Advertisement

Zusammenfassung

Eines der erstaunlichsten Phänomene der Biologie ist die Tatsache, daβ die Kontinuität der Lebewesen, d. h. ihre Fähigkeit zur Reproduktion, letzten Endes auf dem Wechselspiel zweier Typen von linearen Makromolekülen in den Zellen beruht, den Nucleinsäuren und Proteinen. Die für diese Kontinuität verantwortliche genetische Information einer Zelle ist als eindimensionale 4-Buchstaben-Schrift in den Nucleotid-sequenzen der Deoxyribonucleinsäuren (DNA’s) verschlüsselt und wird im Verlauf der Proteinsynthese in die eindimensionale 20-Buchstaben-Schrift der Aminosäuresequenzen von Proteinmolekülen übersetzt.

Abkürzungen, Symbole, Definitionen

Anticodon

Sequenz von 3 benachbarten Nucleotiden einer tRNA, die sich in antiparalleler Weise mit dem Codon einer mRNA paaren lähßt.

Cistron oder Gen

Abschnitt auf dem Doppelstrang der DNA, der eine Einheit der Information und Funktion darstellt.

Codon

Eine Sequenz von 3 benachbarten Nucleotiden einer mRNA, die I Aminosäure (oder Kettenabbruch) codiert.

DEAE-

Diäthylaminoäthyl-.

Deoxyribonucleosid

der Pentose-Zucker des (→) Nucleosids ist β-D-Deoxyribose.

DNA

Deoxyribonucleinsäure.

EDTA

Äthylendiamintetraessigsäure.

Gen

siehe Cistron.

Genetische Information

Die in der Nucleotidsequenz einer DNA oder mRNA enthaltene Information.

Komplementäre Basenpaarung

Wasserstoffbrückenbindung zwischen Adenin und Thymin (oder Uracil) sowie Guanin und Cytosin in einer Nucleinsäure-Doppelhelix.

Mutation

Veränderung der Basensequenz eines Gens:

1. Punktmutation, Umwandlung einer Base in eine andere (es gibt Transitionen und Transversionen);

2. Deletion, Verlust eines oder mehrerer Nucleotide;

3. Insertion, Einfügung eines oder mehrerer Nucleotide;

4. Inversion, Umkehrung einer Nucleotidsequenz.

Nucleosid

Besteht aus einem Pentose-Zucker, mit dem in N-glycosidischer Bindung eine Purin- oder Pyrimidin-Base verknüpft ist.

Nucleotid

Grundbaustein der Nucleinsäuren, Phosphorsäureester eines Nucleosids.

p und

bezeichnen eine Phosphatgruppe, und zwar links von der Abkürzung eines Nucleosids ein 5′-Phosphat (z. B. pA oder —A = Adenosin-5′-phosphat), rechts davon ein 3′-Phosphat (z. B. Gp oder G— = Guanosin-3′-phosphat).

p!

2′,3′-Cyclophosphat, z. B. Ip! = Inosin-2′,3′-cyclophosphat.

PDE

Phosphodiesterase, spaltet vom 3′- oder 5′-Ende der Polynucleotide schrittweise Mononucleotide ab.

PME

Phosphomonoesterase, spaltet endständige Phosphatgruppen von Polynucleotiden ab bzw. überführt Mononucleotide in Nucleoside; im allgemeinen wird die alkalische Phosphomonoesterase aus Escherichia coli verwendet.

Polynucleotid

Eine lineare Sequenz von Nucleotiden, deren Pentose-Einheiten durch 3′,5′-Phosphodiesterbrücken verbunden sind.

PP

Pyrophosphat.

Ribonucleosid

Der Pentose-Zucker des (→) Nucleosids ist β-D-Ribose. In Abb. 7 (S. 377) sind die in den tRNA’s aus Hefe gefundenen Ribonucleoside mit ihren Abkürzungen zusammengestellt. Die Art der Verknüpfung von Base und Ribose (R) ist in Abb. 3 (S. 364) zu sehen. Zusätzliche Abkürzungen: U*, Gemisch von U und UH2; rT und T (in RNA), Ribothymidin.

RNA

Ribonucleinsäure.

mRNA

Messenger-Ribonucleinsäure, Matrizen-RNA, die zur Nucleotidsequenz eines Gens oder Gen-Komplexes komplementär ist und die Synthese einer oder mehrerer Aminosäuresequenzen dirigiert.

sRNA

Lösliche Ribonucleinsäure, Gemisch verschiedener tRNA’s.

tRNA

Transfer-Ribonucleinsäure, bi-funktionelle RNA mit einer Akzeptor-Funktion (Bindung einer bestimmten Aminosäure am 3′-Hydroxy-Ende des 3′-terminalen Adenosins) und einer Transfer-Funktion (Wechselwirkung mit dem für die übertragene Aminosäure spezifischen Codon der mRNA im aktiven Proteinsynthese-Komplex) .

RNase

Ribonuclease, Enzym, das bestimmte Phosphodiesterbindungen von Ribopolynucleotiden spaltet (vgl. Abb. 3, S. 364).

