Advertisement

X-Ray Diffraction Studies of Crystalline Amino Acids, Peptides and Proteins

  • R. B. Corey
  • R. E. Marsh
Part of the Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 26)

Abstract

Three previous reviews have appeared in this Series describing the use of X-ray diffraction methods for the investigation of molecular structure: one by Kratky and Mark (4) on proteins and other natural products, one by COREY(I) on amino acids and peptides, and one by Pauling and Corey (II) on the configuration of polypeptide chains. During the 14 years that have passed since the last of these reviews, great progress has been made in X-ray diffraction techniques. As a result of these improved techniques, much more accurate and reliable data are now available concerning the dimensions of small biological molecules; in addition, detailed information concerning the structure of vastly more complex molecules is now being obtained. Whereas in 1954 structural information concerning proteins had to be deduced from knowledge of the structures of, at best, simple dipeptides, today such information is being obtained directly from crystalline proteins themselves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  1. 1.
    Corey, R. B.: X-Ray Diffraction Studies of Crystalline Amino Acids and Peptides. Fortschr. Chem. organ. Naturstoffe 8, 310 (1951).Google Scholar
  2. 2.
    Corey, R. B. and L. Pauling: Fundamental Dimensions of Polypeptide Chains. Proc. Roy. Soc. (London) B141, 10 (1953).Google Scholar
  3. 3.
    Edsall, J. T., P. J. Flory, J. C. Kendrew, A. M. Liquori, G. Nemethy, G. N. Ramachandran and H. A. Scheraga: A Proposal of Standard Conventions and Nomenclature for the Description of Polypeptide Conformations. J. Mol. Biol. 15, 399 (1966); J. Biol. Chem. 241, 1004 (1966); Biopolymers 4, 121 (1966).Google Scholar
  4. 4.
    Kratky, O. und H. Mark: Anwendung physikalischer Methoden zur Erforschung von Naturstoffen: Form und Größe dispergierter Moleküle. Rönt-genographie. Fortschr. Chem. organ. Naturstoffe I, 255 (1938).Google Scholar
  5. 5.
    Marsh, R. E. and J. Donohue: Crystal Structure Studies of Amino Acids and Peptides. Adv. Protein Chem. 22, 235 (1967).Google Scholar
  6. 6.
    Pauling, L. and R. B. Corey: Stable Configurations of Polypeptide Chains. Proc. Roy. Soc. (London) B141, 21 (1953).Google Scholar
  7. 7.
    Pauling, L. and R. B. Corey Two Hydrogen-Bonded Spiral Configurations of the Polypeptide Chain. J. Amer. Chem. Soc. 72, 5349 (1950).Google Scholar
  8. 8.
    Pauling, L. and R. B. Corey Atomic Coordinates and Structure Factors for Two Helical Configurations of Polypeptide Chains. Proc. Nat. Acad. Sci. (USA) 37, 235 (1951).Google Scholar
  9. 9.
    Pauling, L. and R. B. Corey: The Pleated Sheet; A New Layer Configuration of Polypeptide Chains. Proc. Nat. Acad. Sci. (USA) 37, 251 (1951). 10. — Configurations of Polypeptide Chains with Favored Orientations Around Single Bonds: Two New Pleated Sheets. Proc. Nat. Acad. Sci. (USA) 37, 729 (1951).Google Scholar
  10. 11.
    Pauling, L. and R. B. Corey: The Configuration of Polypeptide Chains in Proteins. Fortschr. Chem. organ. Naturstoffe 11, 180 (1954).Google Scholar

