Advertisement

Abstract

The term “melanin” (μέλας = black) is a purely descriptive one, which conveys no chemical information and merely denotes a black pigment of biological origin, although in fact some melanins are brown or even yellow. Different authors have accepted various definitions of exactly what constitutes a melanin; and melanins are sometimes loosely described as pigments of high molecular weight formed by the enzymic oxidation of phenols. The latter is not however a satisfactory definition. According to Thomson (149), who has written admirable reviews on the chemistry of melanins (149, 150), the term melanin appears to have been used first with some precision in 1902 by Fürth and Schneider, in respect of the black precipitate they obtained by the action in vitro of insect tyrosinase on tyrosine. The fact that the general properties and the carbon, hydrogen, and nitrogen analyses of this material were in approximate agreement with those reported for natural pigments from animal hair, melanoma, Sepia black, etc., implied that these natural pigments also were products of the tyrosine-tyrosinase reaction. An excellent, comprehensive, and detailed account of these pigments has been given by Nicolaus (107) in his book, which includes references up to 1967, and in which he has classified the pigments into eumelanins, phaeomelanins, and allomelanins. In the present article, an attempt will be made to give a much briefer, although up-to-date review of the structure, chemistry, and biosynthesis of melanins. A number of other useful reviews on melanin, and on the chemistry and biochemistry of melanogenesis are also available (42, 53, 85, 86, 94, 95, 106, 130, 137, 148).

Keywords

Humic Acid Dicarboxylic Acid Tricarboxylic Acid Black Pigment Melanin Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allport, O. C., and J. D. Bu’lock: The Pigmentation and Cell-wall Material of Daldinia Sp. J. Chem. Soc. (London), 4090 (1958).Google Scholar
  2. 1a.
    Bagnar A, J. T., and M. E. Hadley: Chromatophores and Color Change. New Jersey: Prentice-Hall. 1973.Google Scholar
  3. 2.
    Baird, D. B., and I. Baxter: Private communication.Google Scholar
  4. 3.
    Barden, H.: The Histochemical Relationship of Neuromelanin and Lipofuscin. J. Neuropathol. and Exptl. Neurology 28, 419 (1969).CrossRefGoogle Scholar
  5. 4.
    Barden, H., and E. Martin: Electron Probe Microanalysis of Neuromelanin and Lipofuscin. In: V. Riley (Ed.): Pigmentation, its Genesis and Biological Control, p. 631. New York: Appleton-Century-Crofts. 1972.Google Scholar
  6. 5.
    Bayse, G. S., and M. Morrison: The Role of Peroxidase in Catalyzing Oxidation of Polyphenols. Biochim. Biophys. Acta 244, 77 (1971).Google Scholar
  7. 6.
    Beer, R. J. S., T. Broadhurst, and A. Robertson: The Chemistry of Melanins. Part V. The Autoxidation of 5:6-Dihydroxyindoles. J. Chem. Soc. (London), 1947 (1954).Google Scholar
  8. 7.
    Binns, F., R. F. Chapman, N. C. Robson, G. A. Swan, and A. Waggott: Studies Related to the Chemistry of Melanins. Part VIII. The Pyrrolecarboxylic Acids formed by Oxidation or Hydrolysis of Melanins derived from 3,4-Dihydroxyphenethylamine or (±)-3,4-Dihydroxyphenylalanine. J. Chem. Soc. (London) (C), 1128 (1970).Google Scholar
  9. 8.
    Binns, F., J. A. G. King, S. N. Mishra, A. Percival, N. C. Robson, G. A. Swan, and A. Waggott: Studies Related to the Chemistry of Melanins. Part XIII. Studies on the Structure of Dopamine-Melanin. J. Chem. Soc. (London) (C), 2063 (1970).Google Scholar
  10. 9.
    Binns, F., and G. A. Swan: Oxidation of Some Synthetic Melanins. Chem. and Ind. 396 (1957).Google Scholar
  11. 10.
    Bloch, B.: Das Pigment. In J. Jadassohn: Handbuch der Haut-und Geschlechtskrankheiten. 1, part 1, 434. Berlin: J. Springer. 1927.Google Scholar
  12. 11.
    Blois, M. S.: A Note on the Problem of Melanin Structure. In: W. Montagna and F. Hu (Eds.): Advances in Biology of Skin. Vol. VIII. The Pigmentary System, p. 319. Oxford: Pergamon Press. 1967.Google Scholar
  13. 12.
    ____ Recent Developments in the Physics and Chemistry of the Melanins. In: F. Urbach (Ed.): The Biological Effects of UV Radiation, p. 299. Oxford: Pergamon Press. 1969.Google Scholar
  14. 13.
    ____ Biological Free Radicals and the Melanins. In: S. J. Wyard (Ed.): Solid State Biophysics, p. 243. New York: McGraw-Hill. 1969.Google Scholar
  15. 14.
    Blois, M. S., Jr.: Physical Studies of the Melanins. In: T. Kawamura, T. B. Fitz-Patrick, and M. Seiji (Eds.): Biology of Normal and Abnormal Melanocytes, p. 125. University of Tokyo Press. 1971.Google Scholar
  16. 75.
