Biophys. Acta 108, 194 (1965).

    Google Scholar 

  32. Dütting, D. und H. G. Zachau: Ribonucleinsäurespaltung neben N2-Di-methyl-guanylsäure-Resten durch T i-Ribonuclease. Z. physiol. Chem. 336, 132 (1964).

    Article  Google Scholar 

  33. Dütting, D. und H. G. Zachau: Spaltung einer Serinspezifischen Transfer-Ribonucleinsäure-Fraktion mit T i-Ribonuclease. Biochim. Biophys. Acta 91, 573 (1964).

    Google Scholar 

  34. Dütting, D. und H. G. Zachau: unveröffentlicht.

    Google Scholar 

  35. Egami, F., K. Takahashi and T. Uchida: Ribonucleases in Taka-Diastase: Properties, Chemical Nature, and Applications. Progr. Nucleic Acid Res. and Mol. Biol. 3, 59 (1964).

    Article  CAS  Google Scholar 

  36. Feldmann, H., D. D&3x00FC;tting and H. G. Zachau: Analyses of Some Oligo-nucleotide Sequences and Odd Nucleotides from Serine Transfer Ribonucleic Acids. Z. physiol. Chem. 347, 236 (1966).

    Article  CAS  Google Scholar 

  37. Fink, R. M., R. E. Cline, C. Mcgaughey and K. Fink: Chromatography of Pyrimidine Reduction Products. Analyt. Chemistry 28, 4 (1956).

    CAS  Google Scholar 

  38. Fuller, W. and A. Hodgson: Conformation of the Anticodon Loop in tRNA. Nature 215, 817 (1967).

    Article  CAS  Google Scholar 

  39. Gilham, P. T.: An Addition Reaction Specific for Uridine and Guanosine Nucleotides and its Application to the Modification of Ribonuclease Action. J. Amer. Chem. Soc. 84, 687 (1962).

    Article  CAS  Google Scholar 

  40. Gilham, P. T. and W. E. Robinson: The Use of Polynucleotide-Cellulose in Sequence Studies of Nucleic Acids. J. Amer. Chem. Soc. 86, 4985 (1964).

    Article  CAS  Google Scholar 

  41. Gillam, I., S. Millward, D. Blew, M. V. Tigerstrom E. Wimmer and G. M. Tener: The Separation of Soluble Ribonucleic Acids on Benzoylated Deae-Cellulose. Biochemistry 6, 3043 (1967).

    Article  CAS  Google Scholar 

  42. Hall, R. H.: A General Procedure for the Isolation of “Minor” Nucleosides from Ribonucleic Acid Hydrolysates. Biochemistry 4, 661 (1965).

    Article  CAS  Google Scholar 

  43. Hall, R. H., M. J. Robins, L. Stasiuk and R. Thedford: Isolation of N(6)-(γ,γ-Dimethylallyl)adenosine from Soluble Ribonucleic Acid. J. Amer. Chem. Soc. 88, 2614 (1966).

    Article  CAS  Google Scholar 

  44. Hindley, J.: Fractionation of 32P-labelled Ribonucleic Acid on Polyacryl-amide Gels and their Characterization by Fingerprinting. J. Mol. Biol. 30, 125 (1967).

    Article  CAS  Google Scholar 

  45. Hoagland, M. B., P. C. Zamecnik and M. L. Stephenson: Intermediate Reactions in Protein Synthesis. Biochim. Biophys. Acta 24, 216 (1957).

    Article  Google Scholar 

  46. Holley, R. W.: The Nucleotide Sequence of a Nucleic Acid. Scient. American 214, No. 2, 30 (1966).

    Article  CAS  Google Scholar 

  47. Holley, R. W.: An Alanine-dependent, Ribonuclease-inhibited Conversion of AMP to ATP, and its Possible Relationship to Protein Synthesis. J. Amer. Chem. Soc. 79, 658 (1957).

