Advertisement

Insulin

Structure, Synthesis and Biosynthesis of the Hormone
  • Anthony C. Trakatellis
  • Gerald P. Schwartz
Part of the Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 26)

Abstract

Insulin, a protein hormone indispensable for regulation of blood sugar, is produced by the β-cells of the islets of pancreas. The islet formations were described in 1867 by Paul Langerhans; and in 1889 Mering and Minkowski (94) observed that removal of the pancreas caused diabetes in experimental animals. This observation signaled the beginning of the fascinating history of insulin, marked through the years by intensive investigations and brilliant achievements. Laguesse (79) advanced the speculation that the islets of Langerhans were organs of internal secretion. OPIE (100, 101) observed that the pathological pancreatic changes associated with diabetes were localized in the islets. Lane (80) was the first to differentiate the α- and β-cells of the islets and Homans (41) found that the β-cells are chiefly affected in diabetes. The climax of these investigations was the isolation of insulin in 1921 by Banting and Best (5, 6) and the crystallization of this hormone by Abel (1a) in 1926.

Abbreviations

A-SSO3-

S-sulfonated derivative of the A chain

B-SSO3-

S-sulfonated derivative of the B chain

Bz

Benzyl

ONBz

P-Nitrobenzyl ester

OBz

Benzyl ester

Z

Carbobenzoxy

OMe

Methyl ester

OPNP

P-Nitrophenyl ester

OBu

t-Butyl ester

Ac

Acetyl

Tos

P-Toluenesulfonyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anfinsen, C. B. and E. Haber: Studies on the Reduction and Re-formation of Protein Disulfide Bonds. J. Biol. Chem. 236, 1361 (1961).Google Scholar
  2. 1a.
    Abel, J. J.: Crystalline Insulin. Proc. Nat. Acad. Sci. (USA) 12, 132 (1926).Google Scholar
  3. 2.
    Bailey, J. L.: The Preparation of Proteins and Peptides Containing S-Sul-fonate Groups. Biochem. J. 67, 21 P (1957).Google Scholar
  4. 3.
    Bailey, J. L. and R. D. Cole: Studies on the Reaction of Sulfite with Proteins. J. Biol. Chem. 234, 1733 (1959).Google Scholar
  5. 4.
    Baldesten, A.: Separation of the Aminoethylated A and B Chains of Insulin. Acta Chem. Scand. 20, 270 (1966).Google Scholar
  6. 5.
    Banting, F. G. and C. H. Best: Internal Secretion of Pancreas. J. Lab. Clin. Med. 7, 251 (1922).Google Scholar
  7. 6.
    Banting, F. G., C. H. Best, J. B. Collip and J. J. MacLeod: The Preparation of Pancreatic Extracts Containing Insulin. Proc. Trans. Roy. Soc. Canada [3] 16, 27 (1922).Google Scholar
  8. 7.
    Bergmann, W.: Innersekretorische Drüsen. I. Schilddrüse — Epithelkörperchen — Langerhanssche Inseln. In: W. v. Möllendorff (ed.), Handbuch der mikroskopischen Anatomie des Menschen, Bd. 6, 2. Teil, S. 263. Berlin: Springer-Verlag. 1939.Google Scholar
  9. 8.
    Bodanszky, M. and V. du Vigneaud: A Method of Synthesis of Long Peptide Chains Using a Synthesis of Oxytocin as an Example. J. Amer. Chem. Soc. 81, 5688 (1959).Google Scholar
  10. 9.
    Bromer, W. W. and R. E. Chance: Preparation and Characterization of Desocta-peptide-insulin. Biochim. Biophys. Acta 133, 219 (1967).Google Scholar
  11. 10.
    Bromer, W. W., S. K. Sheehan, A. W. Berns and E. R. Arquilla: Preparation and Properties of Fluoresceinthiocarbamyl Insulins. Biochemistry 6, 2378 (1967).Google Scholar
  12. 11.
    Brown, H., F. Sanger and R. Kitai: The Structure of Pig and Sheep Insulins. Biochem. J. 60, 556 (1955).Google Scholar
  13. 12.
    Canfield, R. E. and C. B. Anfinsen: Concepts and Experimental Approaches in the Determination of the Primary Structure of Proteins. In: H. Neurath, The Proteins, Vol. I, p. 311. New York: Academic Press. 1963.Google Scholar
  14. 13.
    Carpenter, F. H.: Relationship of Structure to Biological Activity of Insulin as Revealed by Degradative Studies. Amer. J. Med. 40, 750 (1966).Google Scholar
  15. 14.