T1-RNase

Ribonuclease T1 aus Takadiastase.

T2-RNase

Ribonuclease T2 aus Takadiastase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1.
    Anraku, Y.: A New Cyclic Phosphodiesterase Having a 3’-Nucleotidase Activity from Escherichia coli B. I. Purification and Some Properties of the Enzyme. J. Biol. Chem. 239, 3412 (1964).Google Scholar
  2. 2.
    Apgar, J., G. A. Everett and R. W. Holley: Analyses of Large Oligonucleo-tide Fragments Obtained from a Yeast Alanine Transfer Ribonucleic Acid by Partial Digestion with Ribonuclease T i. J. Biol. Chem. 241, 1206 (1966).Google Scholar
  3. 3.
    Apgar, J., R. W. Holley and S. H. Merrill: Purification of Alanine-, Valine-, Histidine-, and Tyrosine-Acceptor Ribonucleic Acids from Yeast. J. Biol. Chem. 237, 796 (1962).Google Scholar
  4. 4.
    Augusti-Tocco, G. and G. L. Brown: Reaction of N-Cyclohexyl, N’-β(4-Methylmorpholinium) Ethyl Carbodiimide Iodide with Nucleic Acids and Poly-nucleotides. Nature 206, 683 (1965).CrossRefGoogle Scholar
  5. 4a.
    Bassel, B. A., Jr. and S. Spiegelman: Specific Cleavage of Qβ-RNA and Identification of the Fragment Carrying the 3’-OH Terminus. Proc. Nat. Acad. Sci. (USA) 58, 1155 (1967).CrossRefGoogle Scholar
  6. 5.
    Batt, R. D., J. K. Martin, J. McT. Ploeser and J. Murray: Chemistry of Dihydropyrimidines. Ultraviolet Spectra and Alkaline Decomposition. J. Amer. Chem. Soc. 76, 3663 (1954).CrossRefGoogle Scholar
  7. 6.
    Bayev, A., T. Venkstern, A. Mirzabekov, A. Krutilina, V. Axelrod, L. Li and V. Engelhardt: Primary Structure of the Valine Transfer RNA. Partial Reconstruction of its Molecule. In: D. Shugar (ed.), Properties and Function of Genetic Elements, p. 287. Sympos. Federat. Europ. Biochem. Soc, Warsaw 1966. New York: Academic Press. 1967.Google Scholar
  8. 7.
    Beaven, G. H., E. R. Holiday and E. A. Johnson: Optical Properties of Nucleic Acids and Their Components. In: E. Chargaff and J. N. Davidson (ed.), The Nucleic Acids, Vol. I, p. 493. New York: Academic Press. 1955.Google Scholar
  9. 8.
    Berg, P., F. H. Bergmann, E. J. Ofengand and M. Dieckmann: The Enzymic Synthesis of Amino Acyl Derivatives of Ribonucleic Acid. I. J. Biol. Chem. 236, 1726 (1961).Google Scholar
  10. 9.
    Berg, P., U. Lagerkvist and M. Dieckmann: The Enzymic Synthesis of Amino Acyl Derivatives of Ribonucleic Acid. VI. Nucleotide Sequences Adjacent to the … pCpCpA End Groups of Isoleucine-and Leucine-Specific Chains. J. Mol. Biol. 5, 159 (1962).CrossRefGoogle Scholar
  11. 9a.
    Bernardi, G.: Spleen Acid Ribonuclease. In: G. L. Cantoni and D. R. Davies (ed.), Procedures in Nucleic Acid Research, p. 37. New York: Harper and Row. 1966.Google Scholar
  12. 10.
    Blemann, K., S. Tsunakawa, J. Sonnenbichler, H. Feldmann, D. Düt--Ting Und H. G. Zachau: Struktur eines ungewöhnlichen Nucleosids aus serin-spezifischer Transfer-Ribonucleinsäure. Angew. Chem. 78, 600 (1966).CrossRefGoogle Scholar
  13. Blemann, K., S. Tsunakawa, J. Sonnenbichler, H. Feldmann, D. Düt-Ting und H. G. Zachau: Struktur eines ungewöhnlichen Nucleosids aus serin-spezifischer Transfer-Ribonucleinsäure. Angew. Chem. internat, edit. 5, 590 (1966).CrossRefGoogle Scholar
  14. 11.
    Borke, E.: The Methylation of Transfer RNA: Mechanism and Function. Cold Spring Harbor Sympos. Quant. Biol. 28, 139 (1963).Google Scholar
  15. 11a.
    Brostoff, S. W. and V. M. Ingram: Chemical Modification of Yeast Alanine-tRNA with a Radioactive Carbodiimide. Science 158, 666 (1967).CrossRefGoogle Scholar
  16. 12.
    Brownlee, G. G. and F. Sanger: Nucleotide Sequences from the Low Molecular Weight Ribosomal RNA of Escherichia coli. J. Mol. Biol. 23, 337 (1967).CrossRefGoogle Scholar
  17. 13.
    Brownlee, G. G., F. Sanger and B. G. Barrell: Nucleotide Sequence of 5S-ribosomal RNA from Escherichia coli. Nature 215, 735 (1967).CrossRefGoogle Scholar
  18. 13a.
    Cantor, C. R.: Possible Conformations of 5 S Ribosomal RNA. Nature 216, 513 (1967).CrossRefGoogle Scholar
  19. 14.
    Cantor, C. R., S. R. Jaskunas and J. Tinoco, Jr.: Optical Properties of Ribonucleic Acids Predicted from Oligomers. J. Mol. Biol. 20, 39 (1966).CrossRefGoogle Scholar