    Article  CAS  Google Scholar 

  48. Holley, R. W., J. Apgar, B. P. Doctor, J. Farrow, M. A. Marini and S. H. Merrill: A Simplified Procedure for the Preparation of Tyrosine-and Valine-Acceptor Fractions of Yeast “Soluble Ribonucleic Acid”. J. Biol. Chem. 236, 200 (1961).

    CAS  Google Scholar 

  49. Holley, R. W., J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick and A. Zamir: Structure of a Ribonucleic Acid. Science 147, 1462 (1965).

    Article  CAS  Google Scholar 

  50. Holley, R. W., J. Apgar, G. A. Everett, J. T. Madison, S. H. Merrill and A. Zamir: Chemistry of Amino Acid-Specific Ribonucleic Acids. Cold Spring Harbor Sympos. Quant. Biol. 28, 117 (1963).

    CAS  Google Scholar 

  51. Holley, R. W., G. A. Everett, J. T. Madison and A. Zamir: Nucleotide Sequences in the Yeast Alanine Transfer Ribonucleic Acid. J. Biol. Chem. 240, 2122 (1965).

    CAS  Google Scholar 

  52. Holley, R. W., J. T. Madison and A. Zamir: A New Method for Sequence Determination of Large Oligonucleotides. Biochem. Biophys. Res. Commun. 17, 389 (1964).

    Article  CAS  Google Scholar 

  53. Ingram, V. M. and J. A. Sjöquist: Studies on the Structure of Purified Alanine and Valine Transfer RNA from Yeast. Cold Spring Harbor Sympos. Quant. Biol. 28, 133 (1963).

    CAS  Google Scholar 

  54. Jukes, T. H.: Indications for a Common Evolutionary Origin Shown in the Primary Structure of Three Transfer RNAs. Biochem. Biophys. Res. Commun. 24, 744 (1966).

    Article  CAS  Google Scholar 

  55. Katchalski, E., S. Yankofsky, A. Novogrodsky, Y. Galenter and U. Z. Littauer: A Chemical Method for the Purification of Amino Acid-specific Transfer RNA’s. Biochim. Biophys. Acta 123, 641 (1966).

    CAS  Google Scholar 

  56. Kelmers, A. D.: Preparation of Highly Purified Phenylalanine Transfer Ribonucleic Acid. J. Biol. Chem. 241, 3540 (1966).

    CAS  Google Scholar 

  57. Kelmers, A. D.: Preparation of a Highly Purified Leucine Transfer Ribonucleic Acid. Biochem. Biophys. Res. Commun. 25, 562 (1966).

    Article  CAS  Google Scholar 

  58. Khorana, H. G.: Polynucleotide Synthesis and the Genetic Code. Federat. Proc. (Amer. Soc. Exp. Biol.) 24, 1473 (1965).

    CAS  Google Scholar 

  59. Lebowitz, P., P. L. Ipata, M. H. Makman, H. H. Richards and G. L. Can-toni: Resolution of Cytidine-and Adenosine-Terminal Transfer Ribonucleic Acids. Biochemistry 5, 3617 (1966).

    Article  CAS  Google Scholar 

  60. Lee, J. C. and P. T. Gilham: A Method for the Determination of Nucleotide Sequences near the Terminals of Ribonucleic Acids of Large Molecular Weight. J. Amer. Chem. Soc. 88, 5685 (1966).

    Article  CAS  Google Scholar 

  61. Lee, J. C, N. W. Y. Ho and P. T. Gilham: Preparation of Ribotrinucleotides Containing Terminal Cytidine. Biochim. Biophys. Acta 95, 503 (1965).

    CAS  Google Scholar 

  62. Litt, M. and V. M. Ingram: Chemical Studies on Amino Acid Acceptor Ribonucleic Acids. II. Attempts at Partial Digestion of Yeast Amino Acid Acceptor Ribonucleic Acid with Pancreatic Ribonuclease. Biochemistry 3, 560 (1964).