    Blois, M. S.: The Binding Properties of Melanin: In Vivo and in Vitro. In: W. Montagna, R. B. Stoughton, and E. J. Van Scott (Eds.): Advances in Biology of Skin, Vol. XII, Pharmacology and the Skin, p. 65. New York: Appleton-Century-Crofts. 1972.Google Scholar
  17. 16.
    Blois, M. S., Jr., H. W. Brown, and J. E. Maling: Precision g-Value Measurements on Free Radicals of Biological Interest. In: M. S. Blois, Jr., H. W. Brown, R. M. Lemmon, R. O. Lindblom, and M. Weissbluth (Eds.): Free Radicals in Biological Systems, p. 117. New York and London: Academic Press. 1961.Google Scholar
  18. 17.
    Blois, M. S., Jr., and R. F. Kallman: The Incorporation of C14 from 3,4-Dihydroxy-phenylalanine-2′-C14 into the Melanin of Mouse Melanomas. Cancer Res. 24, 863 (1964).Google Scholar
  19. 18.
    Blois, M. S., A. B. Zahlan, and J. E. Maling: Electron Spin Resonance Studies on Melanin. Biophys. J. 4, 471 (1964).CrossRefGoogle Scholar
  20. 19.
    Bonner, T. G., and A. Duncan: Infra-Red Spectra of Some Melanins. Nature 194, 1078 (1962).CrossRefGoogle Scholar
  21. 20.
    Bouchilloux, S., and A. Kodja: Combinaison des Thiols avec les Quinones se Formant au Cours de la Mélanogénèse. Bull. soc. chim. biol (Paris) 42, 1045 (1960).Google Scholar
  22. 21.
    Bouchilloux, S., S. Lissitzky, and D. Kertesz: Sur L’Existence d’un Phénomène d’Acidification au Cours de l’Oxydation de Divers Substrats par la Polyphénoloxydase. Bull. soc. chim. biol. (Paris) 39, 1049 (1957).Google Scholar
  23. 22.
    Bowness, J. M., and R. A. Morton: The Association of Zinc and other Metals with Melanin and a Melanin-Protein Complex. Biochem. J. 53, 620 (1953).Google Scholar
  24. 23.
    Bowness, J. M., R. A. Morton, M. H. Shakir, and A. L. Stubbs: Distribution of Copper and Zinc in Mammalian Eyes. Occurrence of Metals in Melanin Fractions from Eye Tissues. Biochem. J. 51, 521 (1952).Google Scholar
  25. 24.
    Brackman, W., and E. Havinga: The Oxidation of Phenols with Copper-Amine Catalysts and its Relation to the Mode of Action of Tyrosinase. I. The Catalytic Oxidation of Monohydric Phenols to orthoquinone Derivatives. Rec. trav. chim. Pays-Bas 74, 937 (1955).CrossRefGoogle Scholar
  26. 25.
    ____ The Oxidation of Phenols with Copper-Amine Catalysts and its Relation to the Mode of Action of Tyrosinase. V. Reaction Mechanisms. Rec. trav. chim. Pays-Bas 74, 1107 (1955).CrossRefGoogle Scholar
  27. 26.
    Bright, H. J., B. J. B. Wood, and L. I. Ingraham: Copper, Tyrosinase, and the Kinetic Stability of Oxygen. Ann. New York Acad. Sci. 100, 965 (1963).Google Scholar
  28. 27.
    Bruenger, F. W., B. J. Stover, and D. R. Atherton: The Incorporation of Various Metal Ions into in Vivo- and in Vitro-Produced Melanin. Radiation Research 32, 1 (1967).CrossRefGoogle Scholar
  29. 28.
    Bu’lock, J. D.: Intermediates in Melanin Formation. Arch. Biochem. Biophys. 91, 189 (1960).CrossRefGoogle Scholar
  30. 29.
    ____ The Formation of Melanin from Adrenochrome. J. Chem. Soc. 52 (1961).Google Scholar
  31. 30.
    Bu’lock, J. D., and J. Harley-Mason: Melanin and its Precursors. Part II. Model Experiments on the Reactions between Quinones and Indoles, and Consideration of a Possible Structure for the Melanin Polymer. J. Chem. Soc. (London) 703 (1951).Google Scholar
  32. 31.
    Chapman, R. F., A. Percival, and G. A. Swan: Studies Related to the Chemistry of Melanins. Part XII. Some Spectroscopic Experiments regarding Intermediates in Melanogenesis. J. Chem. Soc. (London) (C) 1664 (1970).Google Scholar
  33. 32.
    Chen, Y. M., and W. Chavin: Incorporation of Tyrosine Carboxyl Groups and Utilization of D-Tyrosine in Melanogenesis. Analyt. Biochemistry 27, 463 (1969).CrossRefGoogle Scholar
  34. 33.
    ____ Effects of Depigmentary Agents and Related Compounds upon in Vitro Tyrosinase Activity. In: V. Riley (Ed.): Pigmentation, its Genesis and Biological Control, p. 593. New York: Appleton-Century-Crofts. 1972.Google Scholar
  35. 34.