  20. 75.
    Chambers, R. W.: The Chemistry of Pseudouridine. IV. Cyanoethylation. Biochemistry 4, 219 (1965).Google Scholar
  21. 16.
    Chambers, R. W.: The Chemistry of Pseudouridine. Progr. Nucleic Acid Res. and Mol. Biol. 5, 368 (1966).Google Scholar
  22. 17.
    Cherayil, J. D. and R. M. Bock: A Column Chromatographie Procedure for the Fractionation of sRNA. Biochemistry 4, 1174 (1965).CrossRefGoogle Scholar
  23. 18.
    Cohn, W. E. and D. G. Doherty: The Catalytic Hydrogenation of Pyri-midine Nucleosides and Nucleotides and the Isolation of their Ribose and Respective Ribose Phosphates. J. Amer. Chem. Soc. 78, 2863 (1956).CrossRefGoogle Scholar
  24. 19.
    Crick, F. H. C.: Codon-Anticodon Pairing. The Wobble Hypothesis. J. Mol. Biol. 19, 548 (1966).CrossRefGoogle Scholar
  25. 20.
    Crick, F. H. C.: The Genetic Code. III. Scient. American 215, No. 4, 55 (1966).Google Scholar
  26. 20a.
    Crick, F. H. C.: Discussion.In: E. M. Crook et al. (ed.), The Structure of Nucleic Acids and their Role in Protein Synthesis. Biochem. Soc. Sympos. No. 14, p. 25. Cambridge: Univ. Press. 1957.Google Scholar
  27. 21.
    Doctor, B. P.: Fractionation of RNA’s by Countercurrent Distribution. In: L. Grossman and K. Moldave (ed.), Methods in Enzymology-Nucleic Acids, Vol. 12, p. 644. New York: Academic Press. 1967.Google Scholar
  28. 22.
    Doctor, B. P. and C. M. Connelly: Separation of Yeast Amino Acid-Acceptor Ribonucleic Acids by Countercurrent Distribution in Modified Kirby’s System. Biochem. Biophys. Res. Commun. 6, 201 (1961).CrossRefGoogle Scholar
  29. 23.
    Dutta, S. K., A. S. Jones and M. Stacey: The Separation of Desoxypentose-nucleic Acids and Pentosenucleic Acids. Biochim. Biophys. Acta 10, 613 (1953).CrossRefGoogle Scholar
  30. 24.
    Dütting, D., H. Feldmann and H. G. Zachau: Partial Digestions of Serine Transfer Ribonucleic Acids with Pancreatic and T i-Ribonucleases. Z. physiol. Chem. 347, 249 (1966).CrossRefGoogle Scholar
  31. 25.
    Dütting, D., W. Karau, F. Melchers und H. G. Zachau: Nucleotidsequenzen in Serinspezifischen Transfer-Ribonucleinsäuren. Biochim. Biophys. Acta 108, 194 (1965).Google Scholar
  32. 26.
    Dütting, D. und H. G. Zachau: Ribonucleinsäurespaltung neben N2-Di-methyl-guanylsäure-Resten durch T i-Ribonuclease. Z. physiol. Chem. 336, 132 (1964).CrossRefGoogle Scholar
  33. 27.
    Dütting, D. und H. G. Zachau: Spaltung einer Serinspezifischen Transfer-Ribonucleinsäure-Fraktion mit T i-Ribonuclease. Biochim. Biophys. Acta 91, 573 (1964).Google Scholar
  34. 28.
    Dütting, D. und H. G. Zachau: unveröffentlicht.Google Scholar
  35. 29.
    Egami, F., K. Takahashi and T. Uchida: Ribonucleases in Taka-Diastase: Properties, Chemical Nature, and Applications. Progr. Nucleic Acid Res. and Mol. Biol. 3, 59 (1964).CrossRefGoogle Scholar
  36. 30.
    Feldmann, H., D. D&3x00FC;tting and H. G. Zachau: Analyses of Some Oligo-nucleotide Sequences and Odd Nucleotides from Serine Transfer Ribonucleic Acids. Z. physiol. Chem. 347, 236 (1966).CrossRefGoogle Scholar
  37. 31.
    Fink, R. M., R. E. Cline, C. Mcgaughey and K. Fink: Chromatography of Pyrimidine Reduction Products. Analyt. Chemistry 28, 4 (1956).Google Scholar
  38. 32.
    Fuller, W. and A. Hodgson: Conformation of the Anticodon Loop in tRNA. Nature 215, 817 (1967).CrossRefGoogle Scholar
  39. 33.
    Gilham, P. T.: An Addition Reaction Specific for Uridine and Guanosine Nucleotides and its Application to the Modification of Ribonuclease Action. J. Amer. Chem. Soc. 84, 687 (1962).CrossRefGoogle Scholar
  40. 34.
    Gilham, P. T. and W. E. Robinson: The Use of Polynucleotide-Cellulose in Sequence Studies of Nucleic Acids. J. Amer. Chem. Soc. 86, 4985 (1964).CrossRefGoogle Scholar
  41. 34a.
    Gillam, I., S. Millward, D. Blew, M. V. Tigerstrom E. Wimmer and G. M. Tener: The Separation of Soluble Ribonucleic Acids on Benzoylated Deae-Cellulose. Biochemistry 6, 3043 (1967).CrossRefGoogle Scholar
  42. 55.
    Hall, R. H.: A General Procedure for the Isolation of “Minor” Nucleosides from Ribonucleic Acid Hydrolysates. Biochemistry 4, 661 (1965).CrossRefGoogle Scholar