    Article  CAS  Google Scholar 

  63. Loening, U. E.: The Fractionation of High-Molecular-Weight Ribonucleic Acid by Polyacrylamid-Gel Electrophoresis. Biochem. J. 102, 251 (1967).

    CAS  Google Scholar 

Fortschritte d. Chem. org. Naturst. XXVI 27

  1. Lohrmann, R., D. Söll, H. Hayatsu, E. Ohtsuka and H. G. Khorana: Studies on Polynucleotides. 51. Syntheses of the 64 Possible Ribotrinucleotides Derived from the Four Major Ribomononucleotides. J. Amer. Chem. Soc. 88, 819 (1966).

    Article  CAS  Google Scholar 

  2. Madison, J. T.: persönliche Mitteilung.

    Google Scholar 

  3. Madison, J. T., G. A. Everett and H. Kung: Nucleotide Sequence of a Yeast Tyrosine Transfer RNA. Science 153, 531 (1966).

    Article  CAS  Google Scholar 

  4. Madison, J. T., G. A. Everett and H. Kung: Oligonucleotides from Yeast Tyrosine Transfer Ribonucleic Acid. J. Biol. Chem. 242, 1318 (1967).

    CAS  Google Scholar 

  5. Madison, J. T. and R. W. Holley: The Presence of 5,6-Dihydrouridylic Acid in Yeast “Soluble” Ribonucleic Acid. Biochem. Biophys. Res. Commun. 18, 153 (1965).

    Article  CAS  Google Scholar 

  6. Madison, J. T., R. W. Holley, J. S. Poucher and P. H. Connett: Use of Polynucleotide Phosphorylase in Sequence Determination of Oligonucleotides. Biochim. Biophys. Acta 145, 825 (1967).

    CAS  Google Scholar 

  7. Madison, J. T. and H. Kung: Large Oligonucleotides Isolated from Yeast Tyrosine Transfer Ribonucleic Acid After Partial Digestion with Ribonuclease T i. J. Biol. Chem. 242, 1324 (1967).

    CAS  Google Scholar 

  8. Mcphie, P., J. Hounsell and W. B. Gratzer: The Specific Cleavage of Yeast Ribosomal Ribonucleic Acid with Nucleases. Biochemistry 5, 988 (1966).

    Article  CAS  Google Scholar 

  9. Melchers, F., D. Dütting und H. G. Zachau: Enzymatische Spaltungen von Serin-tRNA-Fraktionen. Biochim. Biophys. Acta 108, 182 (1965).

    CAS  Google Scholar 

  10. Michelson, A. M.: The Chemistry of Nucleosides and Nucleotides, p. 444. New York: Academic Press. 1963.

    Google Scholar 

  11. Midgley, J. E. M.: Effects of Different Extraction Procedures on the Molecular Characteristics of Bacterial Ribosomal Ribonucleic Acid. Biochim. Biophys. Acta 95, 232 (1965).

    CAS  Google Scholar 

  12. Moudrianakis, E. N. and M. Beer: Base Sequence Determination in Nucleic Acids with the Electron Microscope. III. Chemistry and Microscopy of Guanine-labeled DNA. Proc. Nat. Acad. Sci. (USA) 53, 564 (1965).

    Article  CAS  Google Scholar 

  13. Naylor, R., N. W. Y. Ho and P. T. Gilham: Selective Chemical Modifications of Uridine and Pseudouridine in Polynucleotides and Their Effect on the Specificities of Ribonuclease and Phosphodiesterases. J. Amer. Chem. Soc. 87, 4209 (1965).

    Article  CAS  Google Scholar 

  14. Nelson, J. A. and R. W. Holley: Bromination of Yeast Alanine Transfer RNA. Federat. Proc. (Amer. Soc. Exp. Biol.) 26, 733 (1967).