    Carpenter, F. H. and A. Chrambach: On the Amide Content of Insulin Fractions Isolation by Partition Column Chromatography and Countercurrent Distribution. J. Biol. Chem. 237, 404 (1962).Google Scholar
  16. 15.
    Carpenter, F. H. and S. L. Hayes: Electrophoresis on Cellulose Acetate of Insulin and Insulin Derivatives. Correlation with Behavior on Countercurrent Distribution and Partition Column Chromatography. Biochemistry 2, 1272 (1963).Google Scholar
  17. 16.
    Carr, F. H., K. Culhane, A. T. Fuller and S. W. F. Underhill: A Reversible Inactivation of Insulin. Biochem. J. 23, 1010 (1929).Google Scholar
  18. 17.
    Cecil, R. and U. E. Loening: The Reaction of the Disulfide Bonds of Insulin with Sodium Sulfite. Biochem. J. 66, 18P (1957).Google Scholar
  19. 18.
    Cecil, R. and J. R. McPhee: A Kinetic Study of the Reactions on Some Disulfides with Sodium Sulfite. Biochem. J. 60, 496 (1955).Google Scholar
  20. 19.
    Chen, C. C, W. T. Huang and C. I. Niu: Synthesis of the Peptide Fragment of the B-Chain of Insulin. VI. Synthesis of Derivatives of the N-Terminal Octapeptide. Sci. Sinica. 13, 1235 (1964).Google Scholar
  21. 20.
    Chrambach, A. and F. H. Carpenter: Partition Column Chromatography of Insulin. Production and Separation of Transformation Products. J. Biol. Chem. 235, 3478 (1960).Google Scholar
  22. 21.
    Clarke, H. T.: The Action of Sulfite upon Cystine. J. Biol. Chem. 97, 235 (1932).Google Scholar
  23. 22.
    Cole, R. D.: On the Transformation of Insulin in Concentrated Solutions of Urea. J. Biol. Chem. 236, 2670 (1961).Google Scholar
  24. 23.
    Crestfield, A. M., S. Moore and W. H. Stein: The Preparation and Enzymatic Hydrolysis of Reduced and S-Carboxymethylated Proteins. J. Biol. Chem. 238, 622 (1963).Google Scholar
  25. 24.
    Crestfield, A. M., J. Skupin, S. Moore and W. H. Stein: Reduction of Disulfide Bonds in Proteins by Sodium Borohydride. Federat. Proc. (Amer. Soc. Exp. Biol.) 19, 341 (1960).Google Scholar
  26. 25.
    Dillon, W. W. and R. G. Romans: Heterogeneity of Insulin. II. Chromatography of Insulin on Carboxymethyl Cellulose in Urea Containing Buffers. Canad. J. Biochem. 45, 221 (1967).Google Scholar
  27. 26.
    Dixon, G. H. and A. C. Wardlaw: Regeneration of Insulin Activity from the Separated and Inactive A and B Chains. Nature 188, 721 (1960).Google Scholar
  28. 27.
    Du, Y. C, R. Q. Jiang and C. L. Tsou: Conditions for Successful Resynthesis of Insulin from its Glycyl and Phenylalanyl Chains. Sci. Sinica 14, 229 (1965).Google Scholar
  29. 28.
    Du, Y. C, Y. S. Zhang, Z. X. Lu and C. L. Tsou: Resynthesis of Insulin from its Glycyl and Phenylalanyl Chains. Sci. Sinica 10, 84 (1961).Google Scholar
  30. 29.
    Epstein, C. J. and C. B. Anfinsen: The Use of Gel Filtration in the Isolation and Purification of Beef Insulin. Biochemistry 2, 461 (1963).Google Scholar
  31. 30.
    Evans, R. L. and H. A. Saroff: A Physiologically Active Guanidinated Derivative of Insulin. J. Biol. Chem. 228, 295 (1957).Google Scholar
  32. 31.
    Fraenkel-Conrat, H., J. I. Harris and A. L. Levy: Recent Developments in Techniques for Terminal and Sequence Studies in Peptides and Proteins. In: D. Glick (ed.), Methods of Biochemical Analysis, Vol. II, p. 359. New York: Interscience. 1955.Google Scholar
  33. 32.
    Fraenkel-Conrat, J. and H. Fraenkel-Conrat: The Essential Groups of Insulin. Biochim. Biophys. Acta. 5, 89 (1950).Google Scholar
  34. 33.
    Glendening, M. B., D. M. Greenberg and H. Fraenkel-Conrat: Biologically Active Insulin Sulfate. J. Biol. Chem. 167, 125 (1947).Google Scholar
  35. 34.
    Hama, H., K. Titani, S. Sakaki and K. Narita: The Amino Acid Sequence of Fin Whale Insulin. J. Biochem. (Tokyo) 56, 285 (1964).Google Scholar
  36. 35.
    Harfenist, E. J. and L. C. Craig: Countercurrent Distribution of Insulin. J. Amer. Chem. Soc. 73, 877 (1951).Google Scholar
  37. 36.
    Harfenist, E. J. and L. C. Craig: Countercurrent Distribution Studies with Insulin. J. Amer. Chem. Soc. 74, 3083 (1952).Google Scholar
  38. 37.
    Harfenist, E. J. and L. C. Craig: The Molecular Weight of Insulin. J. Amer. Chem. Soc. 74, 3087 (1952).Google Scholar
  39. 38.
    Harris, J. I. and C. H. Li: The Biological Activity of Enzymatic Digests of Insulin. J. Amer. Chem. Soc. 74, 2945 (1952).Google Scholar
  40. 39.
    Harris, J. I., F. Sanger and M. A. Naughton: Species Differences in Insulin. Arch. Biochem. Biophys. 65, 427 (1956).Google Scholar
  41. 40.
    Hofmann, K. and P. G. Katsoyannis: Synthesis and Function of Peptides of Biological Interest. In: H. Neurath (ed.), The Proteins, Vol. I, p. 53. New York: Academic Press. 1963.Google Scholar
  42. 41.
    Homans, J.: Degeneration of the Islands of Langerhans Associated with Experimental Diabetes in the Cat. J. Med. Res. 30, 49 (1914).Google Scholar
  43. 42.
    Humbel, R. E.: Studies on Isolated Islets of Langerhans (Brockmann’s Bodies) of Teleost Fishes. II. Evidence for Insulin Biosynthesis in vitro. Biochim. Biophys. Acta 74, 96 (1963).Google Scholar
  44. 43.
    Humbel, R. E.: Biosynthesis of the Two Chains of Insulin. Proc. Nat. Acad. Sci. (USA) 53, 853 (1965).Google Scholar
  45. 44.
    Humbel, R. E.: Biosynthesis of Insulin. Amer. J. Med. 40, 672 (1966).Google Scholar
  46. 45.
    Humbel, R. E. and A. M. Crestfield: Isolation and Partial Structural Analysis of Insulin from the Separate Islet Tissue of Lophius piscatorius. Biochemistry 4, 1044 (1965).Google Scholar
  47. 46.
    Humbel, R. E. and A. E. Renold: Studies on Isolated Islets of Langerhans (Brockmann’s Bodies) of Teleost Fishes. I. Metabolic Activity in vitro. Biochim. Biophys. Acta 74, 84 (1963).Google Scholar
  48. 47.
    Ishihara, Y., T. Saito, Y. Ito and M. Fujino: Structure of Sperm-and Sei-Whale Insulins and their Breakdown by Whale Pepsin. Nature 181, 1468 (1958).Google Scholar
  49. 48.
    Katsoyannis, P. G.: Peptide Synthesis and Protein Structure. J. Polymer Sci. 49, 51 (1961).Google Scholar
  50. 49.
    Katsoyannis, P. G.: Synthetic Studies on the A and B Chains of Insulin. Vox Sanguinis 9, 227 (1964). Presented as the first Edwin J. Cohn Memorial Lecture of the 15th Annual Scientific Conference of Protein Foundation on November 25, 1963.Google Scholar
  51. 50.
    Katsoyannis, P. G.: The Synthesis of the A and B Chains of Insulin and their Combination to Generate Insulin Activity. Excerpta Med., Intern. Congr. Ser. 83, 1216 (1964).Google Scholar
  52. 51.
    Katsoyannis, P. G.: The Chemical Synthesis of Human and Sheep Insulin. Amer. J. Med. 40, 652 (1966).Google Scholar
  53. 52.
    Katsoyannis, P. G.: Synthesis of Insulin: Availability of A and B Chains Readily Leads to the Synthesis of this Protein. Science 154, 1509 (1966).Google Scholar
  54. 53.
    Katsoyannis, P. G.: Synthetic Insulins. Recent Progr. Hormone Res. 23, 505 (1967).Google Scholar
  55. 54.
    Katsoyannis, P. G.: Synthetic Insulins. 6th Congr. Intern. Diabetes Fed., Stockholm 1967. Excerpta Med., Intern. Congr. Ser. (in press).Google Scholar
  56. 55.
    Katsoyannis, P. G., K. Fukuda and A. Tometsko: Insulin Peptides. VI. The Synthesis of a Partially Protected Nonapeptide Corresponding to the First Nine Amino Acid Residues of the A Chain of Insulin. J. Amer. Chem. Soc. 85, 1681 (1963).Google Scholar
  57. 56.
    Katsoyannis, P. G., K. Fukuda, A. Tometsko, K. Suzuki and M. Tilak: Insulin Peptides. X. The Synthesis of the B Chain of Insulin and its Combination with Natural or Synthetic A Chain to Generate Insulin Activity. J. Amer. Chem. Soc. 86, 930 (1964).Google Scholar
  58. 57.
    Katsoyannis, P. G., K. Suzuki and A. Tometsko: Insulin Peptides. IV. The Synthesis of a Protected Decapeptide Containing the C-Terminal Sequence of the A Chain of Insulin. J. Amer. Chem. Soc. 85, 1139 (1963).Google Scholar
  59. 58.