  43. 36.
    Hall, R. H., M. J. Robins, L. Stasiuk and R. Thedford: Isolation of N(6)-(γ,γ-Dimethylallyl)adenosine from Soluble Ribonucleic Acid. J. Amer. Chem. Soc. 88, 2614 (1966).CrossRefGoogle Scholar
  44. 36a.
    Hindley, J.: Fractionation of 32P-labelled Ribonucleic Acid on Polyacryl-amide Gels and their Characterization by Fingerprinting. J. Mol. Biol. 30, 125 (1967).CrossRefGoogle Scholar
  45. 36b.
    Hoagland, M. B., P. C. Zamecnik and M. L. Stephenson: Intermediate Reactions in Protein Synthesis. Biochim. Biophys. Acta 24, 216 (1957).CrossRefGoogle Scholar
  46. 37.
    Holley, R. W.: The Nucleotide Sequence of a Nucleic Acid. Scient. American 214, No. 2, 30 (1966).CrossRefGoogle Scholar
  47. 37a.
    Holley, R. W.: An Alanine-dependent, Ribonuclease-inhibited Conversion of AMP to ATP, and its Possible Relationship to Protein Synthesis. J. Amer. Chem. Soc. 79, 658 (1957).CrossRefGoogle Scholar
  48. 38.
    Holley, R. W., J. Apgar, B. P. Doctor, J. Farrow, M. A. Marini and S. H. Merrill: A Simplified Procedure for the Preparation of Tyrosine-and Valine-Acceptor Fractions of Yeast “Soluble Ribonucleic Acid”. J. Biol. Chem. 236, 200 (1961).Google Scholar
  49. 39.
    Holley, R. W., J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick and A. Zamir: Structure of a Ribonucleic Acid. Science 147, 1462 (1965).CrossRefGoogle Scholar
  50. 40.
    Holley, R. W., J. Apgar, G. A. Everett, J. T. Madison, S. H. Merrill and A. Zamir: Chemistry of Amino Acid-Specific Ribonucleic Acids. Cold Spring Harbor Sympos. Quant. Biol. 28, 117 (1963).Google Scholar
  51. 41.
    Holley, R. W., G. A. Everett, J. T. Madison and A. Zamir: Nucleotide Sequences in the Yeast Alanine Transfer Ribonucleic Acid. J. Biol. Chem. 240, 2122 (1965).Google Scholar
  52. 42.
    Holley, R. W., J. T. Madison and A. Zamir: A New Method for Sequence Determination of Large Oligonucleotides. Biochem. Biophys. Res. Commun. 17, 389 (1964).CrossRefGoogle Scholar
  53. 43.
    Ingram, V. M. and J. A. Sjöquist: Studies on the Structure of Purified Alanine and Valine Transfer RNA from Yeast. Cold Spring Harbor Sympos. Quant. Biol. 28, 133 (1963).Google Scholar
  54. 44.
    Jukes, T. H.: Indications for a Common Evolutionary Origin Shown in the Primary Structure of Three Transfer RNAs. Biochem. Biophys. Res. Commun. 24, 744 (1966).CrossRefGoogle Scholar
  55. 45.
    Katchalski, E., S. Yankofsky, A. Novogrodsky, Y. Galenter and U. Z. Littauer: A Chemical Method for the Purification of Amino Acid-specific Transfer RNA’s. Biochim. Biophys. Acta 123, 641 (1966).Google Scholar
  56. 46.
    Kelmers, A. D.: Preparation of Highly Purified Phenylalanine Transfer Ribonucleic Acid. J. Biol. Chem. 241, 3540 (1966).Google Scholar
  57. 47.
    Kelmers, A. D.: Preparation of a Highly Purified Leucine Transfer Ribonucleic Acid. Biochem. Biophys. Res. Commun. 25, 562 (1966).CrossRefGoogle Scholar
  58. 48.
    Khorana, H. G.: Polynucleotide Synthesis and the Genetic Code. Federat. Proc. (Amer. Soc. Exp. Biol.) 24, 1473 (1965).Google Scholar
  59. 49.
    Lebowitz, P., P. L. Ipata, M. H. Makman, H. H. Richards and G. L. Can-toni: Resolution of Cytidine-and Adenosine-Terminal Transfer Ribonucleic Acids. Biochemistry 5, 3617 (1966).CrossRefGoogle Scholar
  60. 50.
    Lee, J. C. and P. T. Gilham: A Method for the Determination of Nucleotide Sequences near the Terminals of Ribonucleic Acids of Large Molecular Weight. J. Amer. Chem. Soc. 88, 5685 (1966).CrossRefGoogle Scholar
  61. 51.
    Lee, J. C, N. W. Y. Ho and P. T. Gilham: Preparation of Ribotrinucleotides Containing Terminal Cytidine. Biochim. Biophys. Acta 95, 503 (1965).Google Scholar
  62. 52.
    Litt, M. and V. M. Ingram: Chemical Studies on Amino Acid Acceptor Ribonucleic Acids. II. Attempts at Partial Digestion of Yeast Amino Acid Acceptor Ribonucleic Acid with Pancreatic Ribonuclease. Biochemistry 3, 560 (1964).CrossRefGoogle Scholar
  63. 33.
    Loening, U. E.: The Fractionation of High-Molecular-Weight Ribonucleic Acid by Polyacrylamid-Gel Electrophoresis. Biochem. J. 102, 251 (1967).Google Scholar