    Google Scholar 

  15. Neu, H. C. and L. A. Heppel: Nucleotide Sequence Analysis of Polyribo-nucleotides by Means of Periodate Oxidation Followed by Cleavage with an Amine. J. Biol. Chem. 239, 2927 (1964).

    CAS  Google Scholar 

  16. Nrenberg, M., T. Caskey, R. Marshall, R. Brimacombe, D. Kellog, B. (P.) Doctor, D. Hatfield, J. Levin, F. Rottman, S. Pestka, M. Wilcox and F. Anderson: The RNA Code and Protein Synthesis. Cold Spring Harbor Sympos. Quant. Biol. 31, 11 (1966).

    Google Scholar 

  17. Nishimura, S. and G. D. Novelli: Resistance of sRNA to Ribonucleases in the Presence of Mg-Ion. Biochem. Biophys. Res. Commun. 11, 161 (1963).

    CAS  Google Scholar 

  18. Novogrodsky, A. and J. Hurwitz: The Enzymatic Phosphorylation of Ribonucleic Acid and Deoxyribonucleic Acid. J. Biol. Chem. 241, 2923 (1966).

    CAS  Google Scholar 

  19. Nygaard, A. P. and B. D. Hall: Formation and Properties of RNA-DNA Complexes. J. Mol. Biol. 9, 125 (1964).

    Article  CAS  Google Scholar 

  20. Okada, Y., E. Terzaghi, G. Streisinger, J. Emrich, M. Inouye and A. Tsugita: A Frame-shift Mutation Involving the Addition of Two Base Pairs in the Lysozyme Gene of PhageT4. Proc. Nat. Acad. Sci. (USA) 56, 1692 (1966).

    Article  CAS  Google Scholar 

  21. Pearson, R. L. and A. D. Kelmers: Separation of Transfer Ribonucleic Acids by Hydroxyapatite Columns. J. Biol. Chem. 241, 767 (1966).

    CAS  Google Scholar 

  22. Penswick, J. R. and R. W. Holley: Specific Cleavage of the Yeast Alanine RNA into Two Large Fragments. Proc. Nat. Acad. Sci. (USA) 53, 543 (1965).

    Article  CAS  Google Scholar 

  23. Perutz, M. F.: Proteins and Nucleic Acids. Structure and Function. 8 th Weiz-mann Memorial Lecture Series, April 1961, p. 141. Amsterdam: Elsevier. 1962.

    Google Scholar 

  24. Peterson, E. A. and H. A. Sober: Chromatography of Proteins. I. Cellulose Ion-exchange Adsorbents. J. Amer. Chem. Soc. 78, 751 (1956).

    Article  CAS  Google Scholar 

  25. Portatius, H. v., P. Doty and M. L. Stephenson: Separation of L-Valine Acceptor “Soluble Ribonucleic Acid” by Specific Reaction with Polyacrylic Acid Hydrazide. J. Amer. Chem. Soc. 83, 3351 (1961).

    Article  CAS  Google Scholar 

  26. Rajbhandary, U. L., S. H. Chang, A. Stuart, R. D. Faulkner, R. M. Hoskinson and H. G. Khorana: Studies on Polynucleotides. LXVIII. The Primary Structure of Yeast Phenylalanine Transfer RNA. Proc. Nat. Acad. Sci. (USA) 57, 751 (1967).

    Article  CAS  Google Scholar 

  27. Rajbhandary, U. L. and A. Stuart: Nucleic Acids — Sequence Analysis. Annu. Rev. Biochem. 35, II, 759 (1966).

    Article  CAS  Google Scholar 

  28. Rajbhandary, U. L., A. Stuart, R. D. Faulkner, S. H. Chang and H. G. Khorana: Nucleotide Sequence Studies on Yeast Phenylalanine sRNA. Cold Spring Harbor Sympos. Quant. Biol. 31, 425 (1966).