Amino Acids

  1. 12.
    Albrecht, G. and R. B. Corey: The Crystal Structure of Glycine. J. Amer. Chem. Soc. 61, 1087 (1939).Google Scholar
  2. 13.
    Buerger, M. J., E. Barney and T. Hahn: The Crystal Structure of Diglycine Hydrobromide. Z. Kristallogr. 108, 130 (1956).Google Scholar
  3. 14.
    Dawson, B.: The Crystal Structure of DL-Glutamic Acid Hydrochloride. Acta Crystallogr. 6, 31 (1953).Google Scholar
  4. 15.
    Donohue, J.: The Crystal Structure of DL-Alanine. II. Revision of Parameters by Three-Dimensional Fourier Analysis. J. Amer. Chem. Soc. 72, 949 (1950).Google Scholar
  5. 16.
    Donohue, J., L. R. Lavine and J. S. Rollett: The Crystal Structure of Histidine Hydrochloride Monohydrate. Acta Crystallogr. 9, 655 (1956).Google Scholar
  6. 17.
    Donohue, J. and K. N. Trueblood: The Crystal Structure of Hydroxy-L-Proline. II. Determination and Description of the Structure. Acta Crystallogr. 5, 419 (1952).Google Scholar
  7. 18.
    Hahn, T. and M. J. Buerger: The Crystal Structure of Diglycine Hydrochloride, 2(C2H5O2N) · HC1. Z. Kristallogr. 108, 419 (1957).Google Scholar
  8. 19.
    Hirokawa, S.: A New Modification of L-Glutamic Acid and its Crystal Structure. Acta Crystallogr. 8, 637 (1955).Google Scholar
  9. 20.
    Iitaka, Y.: The Crystal Structure of β-Glycine. Acta Crystallogr. 13, 35 (1960).Google Scholar
  10. 21.
    Iitaka, Y.: The Crystal Structure of γ-Glycine. Acta Crystallogr. 14, 1 (1961).Google Scholar
  11. 22.
    Karle, I. L. and J. Karle: An Application of the Symbolic Addition Method to the Structure of L-Arginine Dihydrate. Acta Crystallogr. 17, 835 (1964).Google Scholar
  12. 23.
    Levy, H. A. and R. B. Corey: The Crystal Structure of DL-Alanine. J. Amer. Chem. Soc. 63, 2095 (1941).Google Scholar
  13. 24.
    Marsh, R. E.: Refinement of the Crystal Structure of Glycine. Acta Crystallogr. 11, 654 (1958).Google Scholar
  14. 25.
    Mathieson, A. McL.: The Crystal Structures of the Dimorphs of DL-Methionine. Acta Crystallogr. 5, 332 (1952).Google Scholar
  15. 26.
    Mathieson, A. McL. Polymorphism of DL-Norleucine. Acta Crystallogr. 6, 399 (1953).Google Scholar
  16. 27.
    Oughton, B. M. and P. M. Harrison: The Crystal Structure of Hexagonal L-Cystine. Acta Crystallogr. 12, 396 (1959).Google Scholar
  17. 28.
    Parthasarathy, R.: The Structure of L-Valine Hydrochloride. Acta Crystallogr. 21, 422 (1966).Google Scholar
  18. 29.
    Peterson, J., L. K. Steinrauf and L. H. Jensen: Direct Determination of the Structure of L-Cystine Dihydrobromide. Acta Crystallogr. 13, 104 (1960).Google Scholar
  19. 30.
    Ramachandran, G. N., S. K. Mazumdar, K. Venkatesan and A. V. Lak-shiminarayanan: Conformation of the Arginine Side-Group and its Variations. J. Mol. Biol. 15, 232 (1966).Google Scholar
  20. 31.
    Raman, S.: Determination of the Structure and Absolute Configuration of L(+)-Lysine Hydrochloride Dihydrate by the Anomalous-Dispersion Method. Z. Kristallogr. III, 301 (1959).Google Scholar
  21. 32.
    Shoemaker, D. P., R. E. Barieau, J. Donohue and C.-S. Lu: The Crystal Structure of DL-Serine. Acta Crystallogr. 6, 241 (1953).Google Scholar
  22. 33.
    Shoemaker, D. P., J. Donohue, V. Schomaker and R. B. Corey: The Crystal Structure of Ls-Threonine. J. Amer. Chem. Soc. 72, 2328 (1950).Google Scholar
  23. 34.
    Simpson, H. J., Jr. and R. E. Marsh: The Crystal Structure of L-Alanine. Acta Crystallogr. 20, 550 (1966).Google Scholar
  24. 35.
    Steinrauf, L. K., J. Peterson and L. H. Jensen: The Crystal Structure of L-Cystine Hydrochloride. J. Amer. Chem. Soc. 80, 3835 (1958).Google Scholar
  25. 36.
    Subramanian, E.: The Crystal Structure of L-Leucine Hydrobromide. Acta Crystallogr. 22, 910 (1967).Google Scholar
  26. 37.
    Trommel, J. and J. M. Bijvouet: Crystal Structure and Absolute Configuration of the Hydrochloride and Hydrobromide of D(—)-Isoleucine. Acta Crystallogr. 7, 703 (1954).Google Scholar
  27. 38.
    Wright, D. A. and R. E. Marsh: The Crystal Structure of L-Lysine Mono hydrochloride Dihydrate. Acta Crystallogr. 15, 54 (1962).Google Scholar
  28. 39.
    Zussman, J.: The Structure of Hydroxyproline. Acta Crystallogr. 4, 493 (1951).Google Scholar