Fortschritte d. Chem. org. Naturst. XXVI 27

  1. 54.
    Lohrmann, R., D. Söll, H. Hayatsu, E. Ohtsuka and H. G. Khorana: Studies on Polynucleotides. 51. Syntheses of the 64 Possible Ribotrinucleotides Derived from the Four Major Ribomononucleotides. J. Amer. Chem. Soc. 88, 819 (1966).CrossRefGoogle Scholar
  2. 55.
    Madison, J. T.: persönliche Mitteilung.Google Scholar
  3. 56.
    Madison, J. T., G. A. Everett and H. Kung: Nucleotide Sequence of a Yeast Tyrosine Transfer RNA. Science 153, 531 (1966).CrossRefGoogle Scholar
  4. 57.
    Madison, J. T., G. A. Everett and H. Kung: Oligonucleotides from Yeast Tyrosine Transfer Ribonucleic Acid. J. Biol. Chem. 242, 1318 (1967).Google Scholar
  5. 58.
    Madison, J. T. and R. W. Holley: The Presence of 5,6-Dihydrouridylic Acid in Yeast “Soluble” Ribonucleic Acid. Biochem. Biophys. Res. Commun. 18, 153 (1965).CrossRefGoogle Scholar
  6. 58a.
    Madison, J. T., R. W. Holley, J. S. Poucher and P. H. Connett: Use of Polynucleotide Phosphorylase in Sequence Determination of Oligonucleotides. Biochim. Biophys. Acta 145, 825 (1967).Google Scholar
  7. 59.
    Madison, J. T. and H. Kung: Large Oligonucleotides Isolated from Yeast Tyrosine Transfer Ribonucleic Acid After Partial Digestion with Ribonuclease T i. J. Biol. Chem. 242, 1324 (1967).Google Scholar
  8. 60.
    Mcphie, P., J. Hounsell and W. B. Gratzer: The Specific Cleavage of Yeast Ribosomal Ribonucleic Acid with Nucleases. Biochemistry 5, 988 (1966).CrossRefGoogle Scholar
  9. 61.
    Melchers, F., D. Dütting und H. G. Zachau: Enzymatische Spaltungen von Serin-tRNA-Fraktionen. Biochim. Biophys. Acta 108, 182 (1965).Google Scholar
  10. 62.
    Michelson, A. M.: The Chemistry of Nucleosides and Nucleotides, p. 444. New York: Academic Press. 1963.Google Scholar
  11. 63.
    Midgley, J. E. M.: Effects of Different Extraction Procedures on the Molecular Characteristics of Bacterial Ribosomal Ribonucleic Acid. Biochim. Biophys. Acta 95, 232 (1965).Google Scholar
  12. 63a.
    Moudrianakis, E. N. and M. Beer: Base Sequence Determination in Nucleic Acids with the Electron Microscope. III. Chemistry and Microscopy of Guanine-labeled DNA. Proc. Nat. Acad. Sci. (USA) 53, 564 (1965).CrossRefGoogle Scholar
  13. 64.
    Naylor, R., N. W. Y. Ho and P. T. Gilham: Selective Chemical Modifications of Uridine and Pseudouridine in Polynucleotides and Their Effect on the Specificities of Ribonuclease and Phosphodiesterases. J. Amer. Chem. Soc. 87, 4209 (1965).CrossRefGoogle Scholar
  14. 65.
    Nelson, J. A. and R. W. Holley: Bromination of Yeast Alanine Transfer RNA. Federat. Proc. (Amer. Soc. Exp. Biol.) 26, 733 (1967).Google Scholar
  15. 66.
    Neu, H. C. and L. A. Heppel: Nucleotide Sequence Analysis of Polyribo-nucleotides by Means of Periodate Oxidation Followed by Cleavage with an Amine. J. Biol. Chem. 239, 2927 (1964).Google Scholar
  16. 67.
    Nrenberg, M., T. Caskey, R. Marshall, R. Brimacombe, D. Kellog, B. (P.) Doctor, D. Hatfield, J. Levin, F. Rottman, S. Pestka, M. Wilcox and F. Anderson: The RNA Code and Protein Synthesis. Cold Spring Harbor Sympos. Quant. Biol. 31, 11 (1966).Google Scholar
  17. 68.
    Nishimura, S. and G. D. Novelli: Resistance of sRNA to Ribonucleases in the Presence of Mg-Ion. Biochem. Biophys. Res. Commun. 11, 161 (1963).Google Scholar
  18. 69.
    Novogrodsky, A. and J. Hurwitz: The Enzymatic Phosphorylation of Ribonucleic Acid and Deoxyribonucleic Acid. J. Biol. Chem. 241, 2923 (1966).Google Scholar
  19. 70.