    CAS  Google Scholar 

  29. Rajbhandary, U. L., R. J. Young and H. G. Khorana: Studies on Polynucleotides. XXXII. The Labeling of End Groups in Polynucleotide Chains: The Selective Phosphorylation of Phosphomonoester Groups in Amino Acid Acceptor Ribonucleic Acids. J. Biol. Chem. 239, 3875 (1964).

    CAS  Google Scholar 

  30. Rake, A. V. and G. M. Tener: Effect of Cyanoethylation of Yeast Transfer Ribonucleic Acid on its Amino Acid Acceptor Activity. Biochemistry 5, 3992 (1966).

    Article  CAS  Google Scholar 

  31. Richards, E. G., J. A. Coll and W. B. Gratzer: Disc Electrophoresis of RNA in Polyacrylamide Gels. Analyt. Biochem. 12, 452 (1965).

    Article  CAS  Google Scholar 

  32. Richardson, C. C.: Phosphorylation of Nucleic Acid by an Enzyme from T4 Bacteriophage-Infected Escherichia coli. Proc. Nat. Acad. Sci. (USA) 54, 158 (1965).

    Article  CAS  Google Scholar 

  33. Richardson, J. P.: The Binding of RNA-Polymerase to DNA. J. Mol. Biol. 21, 83 (1966).

    Article  CAS  Google Scholar 

  34. Rushizky, G. W., E. M. Bartos and H. A. Sober: Chromatography of Mixed Oligonucleotides on DEAE-Sephadex. Biochemistry 3, 626 (1964).

    Article  CAS  Google Scholar 

  35. Rushizky, G. W., I. H. Skavenski and A. E. Greco: Preparation of Large Oligonucleotides from High Molecular Weight Ribonucleic Acid. Biochemistry 5, 3328 (1966).

    Article  CAS  Google Scholar 

  36. Rushizky, G. W., I. H. Skavenski and H. A. Sober: Characterization of the Major Compounds Found in Ribonuclease T i Digests of Ribonucleic Acid. III. Penta-and Higher Oligonucleotides. J. Biol. Chem. 240, 3984 (1965).

    CAS  Google Scholar 

  37. Rushizky, G. W. and H. A. Sober: Studies on the Specificity of Ribonuclease T 2. J. Biol. Chem. 238, 371 (1963).

    CAS  Google Scholar 

  38. Sanger, F.: persönliche Mitteilung.

    Google Scholar 

  39. Sanger, F., G. G. Brownlee and B. G. Barrell: A Twodimensional Frac-tionation Procedure for Radioactive Nucleotides. J. Mol. Biol. 13, 373 (1965).

    Article  CAS  Google Scholar 

  40. Schleich, T. and J. Goldstein: Gel Filtration Heterogeneity of Escherichia coli Soluble RNA. J. Mol. Biol. 15, 136 (1966).

    Article  CAS  Google Scholar 

  41. Schroeder, W. A. and R. T. Jones: Some Aspects of the Chemistry and Function of Human and Animal Hemoglobins. Fortschr. Chem. organ. Naturstoffe 23, 113 (1965).

    Article  CAS  Google Scholar 

  42. Singer, M. F., R. J. Hilmoe and M. Grunberg-Manago: Studies on the Mechanism of Action of Polynucleotide Phosphorylase. J. Biol. Chem. 235, 2705 (1960).

    CAS  Google Scholar 

  43. Smith, C. J. and E. Herbert: Structure of Amino Acyl Oligonucleotides from T i Ribonuclease Digests of Soluble Ribonucleic Acid Charged with Serine, Glycine, Threonine, and Alanine. Biochemistry 5, 1333 (1966).

    Article  CAS  Google Scholar 

  44. Smith, C. J., P. M. Smith and E. Herbert: Isolation of Amino Acyl Oligonucleotides from T 1 Ribonuclease Digests of Soluble Ribonucleic Acid Charged with Serine, Glycine, Threonine, and Alanine. Biochemistry 5, 1323 (1966).