    Clemo, G. R., F. K. Duxbury, and G. A. Swan: Formation of Tyrosine Melanin. Part III. The Use of Carboxyl-labelled Tyrosine and Dihydroxyphenylalanine in Melanin Formation. J. Chem. Soc. (London) 3464 (1952).Google Scholar
  36. 35.
    Commoner, B., J. Townsend, and G. E. Pake: Free Radicals in Biological Materials. Nature 174, 689 (1954).CrossRefGoogle Scholar
  37. 36.
    Cromartie, R. I. T., and J. Harley-Mason: Melanin and its Precursors. 8. The Oxidation of Methylated 5:6-Dihydroxyindoles. Biochem. J. 66, 713 (1957).Google Scholar
  38. 37.
    Dawson, C. R., and B. J. Ludwig: On the Mechanism of the Catechol-Tyrosinase Reaction. II. The Hydrogen Peroxide Question. J. Amer. Chem. Soc. 60, 1617 (1938).CrossRefGoogle Scholar
  39. 38.
    Dawson, C. R., and W. B. Tarpley: On the Pathway of the Catechol-Tyrosinase Reaction. Ann. New York Acad. Sci. 100, 937 (1963).Google Scholar
  40. 39.
    Della Porta, G., and O. Mühlbock (Eds.): Structure and Control of the Melanocyte. Berlin-Heidelberg-New York: Springer. 1966.Google Scholar
  41. 40.
    Duchon, J., B. Matous, and Z. Pechan: On the Chemical Nature of Urinary Melanogens. In: G. Della Porta and O. Mühlbock (Eds.): Structure and Control of the Melanocyte, p. 175. Berlin-Heidelberg-New York: Springer. 1966.Google Scholar
  42. 41.
    Duchon, J., and Z. Pechan: The Biochemical and Clinical Significance of Melanogenuria. Ann. New York Acad. Sci. 100, 1048 (1963).Google Scholar
  43. 42.
    Duchon, J., and Z. Pechan: Biochemie melaninu a melanogenese. Prague: Státní zdravotnické nakladatelství. 1964.Google Scholar
  44. 43.
    Dulière, W. L., and H. S. Raper: The Tyrosinase-Tyrosine Reaction. VII. The Action of Tyrosinase on Certain Substances Related to Tyrosine. Biochem. J. 24, 239 (1930).Google Scholar
  45. 44.
    Evans, W. C., and H. S. Raper: The Accumulation of 1–3:4-Dihydroxyphenyl-alanine in the Tyrosinase-Tyrosine Reaction. Biochem. J. 31, 2162 (1937).Google Scholar
  46. 45.
    Fellman, J. H.: Epinephrine Metabolites and Pigmentation in the Central Nervous System in a Case of Phenylpyruvic Oligophrenia. J. Neurol. Neurosurg. Psychiat. 21, 58 (1958).CrossRefGoogle Scholar
  47. 46.
    Fitzpatrick, T. B., S. W. Becker, Jr., A. B. Lerner, and H. Montgomery: Tyrosinase in Human Skin: Demonstration of its Presence and of its Role in Human Melanin Formation. Science 112, 223 (1950).CrossRefGoogle Scholar
  48. 47.
    Fitzpatrick, T. B., M. Miyamoto, and K. Ishikawa: The Evolution of Concepts of Melanin Biology. In: W. Montagna and F. Hu (Eds.): Advances in Biology of Skin, Vol. VIII. The Pigmentary System, p. 1. Oxford: Pergamon Press. 1967.Google Scholar
  49. 48.
    ____ The Evolution of Concepts of Melanin Biology. Arch. Dermatol. 96, 305 (1967).CrossRefGoogle Scholar
  50. 49.
    Flesch, P.: Inhibitory Action of Extracts of Mammalian Skin on Pigment Formation. Proc. Soc. Exptl. Biol. Med. 70, 136 (1949).Google Scholar
  51. 50.
    ____ The Epidermal Iron Pigments of Red Species. J. Invest. Dermatol. 51, 337 (1968).Google Scholar
  52. 51.
    Forsyth, W. G. C., and V. C. Quesnel: Intermediates in the Enzymic Oxidation of Catechol. Biochim. Biophys. Acta 25, 155 (1957).CrossRefGoogle Scholar
  53. 52.
    Forsyth, W. G. C., V. C. Quesnel, and J. B. Roberts: Diphenylenedioxide-2,3-quinone: an Intermediate in the Enzymic Oxidation of Catechol. Biochim. Biophys. Acta 37, 322 (1960).CrossRefGoogle Scholar
  54. 53.
    Fox, D. L.: Animal Biochromes and Structural Colours. London: Cambridge University Press. 1953.Google Scholar
  55. 54.
    Fraenkel, G. K., J. M. Hirshon, and C. Walling: Detection of Polymerization Radicals by Paramagnetic Resonance. J. Amer. Chem. Soc. 76, 3606 (1954).CrossRefGoogle Scholar
  56. 55.
    Frenk, E., M. A. Pathak, G. Szabó, and T. B. Fitzpatrick: Selective Action of Mercaptoethylamines on Melanocytes in Mammalian Skin. Arch. Dermatol. 97, 465 (1968).CrossRefGoogle Scholar
  57. 56.