Peptides

  1. 40.
    Biswas, A. B., E. W. Hughes, B. D. Sharma and J. W. Wilson: The Crystal Structure of α-Glycylglycine. Acta Crystallogr. B24, 40 (1968).Google Scholar
  2. 41.
    Degeilh, R. and R. E. Marsh: A Refinement of the Crystal Structure of Diketopiperazine (2,5-Piperazinedione). Acta Crystallogr. 12, 1007 (1959).Google Scholar
  3. 42.
    Dyer, H. B.: The Crystal Structure of Cysteylglycine-Sodium Iodide. Acta Crystallogr. 4, 42 (1951).Google Scholar
  4. 43.
    Fridrichsons, J. and A. McL. Mathieson: The Crystal Structure of Tosyl-L-prolyl-L-hydroxyproline Monohydrate. Acta Crystallogr. 15, 569 (1962).Google Scholar
  5. 44.
    Hughes, E. W. and W. J. Moore: The Crystal Structure ofβ-Glycylglycine. J. Amer. Chem. Soc. 71, 2618 (1949).Google Scholar
  6. 45.
    Karle, I. L. and J. Karle: An Application of a New Phase Determination Procedure to the Structure of Cyclo(hexaglycyl) Hemihydrate. Acta Crystallogr. 16, 969 (1963).Google Scholar
  7. 46.
    Leung, Y. C. and R. E. Marsh: The Crystal Structure of L-Leucyl-L-Prolyl-Glycine. Acta Crystallogr. 11, 17 (1958).Google Scholar
  8. 47.
    Marsh, R. E. and J. P. Glusker: The Crystal Structure of Glycylphenyl-alanyl-glycine. Acta Crystallogr. 14, 1110 (1961).Google Scholar
  9. 48.
    Pasternak, R. A.: The Crystal Structure of Glycyl-L-Tryptophan Dihydrate. Acta Crystallogr. 9, 341 (1956).Google Scholar
  10. 49.
    Pasternak, R. A., L. Katz and R. B. Corey: The Crystal Structure of Glycyl-L-Asparagine. Acta Crystallogr. 7, 225 (1954).Google Scholar
  11. 50.
    Smits, D. W. and E. H. Wiebenga: The Crystal Structure of Glycyl-L-Tyrosine Hydrochloride. Acta Crystallogr. 6, 531 (1953).Google Scholar
  12. 51.
    Tranter, T. C.: Crystal Structure of Glycyl-L-Alanine Hydrochloride. Nature 177, 37 (1956).Google Scholar
  13. 52.
    Wright, W. B.: The Crystal Structure of Glutathione. Acta Crystallogr. 11, 632 (1958).Google Scholar
  14. 53.
    Yakel, H. L., Jr. and E. W. Hughes: The Crystal Structure of N,N′-Diglycyl-L-Cystine Dihydrate. Acta Crystallogr. 7, 291 (1954).Google Scholar