    Article  CAS  Google Scholar 

  45. Sober, H. A., S. F. Schlossman, A. Yaron, S. A. Latt and G. W. Rushizky: Protein-Nucleic Acid Interaction. I. Nuclease-Resistant Polylysine-Ribo-nucleic Acid Complexes. Biochemistry 5, 3608 (1966).

    Article  CAS  Google Scholar 

  46. Söll, D., D. S. Jones, E. Ohtsuka, R. D. Faulkner, R. Lohrmann, H. Hay-atsu, H. G. Khorana, J. D. Cherayil, A. Hampel and R. M. ock: Specificity of sRNA for Recognition of Codons as Studied by the Ribosomal Binding Technique. J. Mol. Biol. 19, 556 (1966).

    Google Scholar 

  47. Staehelin, M.: On the Specificity of RNAase T i. Biochim. Biophys. Acta 87, 493 (1964).

    CAS  Google Scholar 

  48. Staehelin, M.: Column Chromatography of Oligonucleotides and Polynucleotides. Progr. Nucleic Acid Res. 2, 169 (1963).

    Article  CAS  Google Scholar 

  49. Staehelin, M.: Studies on Nucleotide Sequences in Ribonucleic Acids. II. Spectroscopic Properties of Oligoribonucleotides. Biochim. Biophys. Acta 49, 20 (1961).

    Article  CAS  Google Scholar 

  50. Stanley, W. M., Jr. and R. M. Bock: Isolation and Physical Properties of the Ribosomal Ribonucleic Acid of Escherichia coli. Biochemistry 4, 1302 (1965).

    Article  CAS  Google Scholar 

  51. Steinschneider, A. and H. Fraenkel-Conrat: Studies of Nucleotide Sequences in TMV-RNA. IV. Use of Aniline in Stepwise Degradation. Biochemistry 5, 2735 (1966).

    Article  CAS  Google Scholar 

  52. Takanami, M.: Analysis of the 5’-Terminal Nucleotide Sequences of Ribonucleic Acids. I. The 5’-Termini of Escherichia coli Ribosomal RNA. J. Mol. Biol. 23, 135 (1967).

    Article  CAS  Google Scholar 

  53. Tener, G. M., I. Gillam, M. v. Tigerstrom, S. Millward and E. Wimmer: Purifications of tRNAs on Benzoylated DEAE-Cellulose. Federation Proc. (Amer. Soc. Exp. Biol.) 25, 519 (1966).

    Google Scholar 

  54. Terzaghi, E., Y. Okada, G. Streisinger, J. Emrich, M. Inouye and A. Tsugita: Change of a Sequence of Amino Acids in Phage T4 Lysozyme by Acridine Induced Mutations. Proc. Nat. Acad. Sci. (USA) 56, 500 (1966).

    Article  CAS  Google Scholar 

  55. Tomasz, M. and R. W. Chambers: The Chemistry of Pseudouridine. VII. Selective Cleavage of Polynucleotides Containing Pseudouridylic Acid Residues by a Unique Photochemical Reaction. Biochemistry 5, 773 (1966).

    Article  CAS  Google Scholar 

  56. Tomlinson, R. V. and G. M. Tener: The Effect of Urea, Formamide, and Glycols on the Secondary Binding Forces in the Ion Exchange Chromatography of Polynucleotides on DEAE-Cellulose. Biochemistry 2, 697 (1963).

    Article  CAS  Google Scholar 

  57. Uziel, M. and W. E. Cohn: Desalting of Nucleotides by Gel Filtration. Biochim. Biophys. Acta 103, 539 (1965).

    CAS  Google Scholar 

  58. Vournakis, J. N. and H. A. Scheraga: Optical Rotatory Dispersion Studies of Yeast Alanine and Tyrosine Transfer Ribonucleic Acids. Evidence for Intramolecular Hydrogen Bonding and Discussion of Conformational Aspects. Biochemistry 5, 2997 (1966).