    Gordon, M. (Ed.): Biology of Melanomas. New York: Academy of Science. 1948.Google Scholar
  58. 57.
    ____ Pigment Cell Growth. New York: Academic Press. 1953.Google Scholar
  59. 58.
    ____ Pigment Cell Biology. New York: Academic Press. 1959.Google Scholar
  60. 59.
    Grady, F. J., and D. C. Borg: Electron Paramagnetic Resonance Studies on Melanins I. The Effect of pH on Spectra at Q Band. J. Amer. Chem. Soc. 90, 2949 (1968).CrossRefGoogle Scholar
  61. 60.
    Greenstein, J. P., F. C. Turner, and W. V. Jenrette: Chemical Studies on the Components of Normal and Neoplastic Tissues. IV. The Melanin-Containing Pseudologlobulin of the Malignant Melanoma of Mice. J. Natl. Cancer Inst. 1, 377 (1940).Google Scholar
  62. 61.
    Griffiths, L. A.: Detection and Identification of the Polyphenoloxidase Substrate of the Banana. Nature 184, 58 (1959).CrossRefGoogle Scholar
  63. 62.
    Gross, A. J., and I. W. Sizer: The Oxidation of Tyramine, Tyrosine, and Related Compounds by Peroxidase. J. Biol. Chem. 234, 1611 (1959).Google Scholar
  64. 63.
    Harley-Mason, J.: Melanin and its Precursors. Part I. The Synthesis of 5:6:5′:6′-Tetrahydroxyindigo. J. Chem. Soc. (London) 1244 (1948).Google Scholar
  65. 64.
    ____ The Chemistry of Adrenochrome and its Derivatives. J. Chem. Soc. (London) 1276 (1950).Google Scholar
  66. 65.
    ____ Melanin and its Precursors. Part VI. Further Syntheses of 5:6-Dihydroxyindole and its Derivatives. J. Chem. Soc. (London) 200 (1953).Google Scholar
  67. 66.
    Harley-Mason, J., and J. D. Bu’lock: Synthesis of 5:6-Dihydroxyindole Derivatives: An Oxido-reduction Rearrangement Catalysed by Zinc Ions. Nature 166, 1036 (1950).CrossRefGoogle Scholar
  68. 67.
    Haworth, R. D.: The Chemical Nature of Humic Acid. Soil Science 111, 71 (1971).CrossRefGoogle Scholar
  69. 68.
    Heacock, R. A.: The Aminochromes. In: A. R. Katritzky (Ed.): Advances in Heterocyclic Chemistry 5, p. 205. New York and London: Academic Press. 1965.Google Scholar
  70. 69.
    Hempel, K.: Investigation on the Structure of Melanin in Malignant Melanoma with 3H-and 14C-Dopa Labelled at Different Positions. In: G. Della Porta and O. Mühlbock (Eds.): Structure and Control of the Melanocyte, p. 162. Berlin-Heidelberg-New York: Springer. 1966.Google Scholar
  71. 70.
    Hempel, K.: Über Biosynthese und Struktur des tierischen Melanins. Z. Naturforsch. 22B, 173 (1967).Google Scholar
  72. 71.
    Hogeboom, G. H., and M. H. Adams: Mammalian Tyrosinase and Dopa Oxidase. J. Biol. Chem. 145, 273 (1942).Google Scholar
  73. 72.
    Horak, V., and J. R. Gillette: A Study of the Oxidation-Reduction State of Synthetic 3,4-Dihydroxy-DL-phenylalanine Melanin. Molecular Pharmacology 7, 429 (1971).Google Scholar
  74. 73.
    Hori, Y.: Ultrastructural Study of 3H Incorporation from 3,4-Dopa-2,3-3H into Retinal Pigment Epithelium of Chick Embryo. In: V. Riley (Ed.): Pigmentation, its Genesis and Biological Control, p. 143. New York: Appleton-Century-Crofts. 1972.Google Scholar
  75. 74.
    Horner, L., and W. Spietschka: Zur Kenntnis der o-Chinone VI. Das Verhalten von o-Chinonen gegenüber tert. Aminen als Beitrag zum Vorgang der Melaninbildung. Liebigs Ann. Chem. 591, 1 (1955).CrossRefGoogle Scholar
  76. 75.
    Horowitz, N. H., M. Fling, and G. Horn: Tyrosinase (Neurospora crassa). In: H. Tabor and C. W. Tabor (Eds.): Methods in Enzymology, XVII. A, p. 615. New York and London: Academic Press. 1970.Google Scholar
  77. 76.
    Kertesz, D.: The Phenol-Oxidizing Enzyme System of Human Melanomas; Substrate Specificity and Relationship to Copper. J. Nat. Cancer Inst. 14, 1081 (1954).Google Scholar
  78. 77.
    ____ The Relative Oxygen Affinity of Human and Vegetal Phenoloxidase. J. Nat. Cancer Inst. 14, 1093 (1954).Google Scholar
  79. 78.
    Kertész, D., and R. Zito: Phenolase. In: O. Hayaishi (Ed.): Oxygenases, p. 307. New York and London: Academic Press. 1962.Google Scholar
  80. 79.
    ____ Mushroom Polyphenol Oxidase, I. Purification and General Properties. Biochim. Biophys. Acta 96, 447 (1965).Google Scholar
  81. 80.
    King, J. A. G., A. Percival, N. C. Robson, and G. A. Swan: Studies Related to the Chemistry of Melanins. Part XL The Distribution of the Polymeric Linkages in Dopa-melanin. J. Chem. Soc. (London) (C) 1418 (1970).Google Scholar
  82. 81.
    Kirby, G. W., and L. Ogunkoya: Structure of Melanin derived from (±)-3,4-Dihydroxy-[14C, 3H]phenylalanine by Oxidation with Tyrosinase. Chem. Commun. 546 (1965).Google Scholar
  83. 82.
    Kodja, A., and S. Bouchilloux: Sur la Caracterisation des Orthoquinones Mono-cycliques au Cours de l’Oxidation d’Acides Aminés et Amines Orthodiphenoliques. Biochim. Biophys. Acta 41, 345 (1960).CrossRefGoogle Scholar
  84. 83.
    Kukita, A., and T. B. Fitzpatrick: Demonstration of Tyrosinase in Melanocytes of the Human Hair Matrix by Autoradiography. Science 121, 893 (1955).Google Scholar
  85. 84.
    Laxer, G., J. Sikorski, C. S. Whewell, and H. J. Woods: The Electron Microscopy of Melanin Granules Isolated from Pigmented Mammalian Fibres. Biochim. Biophys. Acta 15, 174 (1954).CrossRefGoogle Scholar
  86. 85.
    Lerner, A. B.: Metabolism of Phenylalanine and Tyrosine. Adv. Enzymology 14, 73 (1953).Google Scholar
  87. 86.
    Lerner, A. B., and T. B. Fitzpatrick: Biochemistry of Melanin Formation. Physiol. Rev. 30, 91 (1950).Google Scholar
  88. 87.
    Longuet-Higgins, H. C.: On the Origin of the Free Radical Property of Melanins. Arch. Biochem. Biophys. 86, 231 (1960).CrossRefGoogle Scholar
  89. 88.
    Lukiewicz, S.: The Biological Role of Melanin. I. New Concepts and Methodical Approaches. Folia Histochemica et Cytochemica 10, 93 (1972).Google Scholar
  90. 89.
    Lund, N. A., A. Robertson, and W. B. Whalley: The Chemistry of Fungi. Part XXI. Asperxanthone and a Preliminary Examination of Aspergillin. J. Chem. Soc. (London) 2434 (1953).Google Scholar
  91. 89a.
    Mcgovern, V. J., and P. Russell (Eds.): Pigment Cell, Vol. 1: Mechanisms in Pigmentation (Series Ed.: V. Riley). Basel: Karger. 1973.Google Scholar
  92. 90.
    Marsden, C. D.: Brain Pigment and its Relation to Brain Catecholamines. Lancet 475 (1965, part 2).Google Scholar
  93. 90a.
    ____ Brain Melanin. In: M. Wolman (Ed.): Pigments in Pathology, p. 395. New York: Academic Press. 1969.Google Scholar
  94. 91.
    Mason, H. S.: The Chemistry of Melanin. II. The Oxidation of Dihydroxyphenyl-alanine by Mammalian Dopa Oxidase. J. Biol. Chem. 168, 433 (1947).Google Scholar
  95. 92.
    ____ The Chemistry of Melanin. III. Mechanism of the Oxidation of Dihydroxyphenyl-alanine by Tyrosinase. J. Biol. Chem. 172, 83 (1948).Google Scholar
  96. 93.
    ____ The Chemistry of Melanin. VI. Mechanism of the Oxidation of Catechol by Tyrosinase. J. Biol. Chem. 181, 803 (1949).Google Scholar
  97. 94.
    ____ Comparative Biochemistry of the Phenolase Complex. Adv. Enzymology 16, 105 (1955).Google Scholar
  98. 95.
    ____ Mechanisms of Oxygen Metabolism. Adv. Enzymology 19, 79 (1957).Google Scholar
  99. 96.
    ____ Structure of Melanins. In: M. Gordon (Ed.): Pigment Cell Biology, p. 563. New York: Academic Press. 1959.Google Scholar
  100. 97.
    ____ The Structure of Melanin. In: W. Montagna and F. Hu (Eds.): Advances in Biology of Skin, Vol. VIII, p. 293. Oxford: Pergamon Press. 1967.Google Scholar
  101. 98.
    Mason, H. S., W. L. Fowlks, and E. Peterson: Oxygen Transfer and Electron Transport by the Phenolase Complex. J. Amer. Chem. Soc. 77, 2914 (1955).CrossRefGoogle Scholar
  102. 99.
    Mason, H. S., D. J. E. Ingram, and B. Allen: The Free Radical Property of Melanins. Arch. Biochem. Biophys. 86, 225 (1960).CrossRefGoogle Scholar
  103. 100.
    Mason, H. S., and E. W. Peterson: Melanoproteins I. Reactions Between Enzyme-Generated Quinones and Amino-Acids. Biochim. Biophys. Acta 111, 134 (1965).Google Scholar
  104. 101.
    Mason, H. S., L. Schwartz, and D. C. Peterson: The Allergenic Principles of Poison Ivy. IV. On the Mechanism of the Enzymatic Oxidation of Catechols. J. Amer. Chem. Soc. 67, 1233 (1945).CrossRefGoogle Scholar
  105. 102.
    Mason, H. S., and C. I. Wright: The Chemistry of Melanin. V. Oxidation of Dihydroxyphenylalanine by Tyrosinase. J. Biol. Chem. 180, 235 (1949).Google Scholar
  106. 103.
    Misuraca, G., R. A. Nicolaus, G. Prota, and G. Ghiara: A Cytochemical Study of Phaeomelanin Formation in Feather Papillae of New Hampshire Chick Embryos. Experientia 25, 920 (1969).CrossRefGoogle Scholar
  107. 104.
    Nairn, P. M., and L. C. Vining: Enzymic Oxidation of Catechol to Diphenylene-dioxide-2,3-quinone. Arch. Biochem. Biophys. 106, 422 (1964).CrossRefGoogle Scholar
  108. 105.
    Nelson, R. M., and H. S. Mason: Tyrosinase (Mushroom). In: H. Tabor, and C. W. Tabor (Eds.): Methods in Enzymology, XVII A, p. 626. New York and London: Academic Press. 1970.Google Scholar
  109. 106.
    Nicolaus, R. A.: Biogenesis of Melanins. Rassegna di Medicina Sperimentale 9, Suppl. 1 (1962).Google Scholar
  110. 107.
    ____ Melanins. Paris: Hermann. 1968.Google Scholar
  111. 108.
    Nicolaus, R. A., K. Hempel, and H. S. Mason: Comments on Howard S. Mason’s Paper “The Structure of Melanin”. In: W. Montagna and F. Hu (Eds.): Advances in Biology of Skin, Vol. VIII, p. 313. Oxford: Pergamon Press. 1967.Google Scholar
  112. 109.
    Nicolaus, R. A., and M. Piattelli: Progress in the Chemistry of Natural Black Pigments. Rend. Accad. Sci. fis. mat. (Napoli) [4] 32, 1 (1965).Google Scholar
  113. 110.
    Nicolaus, R. A., M. Piattelli, and E. Fattorusso: The Structure of Melanins and Melanogenesis. IV. On Some Natural Melanins. Tetrahedron 20, 1163 (1964).Google Scholar
  114. 111.
    Nordgren, L., H. Rorsman, A.-M. Rosengren, and E. Rosengren: Dopa and Dopamine in the Pigment of Substantia Nigra. Experientia 27, 1178 (1971).CrossRefGoogle Scholar
  115. 112.
    Okun, M., L. Edelstein, N. Or, G. Hamada, and B. Donnellan: Histochemical Studies of Conversion of Tyrosine and Dopa to Melanin Mediated by Mammalian Peroxidase. Life Sciences Part II, 9, 491 (1970).CrossRefGoogle Scholar
  116. 113.
    Okun, M. R., L. M. Edelstein, N. Or, G. Hamada, G. Blumental, B. Donnellan, and J. Burnett: Oxidation of Tyrosine and Dopa to Melanin by Mammalian Peroxidase: The Possible Role of Peroxidase in Melanin Synthesis and Catecholamine Synthesis in Vivo. In: V. Riley: Pigmentation, its Genesis and Biological Control, p. 571. New York: Appleton-Century-Crofts. 1972.Google Scholar
  117. 114.
    Omote, Y., Y. Fujinuma, and N. Sugiyama: Synthesis and Melanogenesis of the DOPA Dimer. Bull. Chem. Soc. Japan. 42, 1752 (1969).CrossRefGoogle Scholar
  118. 115.
    Patel, R. P., M. R. Okun, L. M. Edelstein, and D. Epstein: Biochemical Studies of the Peroxidase-Mediated Oxidation of Tyrosine to Melanin: Demonstration of the Hydroxylation of Tyrosine by Plant and Human Peroxidases. Biochem. J. 124, 439 (1971).Google Scholar
  119. 116.
    Piattelli, M., E. Fattorusso, and S. Magno: Isolation of Pyrrole-2,3,4-tricarboxylic Acid and Pyrrole-2,3,4,5-tetracarboxylic Acid from Sepiomelanin Oxidation Products. Tetrahedron Letters 718 (1961).Google Scholar
  120. 117.
    ____ Identificazione del 5,6-diossindolo nell’ossidazione enzimatica della dopa. Rend. Accad. Sci. fis. mat. (Napoli) [4] 28, 168 (1961).Google Scholar
  121. 118.
    Piattelli, M., E. Fattorusso, S. Magno, and R. A. Nicolaus: The Structure of Melanins and Melanogenesis. II. Sepiomelanin and Synthetic Pigments. Tetrahedron 18, 941 (1962).CrossRefGoogle Scholar
  122. 119.
    ____ The Structure of Melanins and Melanogenesis. III. The Structure of Sepiomelanin. Tetrahedron 19, 2061 (1963).CrossRefGoogle Scholar
  123. 120.
    Piattelli, M., E. Fattorusso, R. A. Nicolaus, and S. Magno: The Structure of Melanins and Melanogenesis. V. Ustilagomelanin. Tetrahedron 21, 3229 (1965).Google Scholar
  124. 121.
    Piattelli, M., and R. A. Nicolaus: The Structure of Melanins and Melanogenesis. I. The Structure of Melanin in Sepia. Tetrahedron 15, 66 (1961).CrossRefGoogle Scholar
  125. 122.
    Pomerantz, S. H.: Separation, Purification, and Properties of Two Tyrosinases from Hamster Melanomas. J. Biol. Chem. 238, 2351 (1963).Google Scholar
  126. 123.
    Pomerantz, S. H., and J. P.-C. Li: Tyrosinases (Hamster Melanoma). In: H. Tabor and C. W. Tabor (Eds.): Methods in Enzymology, XVII A, p. 620. New York and London: Academic Press. 1970.Google Scholar
  127. 124.
    Prota, G.: Structure and Biogenesis of Phaeomelanins. In: V. Riley: Pigmentation, its Genesis and Biological Control, p. 615. New York: Appleton-Century-Crofts. 1972.Google Scholar
  128. 125.
    Prota, G., S. Crescenzi, G. Miscuraca, and R. A. Nicolaus: New Intermediates in Phaeomelanogenesis in vitro. Experientia 26, 1058 (1970).CrossRefGoogle Scholar
  129. 126.
    Prota, G., A. Suarato, and R. A. Nicolaus: The Isolation and Structure of Trichosiderin B. Experientia 27, 1381 (1971).CrossRefGoogle Scholar
  130. 127.
    Pryor, M. G. M.: Sclerotization. In: M. Florkin, and H. S. Mason (Eds.): Comparative Biochemistry, Vol. IV, Part B, p. 371. New York and London: Academic Press. 1962.Google Scholar
  131. 128.
    Pugh, C. E. M., and H. S. Raper: The Action of Tyrosinase on Phenols. With some Observations on the Classification of Oxidases. Biochem. J. 21, 1370 (1927).Google Scholar
  132. 129.
    Pullman, A., and B. Pullman: The Band Structure of Melanins. Biochim. Biophys. Acta 54, 384 (1961).CrossRefGoogle Scholar
  133. 130.
    Quilico, A.: I pigmenti neri animali e vegetali. Pavia: Tip. Fusi. 1937.Google Scholar
  134. 131.
    Raper, H. S.: The Aerobic Oxidases. Physiol. Rev. 8, 245 (1928).Google Scholar
  135. 132.
    Riley, V. (Ed.): Pigmentation, its Genesis and Biological Control. New York: Appleton-Century-Crofts. 1972.Google Scholar
  136. 133.
    Riley, V., and J. G. Fortner (Eds.): The Pigment Cell: Molecular, Biological and Clinical Aspects. Ann. New York Acad. Sci. 100, (1963).Google Scholar
  137. 134.
    Robson, N. C., and G. A. Swan: Studies on the Structure of Some Synthetic Melanins. In: Della Porta, G., and O. Mühlbock (Eds.): Structure and Control of the Melanocyte, p. 155. Berlin-Heidelberg-New York: Springer. 1966.Google Scholar
  138. 135.
    Sacchi, S., G. Lanzi, and L. Zanotti: Electron Spin Resonance Research on Human Hairs under Varying Physiological and Experimental Conditions. In: W. Montagna, and R. L. Dobson (Eds.): Advances in Biology of Skin, Vol. IX, Hair Growth, p. 169. Oxford: Pergamon Press. 1969.Google Scholar
  139. 136.
    Senoh, S., and B. Witkop: Formation and Rearrangements of Aminochromes from a New Metabolite of Dopamine and Some of its Derivatives. J. Amer. Chem. Soc. 81, 6231 (1959).CrossRefGoogle Scholar
  140. 137.
    Sizer, I. W.: Oxidation of Proteins by Tyrosinase and Peroxidase. Adv. Enzymology 14, 129 (1953).Google Scholar
  141. 138.
    Smith, P. I., and G. A. Swan: Unpublished work.Google Scholar
  142. 139.
    Snell, R. S.: Hormonal Control of Pigmentation in Man and other Mammals. In: W. Montagna, and F. Hu (Eds.): Advances in Biology of Skin, Vol. VIII, p. 447. Oxford: Pergamon Press. 1967.Google Scholar
  143. 140.
    Swan, G. A.: Chemical Structure of Melanins. Ann. New York Acad. Sci. 100, 1005 (1963).Google Scholar
  144. 141.
    ____ Some Studies on the Formation and Structure of Melanins. Rend. Accad. Sci. fis. mat. (Napoli) [4] 31, 1 (1964).Google Scholar
  145. 141a.
    Swan, G. A.: Current Knowledge of Melanin Structure. In: V. J. McGovern and P. Russell (Eds.): Pigment Cell, Vol. 1: Mechanisms in Pigmentation, p. 151. Basel: Karger. 1973.Google Scholar
  146. 142.
    Swan, G. A., and A. Waggott: Studies Related to the Chemistry of Melanins. Part VI. Syntheses of 3-Carboxypyrrole-2-acetic Acid, 3,5-Dicarboxypyrrole-2-acetic Acid, and Related Compounds. J. Chem. Soc. (London) (C) 285 (1970).Google Scholar
  147. 143.