    Katsoyannis, P. G. and M. Tilak: Insulin Peptides. VIII. A Synthetic Hepta-decapeptide Derivative Corresponding to the C-Terminal Sequence of the B Chain of Insulin. J. Amer. Chem. Soc. 85, 4028 (1963).Google Scholar
  60. 59.
    Katsoyannis, P. G. and A. Tometsko: Insulin Synthesis by Recombination of A and B Chains: a Highly Efficient Method. Proc. Nat. Acad. Sci. (USA) 55, 1554 (1966).Google Scholar
  61. 60.
    Katsoyannis, P. G., A. Tometsko and K. Fukuda: Insulin Peptides. IX. The Synthesis of the A Chain of Insulin and its Combination with Natural B Chain to Generate Insulin Activity. J. Amer. Chem. Soc. 85, 2863 (1963).Google Scholar
  62. 61.
    Katsoyannis, P. G., A. Tometsko, J. Ginos and M. Tilak: Insulin Peptides. XI. The Synthesis of the B Chain of Human Insulin and its Combination with the Natural A Chain of Bovine Insulin to Generate Insulin Activity. J. Amer. Chem. Soc. 88, 164 (1966).Google Scholar
  63. 62.
    Katsoyannis, P. G., A. Tometsko and C. Zalut: Insulin Peptides. XII. Human Insulin Generation by Combination of Synthetic A and B Chains. J. Amer. Chem. Soc. 88, 166 (1966).Google Scholar
  64. 63.
    Katsoyannis, P. G., A. Tometsko and C. Zalut: Insulin Peptides. XIII. The Synthesis of the Dodecapeptide Derivative Containing the C-Terminal Sequence of the A Chain of Sheep Insulin. J. Amer. Chem. Soc. 88, 5618 (1966).Google Scholar
  65. 64.
    Katsoyannis, P. G., A. Tometsko and C. Zalut: Insulin Peptides. XIV. Synthetic Peptide Derivatives Related to the N-Terminal of the A Chain of Sheep Insulin (Positions 1–9). J. Amer. Chem. Soc. 88, 5622 (1966).Google Scholar
  66. 65.
    Katsoyannis, P. G., A. Tometsko and C. Zalut: Insulin Peptides. XVII. The Synthesis of the A Chain of Human (Porcine) Insulin and its Isolation as the S-Sulfonated Derivative. J. Amer. Chem. Soc. 89, 4505 (1967).Google Scholar
  67. 66.
    Katsoyannis, P. G., A. Tometsko, C. Zalut and K. Fukuda: Insulin Peptides. XV. The Synthesis of the A Chain of Sheep Insulin and its Combination with Synthetic or Natural B Chain to Produce Insulin. J. Amer. Chem. Soc. 88, 5625 (1966).Google Scholar
  68. 67.
    Katsoyannis, P. G., A. Tometsko, C. Zalut, S. Johnson and A. C. Traka-tellis: Studies on the Synthesis of Insulin from Natural and Synthetic A and B Chains. I. Splitting of Insulin and Isolation of the S-Sulfonated Derivatives of the A and B Chains. Biochemistry 6, 2635 (1967).Google Scholar
  69. 68.
    Katsoyannis, P. G., A. C. Trakatellis, S. Johnson, C. Zalut and G. P. Schwartz: Studies on the Synthesis of Insulin from Natural and Synthetic A and B Chains. II. Isolation of Insulin from Recombination Mixtures of Natural A and B Chains. Biochemistry 6, 2642 (1967).Google Scholar
  70. 69.
    Katsoyannis, P. G., A. C. Trakatellis, C. Zalut, S. Johnson, A. Tometsko, G. P. Schwartz and J. Ginos: Studies on the Synthesis of Insulin from Natural and Synthetic A and B Chains. III. Synthetic Insulins. Biochemistry 6, 2656 (1967).Google Scholar
  71. 70.
    Katsoyannis, P. G., C. Zalut and A. M. Tometsko: Insulin Peptides. XVI. The Synthesis of a Nonapeptide and a Dodecapeptide Derivative Related to the A Chain of Human Insulin (Positions 1–9 and 10–21). J. Amer. Chem. Soc. 89, 4502 (1967).Google Scholar
  72. 71.
    Kauzmann, W.: Relative Probabilities of Isomers in Cystine-containing Randomly Coiled Polypeptides. In: R. Benesch et al. (ed.), Sulfur in Proteins, p. 93. Proc. Sympos. Falmouth, Mass., 1958. New York: Academic Press. 1959.Google Scholar
  73. 72.
    Kimmel, J. R. and A. J. Parcells: S-Carboxymethyl Papain. Federat. Proc. (Amer. Soc. Exp. Biol.) 19, 341 (1960).Google Scholar
  74. 73.
    Kotaki, A.: Studies on Insulin. III. On the Structure of the Alanyl Chain of Bonito Insulin. J. Biochem. (Tokyo) 51, 301 (1962).Google Scholar
  75. 74.
    Kotaki, A.: Studies on Insulin. V. On the Structure of the Glycyl Chain of Bonito Insulin II. J. Biochem. (Tokyo) 53, 61 (1963).Google Scholar
  76. 75.
    Kung, Y. T., Y. C. Du, W. T. Huang, C. C. Chen, L. T. Ke, S. C. Hu, R. Q. Jiang, S. Q. Chu, C. I. Niu, J. Z. Hsu, W. C. Chang, L. L. Chen, H. S. Li, Y. Wang, T. P. Loh, A. H. Chi, C. H. Li, P. T. Shi, Y. H. Yieh, K. L. Tang and H. Y. Hsing: Total Synthesis of Crystalline Insulin. Sci. Sinica 15, 544 (1966).Google Scholar
  77. 76.
    Kung, Y. T., L. T. Ke and C. I. Niu: Synthesis of the Peptide Fragments of the B Chain of Insulin. X. Synthesis of a Derivative of the C-Terminal Docosa-peptide of the B Chain of Insulin. Sci. Sinica 15, 221 (1966).Google Scholar
  78. 77.
    Kung, Y. T., L. T. Ke, C. I. Niu and S. C. Hu: Synthesis of the Peptide Fragments of the B Chain of Insulin. VII. Synthesis of a Derivative of the C-Terminal Tetradecapeptide of the B Chain of Insulin. Sci. Sinica 13, 1245 (1964).Google Scholar
  79. 78.
    Lacy, P. E. and M. Kostianovsky: Method for the Isolation of Intact Islets of Langerhans from the Rat Pancreas. Diabetes 16, 35 (1967).Google Scholar
  80. 79.
    Laguesse, E.: Sur 1a formation des Îlots de Langerhans dans le pancréas. C. R. séances soc. biol. 45, 819 (1893).Google Scholar
  81. 80.
    Lane, M. A.: The Cytological Characters of the Areas of Langerhans. Amer. J. Anat. 7, 409 (1907).Google Scholar
  82. 81.
    Langdon, R. G.: Biological Activities of the Phenylalanyl Chain of Insulin. J. Biol. Chem. 235 pc 15 (1960).Google Scholar
  83. 82.
    Lazarow, A.: Functional Characterization and Metabolic Pathways of the Pancreatic Islet Tissue. Recent Progr. Hormone Res. 19, 489 (1963).Google Scholar
  84. 83.
    Lazarow, A., G. E. Bauer and A. W. Lindall: In: S. E. Brolin (ed.), The Structure and Metabolism of the Pancreatic Islets: Protein Synthesis in Islet Tissue, p. 203. London: Pergamon Press. 1964.Google Scholar
  85. 84.
    Li, C. H.: Preparation and Properties of Dinitrophenyl-NH(ε)Insulin. Nature 178 1402 (1956).Google Scholar
  86. 85.
    Light, A. and M. V. Simpson: Studies on the Biosynthesis of Insulin. I. The Paper Chromatographic Isolation of C14-Labeled Insulin from Calf Pancreas Slices. Biochim. Biophys. Acta 20, 251 (1956).Google Scholar
  87. 86.
    Lindley, H.: The Reduction of the Disulfide Bonds of Insulin. J. Amer. Chem. Soc. 77, 4927 (1955).Google Scholar
  88. 87.
    Lindley, H.: A New Synthetic Substrate for Trypsin and its Application to the Determination of the Amino Acid Sequence of Proteins. Nature 178, 647 (1956).Google Scholar
  89. 88.
    Lugg, J. W. H.: The Application of Phospho-18-tungstic Acid (Folin’s Reagent) to the Colorimetric Determination of Cystine, Cysteine and Related Substances. I. The Reduction of Phospho-18-tungstic Acid by Various Substances. Biochem. J. 26, 2144 (1932).Google Scholar
  90. 89.
    Mcphee, J. R.: Further Studies on the Reactions of Disulfides with Sodium Sulfite. Biochem. J. 64, 22 (1956).Google Scholar
  91. 90.
    Mallory, A., G. H. Smith and K. W. Taylor: The Incorporation of Tritium-Labelled Amino Acids into Insulins in Rat Pancreas in vitro. Biochem. J. 91, 484 (1964).Google Scholar
  92. 91.
    Meienhofer, J.: Synthese der Insulinsequenz B 9–20. Z. Naturforsch. 19b, 114 (1964).Google Scholar
  93. 92.
    Meienhofer, J. und E. Schnabel: Eine Synthese der B-Kette des Insulins. Z. Naturforsch. 20b, 661 (1964).Google Scholar
  94. 93.
    Meienhofer, J., E. Schnabel, H. Bremer, O. Brinkhoff, R. Zabel, W. Sroka, H. Klostermeyer, D. Brandenburg, T. Okuda und H. Zahn: Synthese der Insulinketten und ihre Kombination zu insulinaktiven Präparaten. Z. Naturforsch. 18b, 1120 (1963).Google Scholar
  95. 94.
    Mering, J. v. und O. Minkowski: Diabetes mellitus nach Pankreasextirpation. Arch. exp. Pathol. Pharmakol. 26, 371 (1889).Google Scholar
  96. 95.
    Moskalewski, S.: Isolation and Culture of the Islets of Langerhans of the Guinea Pig. Gen. Comp. Endocrin. 5, 342 (1965).Google Scholar
  97. 96.