    Article  CAS  Google Scholar 

  59. Weber, K., G. Notani, M. Wikler and W. Konigsberg: Amino Acid Sequence of the f2 Coat Protein. J. Mol. Biol. 20, 423 (1966).

    Article  CAS  Google Scholar 

  60. Weiss, S. B. and J. Legault-Demare: Pseudouridine Formation: Evidence for RNA as an Intermediate. Science 149, 429 (1965).

    Article  CAS  Google Scholar 

  61. Whitfeld, P. R.: A Method for the Determination of Nucleotide Sequence in Polyribonucleotides. Biochem. J. 58, 390 (1954).

    CAS  Google Scholar 

  62. Yanofsky, C, B. C. Carlton, J. R. Guest, D. R. Helinski and U. Henning: On the Colinearity of Gene Structure and Protein Structure. Proc. Nat. Acad. Sci. (USA) 51, 266 (1964).

    Article  CAS  Google Scholar 

  63. Yoshida, M. and T. Ukita: Pseudouridine Residues Resistant to Cyano-ethylation in Yeast Transfer Ribonucleic Acid. Biochim. Biophys. Acta 123, 214 (1966).

    CAS  Google Scholar 

  64. Zachau, H. G., D. Dütting und H. Feldmann: Nucleotidsequencen zweier serinspe7ifischer Transfer-Ribonucleinsäuren. Angew. Chem. 78, 392 (1966).

    Article  Google Scholar 

  65. Zachau, H. G., Angew. Chem. internat. edit. 5, 422 (1966).

    Article  CAS  Google Scholar 

  66. Zachau, H. G., D. Dütting und H. Feldmann: The Structures of Two Serine Transfer Ribonucleic Acids. Z. physiol. Chem. 347, 212 (1966).

    Article  CAS  Google Scholar 

  67. Zachau, H. G., D. Dütting und H. Feldmann: On the Primary Structure of Transfer Ribonucleic Acids. In: D. Shugar (ed.), Properties and Function of Genetic Elements, p. 271. Sympos. Federat. Europ. Biochem. Soc, Warsaw 1966. New York: Academic Press. 1967.

    Google Scholar 

  68. Zachau, H. G., D. Dütting, H. Feldmann, F. Melchers and W. Karau: Serine Specific Transfer Ribonucleic Acids. Comparison of Nucleotide Sequences and Secondary Structure Models. Cold Spring Harbor Sympos. Quant. Biol. 31, 417 (1966).

    CAS  Google Scholar 

  69. Zachau, H. G., D. Dütting, F. Melchers, H. Feldmann and R. Thiebe: On Serine-Specific Transfer Ribonucleic Acids. In: H. Tuppy (ed.), Ribonucleic Acid Structure and Function, p. 21. Sympos. Federat. Europ. Biochem. Soc, Vienna 1965. Oxford: Pergamon Press. 1966.

    Google Scholar 

  70. Zachau, H. G., M. Tada, W. B. Lawson und M. Schweiger: Fraktionierung der löslichen Ribonucleinsäure. Biochim. Biophys. Acta 53, 221 (1961).

    Article  CAS  Google Scholar 

  71. Zamir, A., R. W. Holley and M. Marquisee: Evidence for the Occurrence of a Common Pentanucleotide Sequence in the Structures of Transfer Ribonucleic Acids. J. Biol. Chem. 240, 1267 (1965).

    CAS  Google Scholar 

  72. Zubay, G.: The Isolation and Fractionation of Soluble Ribonucleic Acid. J. Mol. Biol. 4, 347 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag / Wien

About this chapter

Cite this chapter

Dütting, D. (1968). Methoden und Ergebnisse der Sequenzanalyse von Ribonucleinsäuren. In: Zechmeister, L. (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 26. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7134-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7134-9_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7135-6

  • Online ISBN: 978-3-7091-7134-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics