The cyanogenic glycosides, here defined as glycosidic derivatives of α-hydroxynitriles, represent a rather limited class of natural products, which are widely distributed in the plant kingdom and, to a small extent, even in animals. A characteristic feature of these glycosides is their ability to release hydrocyanic acid on treatment with dilute acids or appropriate enzymes. The term “cyanogenic” is used to designate this property, regardless of whether pure substances, plants, or animals, are serving as the source. In the latter cases the term “cyanophoric” is occasionally employed synonymously.


Hydrogen Cyanide Cyanogenic Glycoside Pteridium Aquilinum Hydrocyanic Acid Cyanogenic Glucoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrol, Y.P.: Occurrence of Linamarin and Lotaustralin in Iceland Poppy (Papaver nudicaule Linn.). Indian J. Chemistry 4, 251 (1966).Google Scholar
  2. 2.
    Abrol, Y.P.: Studies on the Biosynthesis of Amygdalin, the Cyanogenic Glycoside of Bitter Almonds (Prunus amygdalus Stokes). Indian J. Biochem. 4, 54 (1967).Google Scholar
  3. 3.
    Abrol, Y.P.: Occurrence of Free Hydrocyanic Acid in Plants. Indian J. Exp. Biol. 5, 191 (1967).Google Scholar
  4. 4.
    Abrol, Y.P. and E.E. Conn: Studies on Cyanide Metabolism in Lotus arabicus L. and Lotus tenuis L. Phytochem. 5, 237 (1966).Google Scholar
  5. 5.
    Abrol, Y.P., E.E. Conn and J.R. Stoker: Studies on the Identification, Biosynthesis and Metabolism of a Cyanogenic Glucoside in Nandina domestica Thunb. Phytochem. 5, 1021 (1966).Google Scholar
  6. 6.
    Ahmad, A. and I.D. Spenser: The Conversion of α-Keto Acids and of oc-Keto Acid Oximes to Nitriles in Aqueous Solution. Canad. J. Chem. 29, 1340 (1961).Google Scholar
  7. 7.
    Armstrong, H.E. and E. Horton: Studies on Enzyme Action. XIII. Enzymes of the Emulsin Type. Proc. Roy. Soc. (London) 82 B, 349 (1910).Google Scholar
  8. 8.
    Bachstez, M., E.S. Prieto y A.M.C. Gaja: Notas sombre drogas, plantas y alimentos mexicanos. X. Estudio de la lucumina, glucósido cianogenético del mamey (Lucuma mammosa G.). Ciencia (Mexico) 9, 200 (1948).Google Scholar
  9. 9.
    Becker, W. und E. Pfeil: Über das Flavinenzym d-Oxynitrilase. Biochem. Z. 346, 301 (1966).Google Scholar
  10. 10.
    Bennett, W.D.: Isolation of the Cyanogenic Glycoside Prunasin from Bracken Fern. Phytochem. 7, 151 (1968).Google Scholar
  11. 11.
    Bennett, W.D. and B.A. Tapper: A Sensitive Method for Detecting Cyanoglycosides on Paper and Cellulose Thin Layers. J. Chromatogr. 34, 428 (1968).Google Scholar
  12. 12.
    Ben-Yehoshua, S. and E.E. Conn: Biosynthesis of Prunasin, the Cyanogenic Glucoside of Peach. Plant Physiol. 39, 331 (1964).Google Scholar
  13. 13.
    Bertrand, G.: La vicianine, nouveau glucoside cyanhydrique contenu dans les graines de Vesce. C.R. hebd. séances Acad. Sci. 143, 832 (1906).Google Scholar
  14. 14.
    Bertrand, G. et G. Weisweiller: Sur la constitution du vicianose et de la vicianine. C.R. hebd. séances Acad. Sci. 151, 884 (1910).Google Scholar
  15. 15.
    Bissett, F.H., E.C. Clapp, R.A. Coburn, M.G. Ettlinger and L. Long, Jr.: Cyanogenesis in Manioc: Concerning Lotaustralin. Phytochem. 8, 2235 (1969).Google Scholar
  16. 16.
    Bleichert, E.F., A.C. Neish and G.H.N. Towers: Biosynthesis of Taxiphyllin in Taxus. In: G. Billek (Edit.), Biosynthesis of Aromatic Compounds, Proceedings of the 2nd Meeting of the Federation of European Biochemical Societies, Vol. 3, p. 119. Oxford: Pergamon Press. 1966.Google Scholar
  17. 17.
    Blum, M.S. and J.P. Woodring: Secretion of Benzaldehyde and Hydrogen Cyanide by the Millipede Pachydesmus crassicutis (Wood). Science 138, 512 (1962).Google Scholar
  18. 18.
    Blumenthal, S.G., H.R. Hendrickson, Y.P. Abrol and E.E. Conn: Cyanide Metabolism in Higher Plants. III. The Biosynthesis of β-Cyanoalanine. J. Biol. Chem. 243, 5302 (1969).Google Scholar
  19. 19.
    Blumenthal-Goldschmidt, S., G.W. Butler and E.E. Conn: Incorporation of Hydrocyanic Acid Labelled with Carbon-14 into Asparagine in Seedlings. Nature 197, 718 (1963).Google Scholar
  20. 20.
    Bourquelot, E. et E. Danjou: Préparation du glucoside cyanhydrique du surreau à l’état cristallisé. J. Pharmac. Chim. 22, 219 (1905).Google Scholar
  21. 21.
    Bové, C. and E.E. Conn: Metabolism of Aromatic Compounds in Higher Plants. II. Purification and Properties of the Oxynitrilase of Sorghum vulgare. J. Biol. Chem. 236, 207 (1961).Google Scholar
  22. 22.
    Brysk, M.M., W.A. Corpe and L.V. Hankes: β-Cyanoalanine Formation by Chromobacterium violaceum. J. Bacteriol. 97, 322 (1969).Google Scholar
  23. 23.
    Brysk, M.M., C. Lauinger and C. Ressler: Biosynthesis of Cyanide from [2-14C15N] Glycine in Chromobacterium violaceum. Biochim. Biophys. Acta 184, 583 (1969).Google Scholar
  24. 24.
    Butler, G.W.: The Distribution of the Cyanoglucosides Linamarin and Lotaustralin in Higher Plants. Phytochem. 4, 127 (1965).Google Scholar
  25. 25.
    Butler, G.W., R.W. Bailey and L.D. Kennedy: Studies on the Glucosidase “Linamarase”. Phytochem. 4, 369 (1965).Google Scholar
  26. 26.
    Butler, G.W. and B.G. Butler: Biosynthesis of Linamarin and Lotaustralin in White Clover. Nature 187, 780 (1960).Google Scholar
  27. 27.
    Butler, G.W. and E.E. Conn: Biosynthesis of the Cyanogenic Glucosides Linamarin and Lotaustralin. I. Labelling Studies in Vivo with Linum usitatissimum. J. Biol. Chem. 239, 1674 (1964).Google Scholar
  28. 28.
    Caldwell, R.J. and S.L. Courtauld: Mandelonitrile Glucosides. Prulaurasin. J. Chem. Soc. (London) 91, 671 (1907).Google Scholar
  29. 29.
    Campbell, R. and W.N. Haworth: Synthesis of Amygdalin. J. Chem. Soc. (London) 125, 1337 (1924).Google Scholar
  30. 30.
    Castric, P.A. and G.A. Strobel: Cyanide Metabolism by Bacillus megaterium. J. Biol. Chem. 244, 4089 (1969).Google Scholar
  31. 31.
    Claeys, R.R. and H. Freund: Gas Chromatographic Separation of Hydrogen Cyanide on Porapak Q. Analysis of Trace Aqueous Solutions. Environ. Sci. Technol. 2, 458 (1968).Google Scholar
  32. 32.
    Clapp, R.C., F.H. Bissett, R.A. Coburn and L. Long, Jr.: Cyanogenesis in Manioc: Linamarin and Isolinamarin. Phytochem. 5, 1323 (1966).Google Scholar
  33. 33.
    Coburn, R.A. and L. Long, Jr.: Gynocardin. J. Organ. Chem. (U.S.A.) 31, 4312 (1966).Google Scholar
  34. 34.
    Conn, E.E. and G.W. Butler: The Biosynthesis of Cyanogenic Glycosides and Other Simple Nitrogen Compounds. In: J.B. Harborne and T. Swain (Edits.), Perspectives in Phytochemistry, p. 47. London: Academic Press. 1969.Google Scholar
  35. 35.
    Coop, I.E.: Cyanogenesis in White Clover (Trifolium repens L.). III. A Study of Linamarase, the Enzyme which Hydrolyses Lotaustralin. New Zealand J. Sci. Technol. 22B, 71 (1940).Google Scholar
  36. 36.
    Dillemann, G.: Composés Cyanogénétiques. In: W. Ruhland (Edit.), Handbuch der Pflanzenphysiologie, Vol. 8, p. 1050. Berlin-Göttingen-Heidelberg: Springer-Verlag. 1958.Google Scholar
  37. 37.
    Dunnill, P.M. and L. Fowden: Enzymatic Formation of β-Cyanoalanine from Cyanide by Escherichia coli Extracts. Nature 208, 1206 (1965).Google Scholar
  38. 38.
    Dunstan, W.R. and T.A. Henry: Cyanogenesis in Plant Parts. II. The Great Millet, Sorghum vulgare. Philos. Trans. Roy. Soc. (London) 199A, 399 (1902).Google Scholar
  39. 39.
    Dunstan, W.R., T.A. Henry and S.J.M. Auld: Cyanogenesis in Plants. Part IV. The Occurrence of Phaseolunatin in Common Flax (Linum usitatissimum). Proc. Roy. Soc. (London) 78B, 152 (1906).Google Scholar
  40. 40.
    Ettlinger, M.G. and A. Kjjer: Sulfur Compounds in Plants. In: T.J. Mabry, R.E. Alston and V.C. Runeckles (Edits.), Recent Advances in Phytochemistry, Proceedings of the Annual Symposium of the Phytochemical Society of North America, Vol. 1, p. 58. New York: Appleton-Century-Crofts. 1968.Google Scholar
  41. 41.
    Eyjólfsson, R.: Cyanogenic Glycosides in Nature, Chemistry and Distribution, A Review, p. 103. Thesis. The Royal Danish School of Pharmacy. Copenhagen. 1968.Google Scholar
  42. 42.
    Eyjólfsson, R.: Reference 41, p. 37.Google Scholar
  43. 43.
    Eyjólfsson, R.: Reference 41) p. 56.Google Scholar
  44. 44.
    Eyjólfsson, R.: Investigations on Cyanogenic Plants. Dansk Tidsskr. Farm. 42, 301 (1968).Google Scholar
  45. 45.
    Eyjólfsson, R.: Isolation and Structure Determination of Triglochinin, a New Cyanogenic Glucoside from Triglochin maritimum. Phytochem. (in press, 1969).Google Scholar
  46. 46.
    Farnsworth, N.R.: Biological and Phytochemical Screening of Plants. J. Pharm. Sci. 55, 225 (1966).Google Scholar
  47. 47.
    Feigl, F., V. Gentil and E. Jungreis: Spot Test for Aliphatic and Aromatic Cyanides. Microchim. Acta 44 (1959).Google Scholar
  48. 48.
    Finnemore, H. and J.M. Cooper: Cyanogenetic Glucosides in Australian Plants. Part 4. Ziera laevigata. J. Proc. Roy. Soc. N. S. Wales 70, 175 (1936).Google Scholar
  49. 49.
    Finnemore, H. and J.M. Cooper: The Cyanogenetic Constituents of Australian and Other Plants. Part VII. J. Soc. Chem. Ind. 57, 162 (1938).Google Scholar
  50. 50.
    Finnemore, H. and D.K. Large: Cyanogenetic Glucosides in Australian Plants. Part 6. An Unstable Cyanogenetic Constituent in Goodia lotifolia. J. Proc. Roy. Soc. N. S. Wales 70, 440 (1936).Google Scholar
  51. 51.
    Finnemore, H., S.K. Reichard and D.K. Large: Cyanogenetic Glucosides in Australian Plants. Part 5. Phyllanthus gasstroemi. J. Proc. Roy. Soc. N. S. Wales 70, 257 (1936).Google Scholar
  52. 52.
    Fischer, E. und G. Anger: Synthèse des Linamarins und Glykolnitrilcellosids. Ber. dtsch. chem. Ges. 52, 854 (1919).Google Scholar
  53. 53.
    Fischer, E. und M. Bergmann: Synthèse des Mandelnitril-glucosids, Sambunigrins und ähnlicher Stoffe. Ber. dtsch. chem. Ges. 50, 1047 (1917).Google Scholar
  54. 54.
    Floss, H.G., L. Hadwiger and E.E. Conn: Enzymatic Formation of β-Cyanoalanine from Cyanide. Nature 208, 1207 (1965).Google Scholar
  55. 55.
    Fowden, L. and E.A. Bell: Cyanide Metabolism by Seedlings. Nature 206, 110 (1965).Google Scholar
  56. 56.
    Fraenkel, G.S.: The Raison d’Etre of Secondary Plant Substances. Science 129, 1466 (1959).Google Scholar
  57. 57.
    Gander, J.E.: Incorporation of C14 into p-Hydroxymandelonitrile-β-glucose and Other Phenolic Substances in Sorghum Seedlings. J. Biol. Chem. 237, 3229 (1962).Google Scholar
  58. 58.
    Guilbault, G.G. and D.N. Cramer: Ultra Sensitive, Specific Method for Cyanide Using p-Nitrobenzaldehyde and o-Dinitrobenzene. Analyt. Chemistry 38, 834 (1966).Google Scholar
  59. 59.
    Hahlbrock, K., B.A. Tapper, G.W. Butler and E.E. Conn: Conversion of Nitriles and α-Hydroxynitriles to Cyanogenic Glucosides in Flax Seedlings and Cherry Laurel Leaves. Arch. Biochem. Biophys. 125, 1013 (1968).Google Scholar
  60. 60.
    Haisman, D.R. and D.J. Knight: The Enzymic Hydrolysis of Amygdalin. Biochem. J. 103, 528 (1967).Google Scholar
  61. 61.
    Haisman, D.R., D.J. Knight and M.J. Ellis: The Electrophoretic Separation of the β-Glucosidase of Almond “Emulsin”. Phytochem. 6, 1501 (1967).Google Scholar
  62. 62.
    Hegnauer, R.: Die Verbreitung der Blausäure bei den Cormophyten. 3. Mitteilung. Die blausäurehaltigen Gattungen. Pharm. Weekblad 94, 241 (1959).Google Scholar
  63. 63.
    Hegnauer, R.: Chemotaxonomische Betrachtungen. 10. Die systematische Bedeutung des Blausäuremerkmales. Pharm. Zentralhalle 99, 322 (1960).Google Scholar
  64. 64.
    Hegnauer, R.: Die Verbreitung der Blausäure bei den Cormophyten. 4. Mitteilung. Neue Untersuchungen über die Verbreitung der Cyanogenese. Pharm. Weekblad 96, 577 (1961).Google Scholar
  65. 65.
    Hegnauer, R.: Chemotaxonomie der Pflanzen, Vol. 1, p. 97 and 135. Basel: Birkhäuser Verlag. 1962.Google Scholar
  66. 66.
    Helferich, B. und T. Kleinschmidt: Zur Kenntnis des Süßmandel-Emulsins. Z. physiol. Chem. 349, 25 (1968).Google Scholar
  67. 67.
    Hendrickson, H.R. and E.E. Conn: Cyanide Metabolism in Higher Plants. IV. Purification and Properties of the β-Cyanoalanine Synthase of Blue Lupine. J. Biol. Chem. 244, 2632 (1969).Google Scholar
  68. 68.
    Hérissey, H.: Sur la «prulaurasine» glucoside cyanhydrique cristallise retire des feuilles de laurier-cerise. J. Pharmac. Chim. 23, 1 (1906).Google Scholar
  69. 69.
    Hérissey, H.: Présence de l’amygdonitrileglucoside dans le Cerasus padus Delarbe. J. Pharmac. Chim. 26, 194 (1907).Google Scholar
  70. 70.
    Jones, D.A., J. Parsons and M. Rothschild: Release of Hydrocyanic Acid from Crushed Tissues of All Stages in the Life-Cycle of Species of the Zygaeninae (Lepidoptera). Nature 193, 52 (1962).Google Scholar
  71. 71.
    Jong De, A.W.K.: L’acide cyanhydrique des feuilles du Pangium edule. Rec. trav. chim. Pays-Bas 28, 24 (1909).Google Scholar
  72. 72.
    Jorissen, A. et E. Hairs: La linamarine. Nouveau glucoside, fournissant de l’acide cyanhydrique par dédoublement et retiré du Linum usitatissimum. Bull. Acad. Roy. Sci. Beiges 21, 529 (1891).Google Scholar
  73. 73.
    Kindl, H. and E.W. Underhill: Biosynthesis of Mustard Oil Glucosides: N-Hydroxyphenylalanine, a Precursor of Glucotropaeolin and a Substrate for the Enzymatic and Nonenzymatic Formation of Phenylacetaldehyde Oxime. Phytochem. 7, 745 (1968).Google Scholar
  74. 74.
    Kofod, H. and R. Eyjólfsson: The Isolation of the Cyanogenic Glucoside Prunasin from Pteridium aquilinum (L.) Kuhn. Tetrahedron Letters 1289 (1966).Google Scholar
  75. 75.
    Kofod, H. and R. Eyjólfsson: A New Approach to the Synthesis of Cyanogenic Glycosides. Tetrahedron Letters 5349 (1966).Google Scholar
  76. 76.
    Kofod, H. and R. Eyjólfsson: Cyanogenesis in Species of the Fern Genera Cystopteris and Davallia. Phytochem. 8, 1509 (1969).Google Scholar
  77. 77.
    Koukol, J., P. Miljanich and E.E. Conn: The Metabolism of Aromatic Compounds in Higher Plants. VI. Studies on the Biosynthesis of Dhurrin, the Cyanogenic Glucoside of Sorghum vulgare. J. Biol. Chem. 237, 3223 (1962).Google Scholar
  78. 78.
    Kundu, M.K. and C. Bandyopadhyay: Studies on Some Chemical Aspects of Kusum Oil. J. Amer. Oil Chem. Soc. 46, 23 (1969).Google Scholar
  79. 79.
    Luis, P., C.N. Carducci and A. : Ultramicro Detection of Cyanide and Cyano Compounds. Microchim. Acta 7 (1969).Google Scholar
  80. 80.
    Manners, D.J. and D.C. Taylor: Studies on Carbohydrate Metabolizing Enzymes. Part XVIII. The α-l-Arabinosidase Activity of Almond Emulsin. Carbohyd. Res. 7, 497 (1968).Google Scholar
  81. 81.
    Mao, C.-H. and L. Anderson: Cyanogenesis in Sorghum vulgare. III. Partial Purification and Characterization of Two β-Glucosidases from Sorghum Tissues. Phytochem. 6, 473 (1967).Google Scholar
  82. 82.
    Mao, C.-H., J.P. Blocher, L. Anderson and D.C. Smith: Cyanogenesis in Sorghum vulgare. I. An Improved Method for the Isolation of Dhurrin; Physical Properties of Dhurrin. Phytochem. 4, 297 (1965).Google Scholar
  83. 83.
    Michaels, R. and W.A. Corpe: Cyanide Formation by Chromobacterium violaceum. J. Bacteriol. 89, 106 (1965).Google Scholar
  84. 84.
    Michaels, R., L.V. Hankes and W.A. Corpe: Cyanide Formation from Glycine by Nonproliferating Cells of Chromobacterium violaceum. Arch. Biochem. Biophys. 111, 121 (1965).Google Scholar
  85. 85.
    Mirande, M.: Procéde rapide pour la recherche des plantes à acide cyanhydrique. C.R. hebd. seances Acad. Sci. 149, 140 (1909).Google Scholar
  86. 86.
    Nigam, S.N. and W.B. Mcconnell: Incorporation of Serine-U-14C.into β-Cyanoalanine and γ-Glutamyl-β-Cyanoalanine in Vicia sativa. Canad. J. Biochsm. 46, 1327 (1968).Google Scholar
  87. 87.
    Pallares, E.S.: Note on the Poison Produced by the Polydesmus (Fontaria) vicinus, Lin. Arch. Biochem. 9, 105 (1946).Google Scholar
  88. 88.
    Paris, M., A. Bouquet and R.-R. Paris: Sur le bartérioside, nouvel hétéroside cyanogénétique des écorces de racine du Barteria fistulosa Mast. C.R. hebd. séances Acad. Sci. 268D, 2804 (1969).Google Scholar
  89. 89.
    Pifferi, P.G.: Separazione di glucosidi cianogenetici per gel-filtrazione. Boll. Sci. Fac. Chim. Ind. (Bologna) 24, 215 (1966).Google Scholar
  90. 90.
    Plouvier, V.: Recherches sur l’isomérisation d’hétérosides cyanogénétiques. C.R. hebd. séances Acad. Sci. 200, 1985 (1935).Google Scholar
  91. 91.
    Plouvier, V.: Sur la recherche des polyacools et des héterosides cyanogénétiques chez quelques Protéacées. C.R. hebd. séances Acad. Sci. 259, 665 (1964).Google Scholar
  92. 92.
    Power, F.B. and F.H. Gornall: Gynocardin, a New Cyanogenetic Glucoside. Preliminary Note. Proc. Chem. Soc. (London) 20, 137 (1904).Google Scholar
  93. 93.
    Power, F.B. and F.H. Lees: Gynocardin, a New Cyanogenetic Glucoside. J. Chem. Soc. (London) 87, 349 (1905).Google Scholar
  94. 94.
    Reay, P.F.: An Improved Procedure for the Isolation of Dhurrin. Phytochem. 8, 2259 (1969).Google Scholar
  95. 95.
    Ressler, C., Y.-H. Giza and S.N. Nigam: β-Cyanoalanine, Product of Cyanide Fixation and Intermediate in Asparagine Biosynthesis in Certain Species of Lathyrus and Vicia. J. Amer. Chem. Soc. 91, 2766 (1969).Google Scholar
  96. 96.
    Ressler, C., G.R. Nagarajan and C. Lauinger: Biosynthesis of Asparagine from β-l-[14C15N] Cyanoalanine in Lathyrus sylvestris W. Seedlings: Origin of the Amide Nitrogen. Biochim. Biophys. Acta 184, 578 (1969).Google Scholar
  97. 97.
    Ressler, C., S.N. Nigam and Y.-H. Giza: Toxic Principle in Vetch. Isolation and Identification of γ-l-Glutamyl-l-β-Cyanoalanine from Common Vetch Seeds. Distribution in Some Legumes. J. Amer. Chem. Soc. 91, 2758 (1969).Google Scholar
  98. 98.
    Rimington, C.: The Occurrence of Cyanogenetic Glucosides in South African Species of Acacia. II. Determination of the Chemical Constitution of Acacipetalin. Its Isolation from Acacia stolonifera Burch. Onderstepoort J. Vet. Sci. Animal Ind. 5, 445 (1935).Google Scholar
  99. 99.
    Rimington, C. and G.C.S. Roets: Chemical Investigation of the Plant Acalypha indica. Isolation of Triacetonamine, a Cyanogenetic Glucoside and Quebrachite. Onderstepoort J. Vet. Sci. Animal Ind. 9, 193 (1937).Google Scholar
  100. 100.
    Robiquet et Boutron-Charlard: Nouvelles expériences sur les amandes ameres, et sur l’huile volatile qu’elles fournissent. Ann. chim. phys. 44, 352 (1830).Google Scholar
  101. 101.
    Rosenthaler, L.: Über die Samen von Schleichera trijuga. Schweiz. Apoth.-Ztg. 58, 17 (1920).Google Scholar
  102. 102.
    Schildknecht, H., U. Maschwitz und P. Krauss: HCN im Wehrsekret des Erdläufers (Pachymerium ferrugineum). Naturwiss. 55, 230 (1968).Google Scholar
  103. 103.
    Schrader, J.C.C.: Neue Wahrnehmungen über die Blausäure. Gilbert Annalen 13, 503 (1803).Google Scholar
  104. 104.
    Seely, M.K., R.S. Criddle and E.E. Conn: The Metabolism of Aromatic Compounds in Higher Plants. VIII. On the Requirement of Hydroxynitrile Lyase for Flavin. J. Biol. Chem. 241, 4457 (1966).Google Scholar
  105. 105.
    Seigler, D.S. and J.J. Bloomfield: Constituents of the Genus Cnidoscolus. Phytochem. 8, 935 (1969).Google Scholar
  106. 106.
    Sharples, D. and J.R. Stoker: The Identification and Biosynthesis of Two Cyanogenic Glycosides in Thalictrum aquilegifolium. Phytochem. 8, 597 (1969).Google Scholar
  107. 107.
    Smith, A.E., C. Galand and K. Bahadur: The Inevitable Appearance of Protocells on the Primitive Earth. Spaceflight 11, 325 (1969).Google Scholar
  108. 108.
    Stevens, D.L. and G.A. Strobel: Origin of Cyanide in Cultures of a Psychrophilic Basidiomycete. J. Bacteriol. 95, 1094 (1968).Google Scholar
  109. 109.
    Steyn, D.G. and C. Rimington: The Occurrence of Cyanogenetic Glucosides in South African Species of Acacia. I. Onderstepoort J. Vet. Sci. Animal Ind. 4, 51 (1935).Google Scholar
  110. 110.
    Strobel, G.A.: The Fixation of Hydrocyanic Acid by a Psychrophilic Basidiomycete. J. Biol. Chem. 241, 2618 (1966).Google Scholar
  111. 111.
    Strobel, G.A.: 4-Amino-4-Cyanobutyric Acid as an Intermediate in Glutamate Biosynthesis. J. Biol. Chem. 242, 3265 (1967).Google Scholar
  112. 112.
    Strobel, G.A.: Cyanide Utilization in Soil. Soil Sci. 103, 299 (1967).Google Scholar
  113. 113.
    Tapper, B.A. and G.W. Butler: Conversion of Oximes to Mustard Oil Glucosides (Glucosinolates). Arch. Biochem. Biophys. 120, 719 (1967).Google Scholar
  114. 114.
    Tapper, B.A., E.E. Conn and G.W. Butler: Conversion of α-Keto-Iso-, valeric Acid Oxime and Isobutyraldoxime to Linamarin in Flax Seedlings. Arch. Biochem. Biophys. 119, 593 (1967).Google Scholar
  115. 115.
    Towers, G.H.N., A.G. Mcinnes and A.C. Neish: The Absolute Configurations of the Phenolic Cyanogenetic Glucosides Taxiphyllin and Dhurrin. Tetrahedron 20, 71 (1964).Google Scholar
  116. 116.
    Tschiersch, B.: Über den Stoffwechsel der Blausäure. II. Zum Mechanismus der Blausäure-Assimilation. Flora (Jena) 154A, 445 (1964).Google Scholar
  117. 117.
    Tschiersch, B.: Über den Stoffwechsel des Vicianins. Flora (Jena) 157A, 43 (1966).Google Scholar
  118. 118.
    Underhill, E.W.: Biosynthesis of Mustard Oil Glucosides: Conversion of Phenylacetaldehyde Oxime and 3-phenylpropionaldehyde Oxime to Glucotropaeolin and Gluconasturtin. Eur. J. Biochem. 2, 61 (1967).Google Scholar
  119. 119.
    Uribe, E.G. and E.E. Conn: The Metabolism of Aromatic Compounds in Higher Plants. VII. The Origin of the Nitrile Nitrogen Atom of Dhurrin (β-d-Glucopyranosyloxy-l-p-Hydroxymandelonitrile) J. Biol. Chem. 24, 92 (1966).Google Scholar
  120. 120.
    Weiss, M.: Die Blausäure in Apfelembryonen. Flora (Jena) 149A, 386 (1960).Google Scholar
  121. 121.
    Young, R.L.: Personal Communication.Google Scholar
  122. 122.
    Young, R.L. and R.A. Hamilton: A Bitter Principle in Macadamia Nuts. Proceedings Sixth Annual Meeting, Hawaii Macadamia Producers Association, p. 27, 1966.Google Scholar

Copyright information

© Springer-Verlag/Wien 1970

Authors and Affiliations

  • R. Eyjólfsson
    • 1
  1. 1.CopenhagenDenmark

Personalised recommendations