    Mycek, M. J., D. D. Clarke, A. Neidle and H. Waelsch: Amine Incorporation into Insulin as Catalyzed by Transglutaminase. Arch. Biochem. Biophys. 84, 528 (1959).Google Scholar
  98. 97.
    Nicol, D. S. H. W. and L. F. Smith: Amino Acid Sequence of Human Insulin. Nature 187, 483 (1960).Google Scholar
  99. 98.
    Niu, C. I., Y. T. Kung, W. T. Huang, L. T. Ke, C. C. Chen, Y. C. Chen, Y. C. Du, R. Q. Jiang, C. L. Tsou, S. C. Hu, S. Q. Chu and K. Z. Wang: Successful Synthesis of Crystalline Insulin from its Natural A Chain and the Synthetic B Chain. Sci. Sinica 14, 1386 (1965).Google Scholar
  100. 99.
    Niu, C. I., Y. T. Kung, W. T. Huang, L. T. Ke, C. C. Chen, Y. C. Chen, Y. C. Du, R. Q. Jiang, C. L. Tsou, S. C. Hu, S. Q. Chu and K. Z. Wang: Synthesis of Crystalline Insulin from its Natural A Chain and the Synthetic B Chain. Sci. Sinica 15, 231 (1966).Google Scholar
  101. 100.
    Opie, E. L.: On the Relation of Chronic Interstitial Pancreatitis to the Islands of Langerhans and to Diabetes mellitus. Exper. Med. 5, 397 (1901).Google Scholar
  102. 101.
    Opie, E. L.: Diabetes mellitus Associated with Hyaline Degeneration of the Islands of Langerhans of the Pancreas. Bull. Johns Hopkins Hosp. 12, 263 (1901).Google Scholar
  103. 102.
    Pechère, J. F., G. H. Dixon, R. H. Maybury and H. Neurath: Cleavage of Disulfide Bonds in Trypsinogen and α-Chymotrypsinogen. J. Biol. Chem. 233, 1364 (1958).Google Scholar
  104. 103.
    Pierce, J. G.: Separation of the Glycyl from the Phenylalanyl Chain of Oxidized Insulin by Countercurrent Distribution. J. Amer. Chem. Soc. 77, 184(1955).Google Scholar
  105. 104.
    Pruitt, K. M., J. Cantrell and B. R. Boshell: The Effect of Insulin Derivatives on the Insulin Response of Assays in vitro. Biochim. Biophys. Acta 115, 329 (1966).Google Scholar
  106. 105.
    Pruitt, K. M., B. S. Robison and J. H. Gibbs: Study of Biological Activity Regenerated by the Oxidation of Fully Reduced Insulin. Biopolymers 4, 351 (1966).Google Scholar
  107. 106.
    Randall, S. S.: The Small-scale Preparation of Crystalline Insulin. Biochim. Biophys. Acta 90, 472 (1964).Google Scholar
  108. 107.
    Ryle, A. P., F. Sänger, L. F. Smith and R. Kitai: The Disulfide Bonds of Insulin. Biochem. J. 60, 541 (1955).Google Scholar
  109. 108.
    Sanger, F.: The Free Amino Groups of Insulin. Biochem. J. 39, 507 (1945).Google Scholar
  110. 109.
    Sanger, F.: Oxidation of Insulin by Performic Acid. Nature 160, 295 (1947).Google Scholar
  111. 110.
    Sanger, F.: Fractionation of Oxidized Insulin. Biochem. J. 44, 126 (1949).Google Scholar
  112. 111.
    Sanger, F.: The Terminal Peptides of Insulin. Biochem. J. 45, 563 (1949).Google Scholar
  113. 112.
    Sanger, F.: Chemistry of Insulin. Erit. Med. Bull. 16, 183 (1960).Google Scholar
  114. 113.
    Sanger, F. and E. O. P. Thompson: The Amino Acid Sequence of the Glycyl Chain of Insulin. 1. The Identification of Lower Peptides from Partial Hydro-lysates. Biochem. J. 53, 353 (1953).Google Scholar
  115. 114.
    Sanger, F. and E. O. P. Thompson: The Amino Acid Sequence of the Glycyl Chain of Insulin. 2. The Investigation of Peptides from Enzymic Hydrolysates. Biochem. J. 53, 366 (1953).Google Scholar
  116. 115.
    Sanger, F. and H. Tuppy: The Amino Acid Sequence in the Phenylalanyl Chain of Insulin. 1. The Idendification of Lower Peptides from Partial Hydrolysates. Biochem. J. 49, 463 (1951).Google Scholar
  117. 116.
    Sanger, F. and H. Tuppy: The Amino Acid Sequence in the Phenylalanyl Chain of Insulin. 2. The Investigation of Peptides from Enzymic Hydrolysates. Biochem. J. 49, 481 (1951).Google Scholar
  118. 117.
    Schnabel, E.: Neusynthese der Insulinsequenz B 21–30. Z. Naturforsch. 19 b, 120 (1964).Google Scholar
  119. 118.
    Schröder, E. and K. Lübke: The Peptides, Vol. I. New York: Academic Press. 1966.Google Scholar
  120. 119.
    Sela, M., F. H. White, Jr. and C. B. Anfinsen: The Reductive Cleavage of Disulfide Bonds and its Application to Problems of Protein Structure. Biochim. Biophys. Acta 31, 417 (1959).Google Scholar
  121. 120.
    Sheehan, J. C. and G. P. Hess: A New Method of Forming Peptide Bonds. J. Amer. Chem. Soc. 77, 1067 (1955).Google Scholar
  122. 121.
    Slobin, L. I. and F. H. Carpenter: Action of Carboxypeptidase-A on Bovine Insulin. Preparation of Desalanine-Desasparagine-Insulin. Biochemistry 2, 16 (1963).Google Scholar
  123. 122.
    Slobin, L. I. and F. H. Carpenter: The Labile Amide in Insulin. Preparation of Desalanine-Desamido-Insulin. Biochemistry 2, 22 (1963).Google Scholar
  124. 123.
    Slobin, L. I. and F. H. Carpenter: Kinetic Studies on the Action of Carboxypeptidase-A on Bovine Insulin and Related Model Peptides. Biochemistry 5, 499 (1966).Google Scholar
  125. 124.
    Sluyterman, L. A. Ae. and J. M. Kwestroo-Van den Bosch: Sulphation of Insulin and Electrophoresis of the Products Obtained. Biochim. Biophys. Acta 38, 102 (1960).Google Scholar
  126. 125.
    Smith, L. F.: Species Variation in the Amino Acid Sequence of Insulin. Amer. J. Med. 40, 662 (1966).Google Scholar
  127. 126.
    Steiner, D. F., D. Cunningham, L. Spigelman and B. Aten: Insulin Biosynthesis: Evidence for a Precursor. Science 157, 697 (1967).Google Scholar
  128. 127.
    Steiner, D. F. and P. E. Oyer: The Biosynthesis of Insulin and a Probable Precursor of Insulin by a Human Islet Cell Adenoma. Proc. Nat. Acad. Sci. (USA) 57, 473 (1967).Google Scholar
  129. 128.
    Stricks, W. and I. M. Kolthoff: Equilibrium Constants of the Reactions of Sulfite with Cystine and with Dithiodiglycolic Acid. J. Amer. Chem. Soc. 73, 4569 (1951).Google Scholar
  130. 129.
    Stricks, W., I. M. Kolthoff and R. C. Kapoor: Equilibrium Constants of the Reaction Between Sulfite and Oxidized Glutathione. J. Amer. Chem. Soc. 77, 2057 (1955).Google Scholar
  131. 130.
    Swan, J. M.: Thiols, Disulphides and Thiosulphates: Some New Reactions and Possibilities in Peptide and Protein Chemistry. Nature 180, 643 (1957).Google Scholar
  132. 131.
    Taylor, K. W. and D. G. Parry: The Incorporation of Tritium-Labelled Amino Acids into Insulin in Ox Pancreas in vitro. Biochem. J. 89, 94P (1963).Google Scholar
  133. 132.
    Taylor, K. W., D. G. Parry and G. H. Smith: Biosynthetic Labelling of Mammalian Insulins in vitro. Nature 203, 1144 (1964).Google Scholar
  134. 133.
    Thompson, E. O. P.: The Selective Degradation of Proteins. Adv. Organ. Chem. 1, 149 (1960).Google Scholar
  135. 134.
    Thompson, E. O. P. and I. J. O’Donnell: Quantitative Reduction of Disulfide Bonds in Proteins using High Concentrations of Mercaptoethanol. Biochim. Biophys. Acta 53, 447 (1961).Google Scholar
  136. 135.
    Thompson, E. O. P. and A. R. Thompson: Paper Chromatography in the Study of the Structure of Peptides and Proteins. Fortschr. Chem. organ. Naturstoffe 12, 270 (1955).Google Scholar
  137. 136.
    Tietze, F., G. E. Mortimore and N. R. Lomax: Preparation and Properties of Fluorescent Insulin Derivatives. Biochim. Biophys. Acta 59, 336 (1962).Google Scholar
  138. 137.
    Tsou, C. L., Y. C. Du and G. J. Xü: The Reduction of Insulin and its Benzyl Derivatives by Sodium in Liquid Ammonia and the Regeneration of Activity from the Reduced Products. Sci. Sinica 10, 332 (1961).Google Scholar
  139. 138.
    Varandani, P. T.: A Convenient Preparation of Reduced and S-Sulfonated A and B Chains of Insulin. Biochim. Biophys. Acta 127, 246 (1966).Google Scholar
  140. 139.
    Vaughan, J. R., Jr.: Acylalkyl Carbonates as Acylating Agents for the Synthesis of Peptides. J. Amer. Chem. Soc. 73, 3547 (1951).Google Scholar
  141. 140.
    Vaughan, M. and C. B. Anfinsen: Non-uniform Labeling of Insulin and Ribonuclease Synthesized in vitro. J. Biol. Chem. 211, 367 (1954).Google Scholar
  142. 141.
    Vigneaud, V. du, A. Fitch, E. Pekarek and W. W. Lockwood: The In-activation of Crystalline Insulin by Cysteine and Glutathione. J. Biol. Chem. 94, 233 (1931).Google Scholar
  143. 142.
    Voelker, I., E. Schümann und C. v. Holt: Biosynthese des Insulins. 1. Mitt. Darstellung von biosynthetisch markiertem 35S-Insulin. Biochem. Z. 335, 382 (1962).Google Scholar
  144. 143.
    Volfin, P., A. M. Chambaut, D. Ebou’-Bonis, H. Clauser, O. Brinkhoff, H. Bremer, J. Meienhofer and H. Zahn: Biological Activity of Natural and Synthetic Insulin A Chain Preparations on the Isolated Rat Diaphragm. Nature 203, 408 (1964).Google Scholar
  145. 144.
    Wang, S. S. and F. H. Carpenter: A Compositional Assay for Insulin Applied to a Search for Proinsulin. J. Biol. Chem. 240, 1619 (1965).Google Scholar
  146. 145.
    Wang, Y., J. Z. Hsu, W. C. Chang, L. L. Cheng, C. Y. Hsing, A. H. Chi, T. P. Loh, C. H. Li, P. T. Shi and Y. H. Yieh: A Preliminary Report on the Synthesis of the A Chain of Bovine Insulin. Sci. Sinica 13, 2030 (1964).Google Scholar
  147. 146.
    Wang, Y., J. Z. Hsu, W. C. Chang, L. L. Cheng, H. S. Li, C. Y. Hsing, P. T. Shi, T. P. Loh, A. H. Chi, C. H. Li, Y. H. Yieh and K. L. Tang: Partial Synthesis of Crystalline Bovine Insulin from Synthetic A Chain and Natural B Chain. Sci. Sinica 14, 1887 (1965).Google Scholar
  148. 147.
    Weil, L., T. S. Seibles and T. T. Herskovits: Photooxidation of Bovine Insulin Sensitized by Methylene Blue. Arch. Biochem. Biophys. 111, 308 (1965).Google Scholar
  149. 148.
    Weitzel, G., W. Schaeg, G. Boden und B. Willms: Einfluß der Photooxidation auf Histidingehalt und Aktivität von Insulin. Liebigs Ann. Chem. 689, 248 (1965).Google Scholar
  150. 149.
    Wilson, S., M. A. Aprile and L. Sasaki: Passive Cutaneous Anaphylaxis Induced in Guinea Pigs by Insulins and their Component Chains. Canad. J. Biochem. 44, 989 (1966).Google Scholar
  151. 150.
    Wilson, S., G. H. Dixon and A. C. Wardlaw: Resynthesis of Cod Insulin from its Polypeptide Chains and the Preparation of Cod-Ox “Hybrid” Insulins. Biochim. Biophys. Acta 62, 483 (1962).Google Scholar
  152. 151.
    Wintersteiner, O.: The Action of Sulfhydryl Compounds on Insulin. J. Biol. Chem. 102, 473 (1933).Google Scholar
  153. 152.
    Young, J. D. and F. H. Carpenter: Isolation and Characterization of Products Formed by the Action of Trypsin on Insulin. J. Biol. Chem. 236, 743 (1961).Google Scholar
  154. 153.
    Zabel, R. und H. Zahn: Synthese eines Pentapeptid-Derivates mit der C-terminalen Sequenz A 17–21 der Insulin-A-Kette. Z. Naturforsch. 20 b, 650 (1965).Google Scholar
  155. 154.
    Zahn, H.: Discussion. In: B. S. Leibel and G. A. Wrenshall, On the Nature and Treatment of Diabetes, p. 87. New York: Excerpta Medica Found. 1965.Google Scholar
  156. 155.
    Zahn, H., H. Bremer, W. Sroka und J. Meienhofer: Synthese eines Nona-peptid-Derivates mit der N-terminalen Sequenz A 1–9 der A-Kette des Schafinsulins. Z. Naturforsch. 20b, 646 (1965).Google Scholar
  157. 156.
    Zahn, H., H. Bremer und R. Zabel: Synthese einer teilgeschützten A-Kette des Schafinsulins. Z. Naturforsch. 20 b, 653 (1965).Google Scholar
  158. 157.
    Zahn, H., O. Brinkhoff, J. Meienhofer, E. F. Pfeiffer, H. Ditschuneit und Ch. Gloxhuber: Kombination synthetischer Insulinketten zu biologisch aktiven Präparaten. Z. Naturforsch. 20 b, 666 (1965).Google Scholar
  159. 158.
    Zahn, H., W. Danho und B. Gutte: Eine neue Synthese der A-Kette des Schafinsulins und deren Vereinigung mit natürlicher B-Kette zu kristallinem vollaktivem Insulin. Z. Naturforsch. 21b, 763 (1966).Google Scholar
  160. 159.
    Zahn, H., J. Meienhofer und H. Klostermeyer: Eine Synthese der Insulinsequenz B 1–8 mit am Imidazol-Stickstoff ungeschütztem Histidin. Z. Naturforsch. 19b, 110 (1964).Google Scholar

Copyright information

© Springer-Verlag / Wien 1968

Authors and Affiliations

  • Anthony C. Trakatellis
    • 1
  • Gerald P. Schwartz
    • 1
  1. 1.UptonUSA

Personalised recommendations