Proteins

  1. 54.
    Aschaffenburg, R. and J. Drewry: Occurrence of Different β-Lactoglobulins in Cow’s Milk. Nature 176, 218 (1955).Google Scholar
  2. 55.
    Aschaffenburg, R. and J. Drewry: Genetics of the β-Lactoglobulins of Cow’s Milk. Nature 180, 376 (1957).Google Scholar
  3. 56.
    Aschaffenburg, R., D. W. Green and R. M. Simmons: Crystal Forms of β-Lactoglobulin. J. Mol. Biol. 13, 194 (1965).Google Scholar
  4. 57.
    Avey, H. P., M. O. Boles, C. H. Carlisle, S. A. Evans, S. J. Morris, R. A. Palmer, B. A. Woolhouse and S. Shall: Structure of Ribonuclease. Nature 213, 557 (1967).Google Scholar
  5. 58.
    Bernal, J. D., I. Fankuchen and M. F. Perutz: An X-Ray Study of Chymo-trypsin and Hemoglobin. Nature 141, 523 (1938).Google Scholar
  6. 59.
    Blake, C. C. F., R. H. Fenn, A. C. T. North, D. C. Phillips and R. J. Poljak: Structure of Lysozyme. A Fourier Map of the Electron Density at 6 Å Resolution Obtained by X-Ray Diffraction. Nature 196, 1173 (1962).Google Scholar
  7. 60.
    Blake, C. C. F., L. N. Johnson, G. A. Mair, A. C. T. North, D. C. Phillips and V. R. Sarma: Crystallographic Studies of the Activity of Hen Egg-white Lysozyme. Proc. Roy. Soc. (London) B167, 378 (1967).Google Scholar
  8. 61.
    Blake, C. C. F., D. F. Koenig, G. A. Mair, A. C. T. North, D. C. Phillips and V. R. Sarma: Structure of Hen Egg-white Lysozyme. A Three-dimensional Fourier Synthesis at 2 Å Resolution. Nature 206, 757 (1965).Google Scholar
  9. 62.
    Blake, C. C. F., G. A. Mair, A. C. T. North, D. C. Phillips and V. R. Sarma: On the Conformation of the Egg-white Lysozyme Molecule. Proc. Roy. Soc. (London) B167, 365 (1967).Google Scholar
  10. 63.
    Blow, D. M.: The Structure of Hemoglobin. VII. Determination of Phase Angles in the Non-centrosymmetric [100] Zone. Proc. Roy. Soc. (London) A247, 302 (1958).Google Scholar
  11. 64.
    Blow, D. M., M. G. Rossmann and B. A. Jeffery: The Arrangement of α-Chymotrypsin Molecules in the Monoclinic Crystal Form. J. Mol. Biol. 8, 65 (1964).Google Scholar
  12. 65.
    Bluhm, M. M.F G. Bodo, H. M. Dintzis and J. C. Kendrew: The Crystal Structure of Myoglobin. IV. A Fourier Projection of Sperm-Whale Myoglobin by the Method of Isomorphous Replacement. Proc. Roy. Soc. (London) A246, 369 (1958).Google Scholar
  13. 66.
    Bodo, G., H. M. Dintzis, J. C. Kendrew and H. W. Wyckoff: The Crystal Structure of Myoglobin. V. A Low-Resolution Three-Dimensional Fourier Synthesis of Sperm-Whale Myoglobin Crystals. Proc. Roy. Soc. (London) A 253, 70 (1959).Google Scholar
  14. 67.
    Boyes-Watson, J., E. Davidson and M. F. Perutz: An X-Ray Study of Horse Methemoglobin. I. Proc. Roy. Soc. (London) A191, 83 (1947).Google Scholar
  15. 68.
    Boyes-Watson, J. and M. F. Perutz: X-Ray Analysis of Hemoglobin. Nature 151, 714 (1943).Google Scholar
  16. 69.
    Bragg, W. L., E. R. Howells and M. F. Perutz: Arrangement of Polypeptide Chains in Horse Methemoglobin. Acta Crystallogr. 5, 136 (1952).Google Scholar
  17. 70.
    Bragg, W. L., E. R. Howells and M. F. Perutz: The Structure of Hemoglobin. I. Proc. Roy. Soc. (London) A222, 33 (1954)Google Scholar
  18. 71.
    Bragg, W. L. and M. F. Perutz: The External Form of the Hemoglobin Molecule. I. Acta Crystallogr. 5, 227 (1952).Google Scholar
  19. 72.
    Bragg, W. L. and M. F. Perutz: The External Form of the Hemoglobin Molecule. II. Acta Crystallogr. 5, 323 (1952).Google Scholar
  20. 73.
    Bragg, W. L. and M. F. Perutz: The Structure of Hemoglobin. Proc. Roy. Soc. (London) A213, 425 (1952).Google Scholar
  21. 74.
    Bragg, W. L. and M. F. Perutz: The Structure of Hemoglobin. VI. Fourier Projection on the 010 Plane. Proc. Roy. Soc. (London) A225, 315 (1954).Google Scholar
  22. 75.
    Corey, R. B., R. H. Stanford, Jr., R. E. Marsh, Y. C. Leung and L. M. Kay: An X-Ray Investigation of Wet Lysozyme Chloride Crystals. Preliminary Report on Crystals Containing Complex Ions of Niobium and Tantalum. Acta Crystallogr. 15, 1157 (1962).Google Scholar
  23. 76.
    Cullis, A. F., H. Muirhead, M. F. Perutz, M. G. Rossmann and A. C. T. North: The Structure of Hemoglobin. VIII. A Three-Dimensional Fourier Synthesis at 5.5 Å Resolution; Determination of the Phase Angles. Proc. Roy. Soc. (London) A265, 15 (1961).Google Scholar
  24. 77.
    Cullis, A. F., H. Muirhead, M. F. Perutz, M. G. Rossmann and A. C. T. North: The Structure of Hemoglobin. IX. A Three-Dimensional Fourier Synthesis at 5.5 Å Resolution; Description of the Structure. Proc. Roy. Soc. (London) A265, 161 (1962).Google Scholar
  25. 78.
    Crowfoot, D.: The Crystal Structure of Insulin. I. The Investigation of Air-Dried Insulin Crystals. Proc. Roy. Soc. (London) A164, 580 (1938).Google Scholar
  26. 79.
    Dickerson, R. E., M. L. Kopka, C. L. Borders, Jr., J. C. Varnum, J. E. Weinzierl and E. Margoliash: A Centrosymmetric Projection at 4 Å of Horse Heart Oxidized Cytochrome c. J. Mol. Biol. 29, 77 (1967).Google Scholar
  27. 80.
    Dickerson, R. E., M. L. Kopka, J. E. Weinzierl, J. C. Varnum, D. Eisen-berg and E. Margoliash: Location of the Heme in Horse Heart Ferricyto-chrome c by X-Ray Diffraction. J. Biol. Chem. 242, 3015 (1967).Google Scholar
  28. 81.
    Dickerson, R. E., M. L. Kopka, J. E. Weinzierl, J. C. Varnum, D. Eisen-berg and E. Margoliash: An Interpretation of a Two-Derivative 4 Å Resolution Electron Density Map of Horse Heart Ferricytochrome c. Sympos. Cyto-chromes, Osaka, Japan, 1967.Google Scholar
  29. 82.
    Dodson, E., M. M. Harding, D. C. Hodgkin and M. G. Rossmann: The Crystal Structure of Insulin. III. Evidence for a 2-Fold Axis in Rhombohedral Zinc Insulin. J. Mol. Biol. 16, 227 (1966).Google Scholar
  30. 83.
    Drenth, J. and J. N. Jansonius: The Unit Cell of Mercuripapain Crystals. Nature 184, 1718 (1959).Google Scholar
  31. 84.
    Drenth, J., J. N. Jansonius, R. Koekoek, J. Marrink, J. Munnik and B. G. Wolthers: The Crystal Structure of Papain C. I. Two-Dimensional Fourier Syntheses. J. Mol. Biol. 5, 398 (1962).Google Scholar
  32. 85.
    Drenth, J., J. N. Jansonius and B. G. Wolthers: The Crystal Structure of Papain. II. A Three-Dimensional Fourier Synthesis at 4.5 Å Resolution. J. Mol. Biol. 24, 449 (1967).Google Scholar
  33. 86.
    Edmundson, A. B. and C. H. W. Hirs: The Amino-Acid Sequence of Sperm Whale Myoglobin. Chemical Studies. Nature 190, 663 (1961).Google Scholar
  34. 87.
    Einstein, J. R., A. S. McGavin and B. W. Low: Insulin. A Probable Gross Molecular Structure. Proc. Nat. Acad. Sci. (USA) 49, 74 (1963).Google Scholar
  35. 88.
    Fridborg, K., K. K. Kannan, A. Liljas, J. Lundin, B. Strandberg, R. Strandberg, B. Tilander and G. Wiren: Crystal Structure of Human Erythrocyte Carbonic Anhydrase C. III. Molecular Structure of the Enzyme and of One Enzyme-Inhibitor Complex at 5.5 Å Resolution. J. Mol. Biol. 25, 505 (1967).Google Scholar
  36. 89.
    Green, D. W. and R. Aschaffenburg: Twofold Symmetry of the β-Lacto-globulin Molecule in Crystals. J. Mol. Biol. 1, 54 (1959).Google Scholar
  37. 90.
    Green, D. W., V. M. Ingram and M. F. Perutz: The Structure of Hemoglobin. IV. Sign Determination by the Isomorphous Replacement Method. Proc. Roy. Soc. (London) A225, 287 (1954).Google Scholar
  38. 91.
    Green, D. W., A. C. T. North and R. Aschaffenburg: Crystallography of the β-Lactoglobulins of Cows’ Milk. Biochim. Biophys. Acta 21, 583 (1956).Google Scholar
  39. 92.
    Harding, M. M., D. C. Hodgkin, A. F. Kennedy, A. O’Connor and P. D. J. Weitzmann: The Crystal Structure of Insulin. II. An Investigation of Rhombohedral Zinc Insulin Crystals and a Report of Other Crystalline Forms. J. Mol. Biol. 16, 212 (1966).Google Scholar
  40. 93.
    Hartsuck, J. A., M. L. Ludwig, H. Muirhead, T. A. Steitz and W. N. Lips-comb: Carboxypeptidase A. II. The Three-Dimensional Electron Density Map at 6 Å Resolution. Proc. Nat. Acad. Sci. (USA) 53, 396 (1965).Google Scholar
  41. 94.
    Ingram, D. J. E., J. F. Gibson and M. F. Perutz: Electron Spin Resonance in Myoglobin and Hemoglobin. Orientation of the Four Herne Groups in Hemoglobin. Nature 178, 905 (1956).Google Scholar
  42. 95.
    Johnson, L. N. and D. C. Phillips: Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis at 6 Å Resolution. Nature 206, 761 (1965).Google Scholar
  43. 96.
    Kartha, G., J. Bello and D. Harker: Tertiary Structure of Ribonuclease. Nature 213, 862 (1967).Google Scholar
  44. 97.
    Kendrew, J. C.: Preliminary X-Ray Data for Horse and Whale Myoglobins. Acta Crystallogr. 1, 336 (1948).Google Scholar
  45. 98.
    Kendrew, J. C.: Myoglobin and the Structure of Proteins. Science 139, 1259 (1963).Google Scholar
  46. 99.
    Kendrew, J. C.: The Molecular Structure of Myoglobin and Hemoglobin. In: M. Sala (Ed.), New Perspectives in Biology, p. 18. Amsterdam-New York-London: Elsevier Publ. Co. 1964.Google Scholar
  47. 100.
    Kendrew, J. C, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff and D. C. Phillips: A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature 181, 662 (1958)Google Scholar
  48. 111.
    Kendrew, J. C, R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, D. C. Phillips and V. C. Shore: Structure of Myoglobin. A Three-Dimensional Fourier Synthesis at 2 Å Resolution. Nature 185, 422 (1960).Google Scholar
  49. 102.
    Kendrew, J. C. and R. G. Parrish: The Crystal Structure of Myoglobin. III. Sperm Whale Myoglobin. Proc. Roy. Soc. (London) A238, 305 (1956).Google Scholar
  50. 103.
    Kendrew, J. C, R. G. Parrish, J. R. Marrack and E. S. Orlans: The Species Specificity of Myoglobin. Nature 174, 946 (1954).Google Scholar
  51. 104.
    Kendrew, J. C, H. C. Watson, B. E. Strandberg, R. E. Dickerson, D. C. Phillips and V. C. Shore: The Amino-Acid Sequence of Sperm Whale Myoglobin. A Partial Determination by X-Ray Methods, and Its Correlation with Chemical Data. Nature 190, 666 (1961).Google Scholar
  52. 105.
    Kraut, J., D. F. High and L. C. Sieker: Chymotrypsinogen: Increased Resolution and Absolute Configuration. Proc. Nat. Acad. Sci. (USA) 51, 839(1964).Google Scholar
  53. 106.
    Kraut, J., L. C. Sieker, D. F. High and S. T. Freer: Chymotrypsinogen: A Three-Dimensional Fourier Synthesis at 5 Å Resolution. Proc. Nat. Acad. Sci. (USA) 48, 1417 (1962).Google Scholar
  54. l07.
    Kraut, J., H. T. Wright, M. Kellerman and S. T. Freer: πδ-,-, and γ-Chymo-trypsin: Three-Dimensional Electron Density and Difference Maps at 5 ÅResolution, and Comparison with Chymotrypsinogen. Proc. Nat. Acad. Sci.(USA) 58, 304 (1967).Google Scholar
  55. 108.
    Lipscomb, W. N., J. C. Coppola, J. A. Hartsuck, M. L. Ludwig, H. Muir-head, J. Searl and T. A. Steitz: The Structure of Carboxypeptidase A. III. Molecular Structure at 6 Å Resolution. J. Mol. Biol. 19, 423 (1966).Google Scholar
  56. 109.
    Ludwig, M. L., J. A. Hartsuck, T. A. Steitz, H. Muirhead, J. C. Coppola, G. N. Reeke and W. N. Lipscomb: The Structure of Carboxypeptidase A. IV. Preliminary Results at 2.8 Å Resolution, and a Substrate Complex at 6 Å Resolution. Proc. Nat. Acad. Sci. (USA) 57, 511 (1967).Google Scholar
  57. 110.
    Ludwig, M. L., I. C. Paul, G. S. Pawley and W. N. Lipscomb: The Structure of Carboxypeptidase A. I. A Two-Dimensional Superposition Function. Proc. Nat. Acad. Sci. (USA) 50, 282 (1963).Google Scholar
  58. 111.
    Marsh, R. E., R. B. Corey and L. Pauling: An Investigation of the Structure of Silk Fibroin. Biochim. Biophys. Acta 16, 1 (1955).Google Scholar
  59. 112.
    Matthews, B. W., P. B. Sigler, R. Henderson and D. M. Blow: Three-Dimensional Structure of Tosyl-α-Chymotrypsin. Nature 214, 652 (1967).Google Scholar
  60. 113.
    Muirhead, H. and M. F. Perutz: Structure of Hemoglobin. A Three-Dimensional Fourier Synthesis of Reduced Human Hemoglobin at 5.5 Å Resolution. Nature 199, 633 (1963).Google Scholar
  61. 114.
    Perutz, M. F.: X-Ray Analysis of Hemoglobin. Nature 149, 491 (1942).Google Scholar
  62. 115.
    Perutz, M. F.: An X-Ray Study of Horse Methemoglobin. II. Proc. Roy. Soc. (London) A195, 474 (1949).Google Scholar
  63. 116.
    Perutz, M. F.: The Structure of Hemoglobin. III. Direct Determination of the Molecular Transform. Proc. Roy. Soc. (London) A225, 264 (1954).Google Scholar
  64. 117.
    Perutz, M. F.: Relation Between Structure and Sequence of Hemoglobin. Nature 194, 914 (1962).Google Scholar
  65. 118.
    Perutz, M. F.: X-Ray Analysis of Hemoglobin. Nobel prize lecture, 1962; Science 140, 863 (1963).Google Scholar
  66. 119.
    Perutz, M. F.: Structure and Function of Hemoglobin. I. A Tentative Atomic Model of Horse Oxyhemoglobin. J. Mol. Biol. 13, 646 (1965).Google Scholar
  67. 120.
    Perutz, M. F., W. Bolton, R. Diamond, H. Muirhead and H. C. Watson: Structure of Hemoglobin. An X-Ray Examination of Reduced Horse Hemoglobin. Nature 203, 687 (1964).Google Scholar
  68. 121.
    Perutz, M. F., J. C. Kendrew and H. C. Watson: Structure and Function of Hemoglobin. II. Some Relations between Polypeptide Chain Configuration and Amino Acid Sequence. J. Mol. Biol. 13, 669 (1965).Google Scholar
  69. 122.
    Perutz, M. F. and L. Mazzarella: A Preliminary X-Ray Analysis of Hemoglobin H. Nature 199, 639 (1963).Google Scholar
  70. 123.
    Perutz, M. F., M. G. Rossmann, A. F. Cullis, H. Muirhead, G. Will and A.C.T. North: Structure of Hemoglobin. A Three-Dimensional Fourier Synthesis at 5.5 Å Resolution, Obtained by X-Ray Analysis. Nature 185, 416 (1960).Google Scholar
  71. 124.
    Phillips, D. C.: The Hen Egg-white Lysozyme Molecule. Proc. Nat. Acad. Sci. (USA) 57, 484 (1967).Google Scholar
  72. 125.