    Nygaard, A. P. and B. D. Hall: Formation and Properties of RNA-DNA Complexes. J. Mol. Biol. 9, 125 (1964).CrossRefGoogle Scholar
  20. 71.
    Okada, Y., E. Terzaghi, G. Streisinger, J. Emrich, M. Inouye and A. Tsugita: A Frame-shift Mutation Involving the Addition of Two Base Pairs in the Lysozyme Gene of PhageT4. Proc. Nat. Acad. Sci. (USA) 56, 1692 (1966).CrossRefGoogle Scholar
  21. 72.
    Pearson, R. L. and A. D. Kelmers: Separation of Transfer Ribonucleic Acids by Hydroxyapatite Columns. J. Biol. Chem. 241, 767 (1966).Google Scholar
  22. 73.
    Penswick, J. R. and R. W. Holley: Specific Cleavage of the Yeast Alanine RNA into Two Large Fragments. Proc. Nat. Acad. Sci. (USA) 53, 543 (1965).CrossRefGoogle Scholar
  23. 73a.
    Perutz, M. F.: Proteins and Nucleic Acids. Structure and Function. 8 th Weiz-mann Memorial Lecture Series, April 1961, p. 141. Amsterdam: Elsevier. 1962.Google Scholar
  24. 74.
    Peterson, E. A. and H. A. Sober: Chromatography of Proteins. I. Cellulose Ion-exchange Adsorbents. J. Amer. Chem. Soc. 78, 751 (1956).CrossRefGoogle Scholar
  25. 75.
    Portatius, H. v., P. Doty and M. L. Stephenson: Separation of L-Valine Acceptor “Soluble Ribonucleic Acid” by Specific Reaction with Polyacrylic Acid Hydrazide. J. Amer. Chem. Soc. 83, 3351 (1961).CrossRefGoogle Scholar
  26. 76.
    Rajbhandary, U. L., S. H. Chang, A. Stuart, R. D. Faulkner, R. M. Hoskinson and H. G. Khorana: Studies on Polynucleotides. LXVIII. The Primary Structure of Yeast Phenylalanine Transfer RNA. Proc. Nat. Acad. Sci. (USA) 57, 751 (1967).CrossRefGoogle Scholar
  27. 77.
    Rajbhandary, U. L. and A. Stuart: Nucleic Acids — Sequence Analysis. Annu. Rev. Biochem. 35, II, 759 (1966).CrossRefGoogle Scholar
  28. 78.
    Rajbhandary, U. L., A. Stuart, R. D. Faulkner, S. H. Chang and H. G. Khorana: Nucleotide Sequence Studies on Yeast Phenylalanine sRNA. Cold Spring Harbor Sympos. Quant. Biol. 31, 425 (1966).Google Scholar
  29. 79.
    Rajbhandary, U. L., R. J. Young and H. G. Khorana: Studies on Polynucleotides. XXXII. The Labeling of End Groups in Polynucleotide Chains: The Selective Phosphorylation of Phosphomonoester Groups in Amino Acid Acceptor Ribonucleic Acids. J. Biol. Chem. 239, 3875 (1964).Google Scholar
  30. 80.
    Rake, A. V. and G. M. Tener: Effect of Cyanoethylation of Yeast Transfer Ribonucleic Acid on its Amino Acid Acceptor Activity. Biochemistry 5, 3992 (1966).CrossRefGoogle Scholar
  31. 81.
    Richards, E. G., J. A. Coll and W. B. Gratzer: Disc Electrophoresis of RNA in Polyacrylamide Gels. Analyt. Biochem. 12, 452 (1965).CrossRefGoogle Scholar
  32. 82.
    Richardson, C. C.: Phosphorylation of Nucleic Acid by an Enzyme from T4 Bacteriophage-Infected Escherichia coli. Proc. Nat. Acad. Sci. (USA) 54, 158 (1965).CrossRefGoogle Scholar
  33. 83.
    Richardson, J. P.: The Binding of RNA-Polymerase to DNA. J. Mol. Biol. 21, 83 (1966).CrossRefGoogle Scholar
  34. 84.
    Rushizky, G. W., E. M. Bartos and H. A. Sober: Chromatography of Mixed Oligonucleotides on DEAE-Sephadex. Biochemistry 3, 626 (1964).CrossRefGoogle Scholar
  35. 85.
    Rushizky, G. W., I. H. Skavenski and A. E. Greco: Preparation of Large Oligonucleotides from High Molecular Weight Ribonucleic Acid. Biochemistry 5, 3328 (1966).CrossRefGoogle Scholar
  36. 86.
    Rushizky, G. W., I. H. Skavenski and H. A. Sober: Characterization of the Major Compounds Found in Ribonuclease T i Digests of Ribonucleic Acid. III. Penta-and Higher Oligonucleotides. J. Biol. Chem. 240, 3984 (1965).Google Scholar
  37. 87.
    Rushizky, G. W. and H. A. Sober: Studies on the Specificity of Ribonuclease T 2. J. Biol. Chem. 238, 371 (1963).Google Scholar
  38. 88.
    Sanger, F.: persönliche Mitteilung.Google Scholar
  39. 89.
    Sanger, F., G. G. Brownlee and B. G. Barrell: A Twodimensional Frac-tionation Procedure for Radioactive Nucleotides. J. Mol. Biol. 13, 373 (1965).CrossRefGoogle Scholar
  40. 90.
    Schleich, T. and J. Goldstein: Gel Filtration Heterogeneity of Escherichia coli Soluble RNA. J. Mol. Biol. 15, 136 (1966).CrossRefGoogle Scholar
  41. 90a.
    Schroeder, W. A. and R. T. Jones: Some Aspects of the Chemistry and Function of Human and Animal Hemoglobins. Fortschr. Chem. organ. Naturstoffe 23, 113 (1965).CrossRefGoogle Scholar
  42. 91.
    Singer, M. F., R. J. Hilmoe and M. Grunberg-Manago: Studies on the Mechanism of Action of Polynucleotide Phosphorylase. J. Biol. Chem. 235, 2705 (1960).Google Scholar
  43. 92.
    Smith, C. J. and E. Herbert: Structure of Amino Acyl Oligonucleotides from T i Ribonuclease Digests of Soluble Ribonucleic Acid Charged with Serine, Glycine, Threonine, and Alanine. Biochemistry 5, 1333 (1966).CrossRefGoogle Scholar
  44. 93.
    Smith, C. J., P. M. Smith and E. Herbert: Isolation of Amino Acyl Oligonucleotides from T 1 Ribonuclease Digests of Soluble Ribonucleic Acid Charged with Serine, Glycine, Threonine, and Alanine. Biochemistry 5, 1323 (1966).CrossRefGoogle Scholar
  45. 94.
    Sober, H. A., S. F. Schlossman, A. Yaron, S. A. Latt and G. W. Rushizky: Protein-Nucleic Acid Interaction. I. Nuclease-Resistant Polylysine-Ribo-nucleic Acid Complexes. Biochemistry 5, 3608 (1966).CrossRefGoogle Scholar
  46. 95.
    Söll, D., D. S. Jones, E. Ohtsuka, R. D. Faulkner, R. Lohrmann, H. Hay-atsu, H. G. Khorana, J. D. Cherayil, A. Hampel and R. M. ock: Specificity of sRNA for Recognition of Codons as Studied by the Ribosomal Binding Technique. J. Mol. Biol. 19, 556 (1966).Google Scholar
  47. 96.
    Staehelin, M.: On the Specificity of RNAase T i. Biochim. Biophys. Acta 87, 493 (1964).Google Scholar
  48. 97.
    Staehelin, M.: Column Chromatography of Oligonucleotides and Polynucleotides. Progr. Nucleic Acid Res. 2, 169 (1963).CrossRefGoogle Scholar
  49. 98.
    Staehelin, M.: Studies on Nucleotide Sequences in Ribonucleic Acids. II. Spectroscopic Properties of Oligoribonucleotides. Biochim. Biophys. Acta 49, 20 (1961).CrossRefGoogle Scholar
  50. 99.
    Stanley, W. M., Jr. and R. M. Bock: Isolation and Physical Properties of the Ribosomal Ribonucleic Acid of Escherichia coli. Biochemistry 4, 1302 (1965).CrossRefGoogle Scholar
  51. 100.
    Steinschneider, A. and H. Fraenkel-Conrat: Studies of Nucleotide Sequences in TMV-RNA. IV. Use of Aniline in Stepwise Degradation. Biochemistry 5, 2735 (1966).CrossRefGoogle Scholar
  52. 101.
    Takanami, M.: Analysis of the 5’-Terminal Nucleotide Sequences of Ribonucleic Acids. I. The 5’-Termini of Escherichia coli Ribosomal RNA. J. Mol. Biol. 23, 135 (1967).CrossRefGoogle Scholar
  53. 102.
    Tener, G. M., I. Gillam, M. v. Tigerstrom, S. Millward and E. Wimmer: Purifications of tRNAs on Benzoylated DEAE-Cellulose. Federation Proc. (Amer. Soc. Exp. Biol.) 25, 519 (1966).Google Scholar
  54. 103.
    Terzaghi, E., Y. Okada, G. Streisinger, J. Emrich, M. Inouye and A. Tsugita: Change of a Sequence of Amino Acids in Phage T4 Lysozyme by Acridine Induced Mutations. Proc. Nat. Acad. Sci. (USA) 56, 500 (1966).CrossRefGoogle Scholar
  55. 104.
    Tomasz, M. and R. W. Chambers: The Chemistry of Pseudouridine. VII. Selective Cleavage of Polynucleotides Containing Pseudouridylic Acid Residues by a Unique Photochemical Reaction. Biochemistry 5, 773 (1966).CrossRefGoogle Scholar
  56. 105.
    Tomlinson, R. V. and G. M. Tener: The Effect of Urea, Formamide, and Glycols on the Secondary Binding Forces in the Ion Exchange Chromatography of Polynucleotides on DEAE-Cellulose. Biochemistry 2, 697 (1963).CrossRefGoogle Scholar
  57. 106.
    Uziel, M. and W. E. Cohn: Desalting of Nucleotides by Gel Filtration. Biochim. Biophys. Acta 103, 539 (1965).Google Scholar
  58. 107.
    Vournakis, J. N. and H. A. Scheraga: Optical Rotatory Dispersion Studies of Yeast Alanine and Tyrosine Transfer Ribonucleic Acids. Evidence for Intramolecular Hydrogen Bonding and Discussion of Conformational Aspects. Biochemistry 5, 2997 (1966).CrossRefGoogle Scholar
  59. 108.
    Weber, K., G. Notani, M. Wikler and W. Konigsberg: Amino Acid Sequence of the f2 Coat Protein. J. Mol. Biol. 20, 423 (1966).CrossRefGoogle Scholar
  60. 109.
    Weiss, S. B. and J. Legault-Demare: Pseudouridine Formation: Evidence for RNA as an Intermediate. Science 149, 429 (1965).CrossRefGoogle Scholar
  61. 110.
    Whitfeld, P. R.: A Method for the Determination of Nucleotide Sequence in Polyribonucleotides. Biochem. J. 58, 390 (1954).Google Scholar
  62. 111.
    Yanofsky, C, B. C. Carlton, J. R. Guest, D. R. Helinski and U. Henning: On the Colinearity of Gene Structure and Protein Structure. Proc. Nat. Acad. Sci. (USA) 51, 266 (1964).CrossRefGoogle Scholar
  63. 112.
    Yoshida, M. and T. Ukita: Pseudouridine Residues Resistant to Cyano-ethylation in Yeast Transfer Ribonucleic Acid. Biochim. Biophys. Acta 123, 214 (1966).Google Scholar
  64. 113.
    Zachau, H. G., D. Dütting und H. Feldmann: Nucleotidsequencen zweier serinspe7ifischer Transfer-Ribonucleinsäuren. Angew. Chem. 78, 392 (1966).CrossRefGoogle Scholar
  65. Zachau, H. G., Angew. Chem. internat. edit. 5, 422 (1966).CrossRefGoogle Scholar
  66. 114.
    Zachau, H. G., D. Dütting und H. Feldmann: The Structures of Two Serine Transfer Ribonucleic Acids. Z. physiol. Chem. 347, 212 (1966).CrossRefGoogle Scholar
  67. 115.
    Zachau, H. G., D. Dütting und H. Feldmann: On the Primary Structure of Transfer Ribonucleic Acids. In: D. Shugar (ed.), Properties and Function of Genetic Elements, p. 271. Sympos. Federat. Europ. Biochem. Soc, Warsaw 1966. New York: Academic Press. 1967.Google Scholar
  68. 116.
    Zachau, H. G., D. Dütting, H. Feldmann, F. Melchers and W. Karau: Serine Specific Transfer Ribonucleic Acids. Comparison of Nucleotide Sequences and Secondary Structure Models. Cold Spring Harbor Sympos. Quant. Biol. 31, 417 (1966).Google Scholar
  69. 117.
    Zachau, H. G., D. Dütting, F. Melchers, H. Feldmann and R. Thiebe: On Serine-Specific Transfer Ribonucleic Acids. In: H. Tuppy (ed.), Ribonucleic Acid Structure and Function, p. 21. Sympos. Federat. Europ. Biochem. Soc, Vienna 1965. Oxford: Pergamon Press. 1966.Google Scholar
  70. 118.
    Zachau, H. G., M. Tada, W. B. Lawson und M. Schweiger: Fraktionierung der löslichen Ribonucleinsäure. Biochim. Biophys. Acta 53, 221 (1961).CrossRefGoogle Scholar
  71. 119.
    Zamir, A., R. W. Holley and M. Marquisee: Evidence for the Occurrence of a Common Pentanucleotide Sequence in the Structures of Transfer Ribonucleic Acids. J. Biol. Chem. 240, 1267 (1965).Google Scholar
  72. 120.
    Zubay, G.: The Isolation and Fractionation of Soluble Ribonucleic Acid. J. Mol. Biol. 4, 347 (1962).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Wien 1968

Authors and Affiliations

  • Dieter Dütting
    • 1
  1. 1.TübingenDeutschland

Personalised recommendations