    ____ Studies Related to the Chemistry of Melanins. Part X. Quantitative Assessment of Different Types of Units present in Dopa-melanin. J. Chem. Soc. (London) (C) 1409 (1970).Google Scholar
  148. 144.
    Swan, G. A., and D. Wright: A Study of the Evolution of Carbon Dioxide during Melanin Formation, including the Use of 2-(3:4-Dihydroxyphenyl) [1-14C]-and 2-(3:4-Dihydroxyphenyl) [2-14C]-ethylamine. J. Chem. Soc. (London) 381 (1954).Google Scholar
  149. 145.
    Swan, G. A., and D. Wright: A Study of Melanin Formation by Use of 2-(3:4-Dihydroxy-[3-14C]phenyl)-, 2-(3:4-Dihydroxy[4-14C]phenyl)-, and 2-(3:4-Dihydroxy [5-14C]phenyl)-ethylamine. J. Chem. Soc. (London) 1549 (1956).Google Scholar
  150. 146.
    Takahashi, H., and T. B. Fitzpatrick: Large Amounts of Deoxyphenylalanine in the Hydrolysate of Melanosomes from Harding-Passey Mouse Melanoma. Nature 209, 888 (1966).CrossRefGoogle Scholar
  151. 147.
    Thathachari, Y. T., and M. S. Blob: Physical Studies on Melanins. II. X-Ray Diffraction. Biophys. J. 9, 77 (1969).CrossRefGoogle Scholar
  152. 148.
    Thomas, M.: Melanins. In: K. Paech, and M. V. Tracey (Eds.): Modern Methods of Plant Analysis, Vol. IV, p. 661. Berlin-Göttingen-Heidelberg: Springer. 1955.Google Scholar
  153. 149.
    Thomson, R. H.: Melanins. In: M. Florkin, and H. S. Mason (Eds.): Comparative Biochemistry, Vol. III, Part A, p. 727. New York and London: Academic Press. 1962.Google Scholar
  154. 150.
    ____ Some Naturally Occurring Black Pigments. In: T. S. Gore, B. S. Joshi, S. V. Sunthankar, and B. D. Tilak (Eds.): Recent Progress in Chemistry of Natural and Synthetic Colouring Matters and Related Fields, p. 99. New York and London: Academic Press. 1962.Google Scholar
  155. 151.
    Tollin, G., and C. Steelink: Biological Polymers Related to Catechol: Electron Paramagnetic Resonance and Infrared Studies of Melanin, Tannin, Lignin, Humic Acid, and Hydroxyquinones. Biochim. Biophys. Acta 112, 377 (1966).CrossRefGoogle Scholar
  156. 152.
    Van Woert, M. H.: Reduced Nicotinamide-Adenine Dinucleotide Oxidation by Melanin: Inhibition by Phenothiazines. Proc. Soc. Exp. Biol. Med. 129, 165 (1968).Google Scholar
  157. 153.
    ____ Activation of Tyrosinase by Chlorpromazine. In: V. Riley (Ed.): Pigmentation, its Genesis and Biological Control, p. 503. New York: Appleton-Century-Crofts. 1972.Google Scholar
  158. 154.
    Van Woert, M. H., K. N. Prasad, and D. C. Borg: Spectroscopic Studies of Substantia Nigra Pigment in Human Subjects. J. Neurochem. 14, 707 (1967).CrossRefGoogle Scholar
  159. 155.
    Vercauteren, R., and L. Massart: Model Oxygenases and Theoretical Considerations on the Activation of Oxygen. In: O. Hayaishi (Ed.): Oxygenases, p. 355. New York and London: Academic Press. 1962.Google Scholar
  160. 155a.
    Wassermann, H. P.: Melanin Pigmentation and the Environment. In: Essays on Tropical Dermatology: Excerpta Medica Monograph, p. 7, 1969.Google Scholar
  161. 156.
    Waters, W. A.: Comments on the Mechanism of One-electron Oxidation of Phenols: A Fresh Interpretation of Oxidative Coupling Reactions of Plant Phenols. J. Chem. Soc. (London) (B) 2026 (1971).Google Scholar
  162. 157.
    White, L. P.: Melanin: A Naturally Occurring Cation Exchange Material. Nature 182, 1427 (1958).CrossRefGoogle Scholar
  163. 158.
    Witz, D. F., E. J. Hessler, and T. L. Miller: Bioconversion of Tyrosine into the Propylhygric Acid Moiety of Lincomycin. Biochemistry 10, 1128 (1971).CrossRefGoogle Scholar
  164. 159.
    Yasunobu, K. T.: Mode of Action of Tyrosinase. In: M. Gordon (Ed.): Pigment Cell Biology, p. 583. New York: Academic Press. 1959.Google Scholar
  165. 160.
    Yasunobu, K. T., E. W. Peterson, and H. S. Mason: The Oxidation of Tyrosine-containing Peptides by Tyrosinase. J. Biol. Chem. 234, 3291 (1959).Google Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • G. A. Swan
    • 1
  1. 1.Newcastle upon TyneUK

Personalised recommendations