    Rossmann, M. G. and D. M. Blow: The Detection of Sub-Units Within the Crystallographic Asymmetric Unit. Acta Crystallogr. 15, 24 (1962).Google Scholar
  73. 126.
    Rossmann, M. G., B. A. Jeffery, P. Main and S. Warren: The Crystal Structure of Lactic Dehydrogenase. Proc. Nat. Acad. Sci. (USA) 57, 515 (1967).Google Scholar
  74. I27.
    Scouloudi, H.: The Myoglobin Molecule. Nature 183, 374 (1959).Google Scholar
  75. 128.
    Shoemaker, C. B., J. R. Einstein and B. W. Low: Insulin. The Three-Dimensional Patterson Function for Insulin Sulfate Type A Crystals. Acta Crystallogr. 14, 459 (1961).Google Scholar
  76. 129.
    Sigler, P. B., B. A. Jeffery, B. W. Matthews and D. M. Blow: An X-Ray Diffraction Study of Inhibited Derivatives of α-Chymotrypsin. J. Mol. Biol. 15, 175 (1966).Google Scholar
  77. 130.
    Smith, D. B. and M. F. Perutz: Identification of the Black Sub-Unit of the Crystallographic Model of Horse Hemoglobin with the Valyl-Glutaminyl Polypeptide Chain. Nature 188, 406 (1960).Google Scholar
  78. 131.
    Stanford, R. H., Jr. and R. B. Corey: Determination of the Structure of Proteins by X-Ray Diffraction: Possible Use of Large Heavy Ions in Phase Determination. In: A. Rich and N. Davidson (Ed.), Structural Chemistry and Molecular Biology. San Francisco and London: Freeman and Co. 1968.Google Scholar
  79. 132.
    Stanford, R. H., Jr., R. E. Marsh and R. B. Corey: An X-Ray Investigation of Lysozyme Chloride Crystals Containing Complex Ions of Niobium and Tantalum: Three-Dimensional Fourier Plot Obtained from Data Extending to a Minimum Spacing of 5 Å. Nature 196, 1176 (1962).Google Scholar
  80. 133.
    Strandberg, B., B. Tilander, K. Fridborg, S. Lindskog and P. O. Nyman: The Crystallization and X-Ray Investigation of One Form of Human Carbonic Anhydrase. J. Mol. Biol. 5, 583 (1962).Google Scholar
  81. 134.
    Tilander, B., B. Strandberg and K. Fridborg: Crystal Structure Studies on Human Erythrocyte Carbonic Anhydrase C. II. J. Mol. Biol. 12, 740 (1965).Google Scholar
  82. 135.
    Vaughan, P. A., J. H. Sturdivant and L. Pauling: The Determination of the Structure of Complex Molecules and Ions from X-Ray Diffraction by Their Solutions: The Structures of the Groups PtBr6—, PtCl6—, Nb6Cl12++, Ta6Br12++, and Ta6Cl12++. J. Amer. Chem. Soc. 73, 5477 (1950).Google Scholar
  83. 136.
    Watson, H. C. and J. C. Kendrew: Comparison between the Amino-Acid Sequences of Sperm Whale Myoglobin and of Human Hemoglobin. Nature 190, 670 (19Google Scholar
  84. 137.
    Wyckoff, H. W., M. Doscher, D. Tsernoglou, T. Inagami, L. N. Johnson, K. D. Hardman, N. M. Allewell, D. M. Kelly and F. M. Richards: Design of Diffractometer and Flow Cell System for X-Ray Analysis of Crystalline Proteins with Applications to the Crystal Chemistry of Ribonuclease-S. J. Mol. Biol. 27, 563 (1967).Google Scholar
  85. 138.
    Wyckoff, H. W., K. D. Hardman, N. M. Allewell, T. Inagami, L. N. Johnson and F. M. Richards: The Structure of Ribonuclease-S at 3.5 Å Resolution. J. Biol. Chem. 242, 3984 (1967).Google Scholar
  86. 139.
    Wyckoff, H. W., K. D. Hardman, N. M. Allewell, T. Inagami, D. Tsernoglou, L. N. Johnson and F. M. Richards: The Structure of Ribonuclease-S at 6 Å Resolution. J. Biol. Chem. 242, 3749 (1967).Google Scholar

Copyright information

© Springer-Verlag / Wien 1968

Authors and Affiliations

  • R. B. Corey
    • 1
  • R. E. Marsh
    • 1
  1. 1.PasadenaUSA

Personalised recommendations