The sesquiterpenes provide a rich storehouse of diverse carbocyclic structural types whose perverse nature has taxed the talent and imagination of organic chemists since the beginning of modern organic chemistry. Studies on this widely varied group of natural products have contributed significantly to the advancement of spectroscopic techniques, mechanistic insight, and synthesis methodology, and the trend along these lines shows no sign of letup, as new and increasingly complex structures join the list of known members. Indeed, almost every conceivable carbon skeleton derivable via rational chemical transformations of farnesol (1), the biological precursor of the sesquiterpenes (80), seems to have found its way into one or another species of plant life.


Total Synthesis Lithium Aluminum Hydride Methyl Grouping Tetrahedron Letter Enol Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, N. H.: Unpublished work.Google Scholar
  2. 2.
    ____ Biogenetic Implications of the Antipodal Sesquiterpenes of Vetiver Oil. Phytochemistry 9, 145 (1970).Google Scholar
  3. 3.
    ____ On the Co-occurrence of Levojunenol and Zizanene [(+)-α-Amorphene]. Tetrahedron Letters 1970, 4651.Google Scholar
  4. 4.
    ____ The Structures of Zizanol and Vetiselinenol. Tetrahedron Letters 1970, 1755.Google Scholar
  5. 5.
    Andersen, N. H., and M. S. Falcone: Prezizaene and the Biogenesis of Zizaene. Chem. and Ind. 1971, 62.Google Scholar
  6. ____ The Identification of Sesquiterpene Hydrocarbons from Gas-Liquid Chromatography Retention Data. J. Chromatogr. 44, 52 (1969).CrossRefGoogle Scholar
  7. 7.
    Andersen, N. H., M. S. Falcone, and D. D. Syrdal: Structures of Vetivenenes and Vetispirenes. Tetrahedron Letters 1970, 1759.Google Scholar
  8. 8.
    Andersen, N. H., S. E. Smith, and Y. Ohta: unpublished work.Google Scholar
  9. 9.
    Andersen, N. H., S. E. Smith, and D. D. Syrdal: unpublished work.Google Scholar
  10. 10.
    Andersen, N. H., and D. P. Svedberg: unpublished work.Google Scholar
  11. 11.
    Andersen, N. H., and D. D. Syrdal: The Absolute Stereochemistry of the Alaskenes and Acorone-Related Sesquiterpenes. Tetrahedron Letters 1972, 899.Google Scholar
  12. 12.
    ____ Terpenes and Sesquiterpenes of Chamaecyparis nootkatensis Leaf Oil. Phytochem. 9, 1325 (1970).CrossRefGoogle Scholar
  13. 13.
    ____ The Alaskenes — Precursors of Tricyclic Sesquiterpenes. Tetrahedron Letters 1970, 2277.Google Scholar
  14. 14.
    ____ Chemical Simulation of the Biogenesis of Cedrene. Tetrahedron Letters 1972, 2455.Google Scholar
  15. 15.
    ____ unpublished work.Google Scholar
  16. 16.
    Andersen, N. H., D. D. Syrdal, C. R. Costin, and D. P. Svedberg: The Optical Activity Associated with Isolated Olefinic Bonds. I. The Allylic Bond Polarization Model and its Extension to Homoconjugated Systems. J. Amer. Chem. Soc. 95, 2049 (1973).CrossRefGoogle Scholar
  17. 17.
    Andersen, N. H., D. D. Syrdal, and M. S. Falcone: Sesquiterpenes of Vetiver and Alaska Cedar, 158th National Meeting of the ACS. Abstracts of Papers, Abstract AGFD27 (Sept. 1969).Google Scholar
  18. 18.
    Andersen, N. H., D. D. Syrdal, and C. Graham: Aromatizaron of Cycloalkenes with Trifluoroacetic Acid. Tetrahedron Letters 1972, 903.Google Scholar
  19. 19.
    Asselin, A., M. Mongrain, and P. Deslongchamps: Syntheses of α-Agarofuran and Isodihydroagarofuran. Canad. J. Chem. 46, 2817 (1968).CrossRefGoogle Scholar
  20. 20.
    Baird, R., and S. Winstein: Neighboring Carbon and Hydrogen. XLVI. Spiro[4.5]-deca-l,4-diene-3-one from Ar1ө5 Participation. J. Amer. Chem. Soc. 84, 788 (1962).CrossRefGoogle Scholar
  21. 21.
    Barrett, H. C., and G. Büchi: Stereochemistry and Synthesis of α-Agarofuran. J. Amer. Chem. Soc. 89, 5665 (1967).CrossRefGoogle Scholar
  22. 22.
    Birch, A. J., and J. S. Hill: Reactions of Cyclohexadienes. Part V. A New Synthesis of 4-Substituted Cyclohexenones. J. Chem. Soc. (C) 1966, 419.Google Scholar
  23. 23.
    Bundy, G.: Ph. D. Thesis, Part I. Synthesis of Cyclodecadienes from Decalyl-borane Derivatives. Part II: The Synthesis of Valeranone, Northwestern University (1968).Google Scholar
  24. 24.
    Caine, D.: Private Communication to J. A. Marshall.Google Scholar
  25. 25.
    Caine, D., and J. B. Dawson: The Synthesis and Acid-catalysed Rearrangement of a Spiro[4.5]dec-6-en-2-one. Chem. Commun. 1970, 1232.Google Scholar
  26. 26.
    Chiurdoglu, G., et J. Decot: Contribution à l’étude des composes sesquiterpeniques. II. Étude de la structure du bicyclovetivenol et du tricyclovetivenol. Alcols primaires de l’essence de vetiver. Tetrahedron 4, 1 (1958).CrossRefGoogle Scholar
  27. 27.
    Chiurdoglu, G., et P. Tullen: Contribution à l’étude des composés sesquiterpeniques. I. Étude structurale du tricyclovetivene de l’essence de vetiver du Congo Belge. Bull. Soc. Chim. Belges 66, 169 (1957).CrossRefGoogle Scholar
  28. 28.
    Chow, W. Z., O. Motl, and F. Sorm: On Terpenes CXL. Composition of the Oil from Atractylodes lancea Thunb. The Structure of Hinesol. Collect. Czech. Chem. Commun. 27, 1914 (1962).Google Scholar
  29. 29.
    Coates, R. M., R. F. Farney, S. M. Johnson, and I. C. Paul: The Crystal Structure of Khusimol p-Bromobenzoate. Chem. Commun. 1969, 999.Google Scholar
  30. 30.
    Conia, J.: Thermocyclisation de composés carbonylés non saturés. Bull. Soc. Chim. France 1968, 3057.Google Scholar
  31. 31.
    Conia, J., J. Gore, and J. Drouet: unpublished work.Google Scholar
  32. 32.
    Conia, J. M., J. P. Drouet, et J. Gore: Thermolyse et photolyse des cetones non saturées. 19ème Memoire. Sur l’obtention et la stéreochimie de quelques cetones de la famille de l’acorane formées dans la thermocyclisation de la (+)(isopropenyl-l-pentene-4-yl)-2-methyl-5-cyclohexanone. Tetrahedron 27, 2481 (1971).CrossRefGoogle Scholar
  33. 33.
    Corey, E. J., N. N. Girotra, and C. T. Mathew: Total Synthesis of dl-Cedrene and dl-Cedrol. J. Amer. Chem. Soc. 91, 1557 (1969).CrossRefGoogle Scholar
  34. 34.
    Crandall, T. G., and R. G. Lawton: A Biogenetic-Type Synthesis of Cedrene. J. Amer. Chem. Soc. 91, 2127 (1969).CrossRefGoogle Scholar
  35. 35.
    Demole, E., P. Enggist, and (in part) C. Borer: Applications synthetiques de la cyclisation d’alcools tertiaires γ-ethyleniques en α-bromotetrahydrofurannes sous l’action du N-bromosuccinimide. II. Cyclisation du ±-nerolidol en dimethyl-2,5-(methyl-4-pentene-3-yl)-2-cycloheptene-4-one, tetramethyl-3,3,7,10-oxa-2-tricyclo-[]-dodecene-9, β-acoratriene, cedradiéne-2,8, epi-2-α-cédrene et α-cédrene. Helv. Chim. Acta 54, 1845 (1971).CrossRefGoogle Scholar
  36. 36.
    Drouet, J.: Sur une voie d’accés au système acoranique. Ph. D. thesis, University of Caen, July (1969).Google Scholar
  37. 37.
    Dunham, D. J., and R. G. Lawton: Spiro Intermediates in Sesquiterpene Rearrangements and Synthesis. J. Amer. Chem. Soc. 93, 2075 (1971).CrossRefGoogle Scholar
  38. 38.
    Dunham, O. J., and R. G. Lawton: The Synthesis of Spiro Systems by the αα′-Annelation Process. J. Amer. Chem. Soc. 93, 2074 (1971).CrossRefGoogle Scholar
  39. 39.
    Endo, K., and P. De Mayo: α-Vetivone. Chem. Commun. 1967, 89.Google Scholar
  40. 40.
    Erdtman, H., and T. Norin: The Chemistry of the Order Cupressales. Fortschr. Chem. Organ. Naturstoffe 24, 206 (1966).Google Scholar
  41. 41.
    Hikino, H., K. Aota, D. Kuwano, and T. Takemoto: Structure of α-Rotunol and β-Rotunol. Tetrahedron Letters 1969, 2741.Google Scholar
  42. 41a.
    Hochstetler, A. R.: Acid Catalyzed Angular Methyl Migration in a Substituted Octalin 166th ACS National Meeting, Chicago, August 27–31, 1973. Abstracts, ORGN, Paper No. 128.Google Scholar
  43. 42.
    Huffman, J. W.: Attempted Duplications of the Methyl Shift in Eremophilane Biosynthesis. J. Org. Chem. 37, 2736 (1972).CrossRefGoogle Scholar
  44. 43.
    Jacques, J., M. Harispe, D. Mea et A. Horeau: Études stéréochimiques dans la série terpénique. II. Structure de l’acide obtenu par réarrangement de l’acide pinolique en milieu acid. Bull. Soc. chim. France 1963, 472.Google Scholar
  45. 44.
    Jentsch, J., and W. Treibs: Constitution of Vétiver Oil Components Especially of the Tertiary Vetivenols. I. Isolation and Dehydrogenation of Tert-bicyclovetivenol and Tert-tricyclovetivenol. Parfüm und Kosmetik 49, 29 (1968).Google Scholar
  46. 45.
    ____ Constitution of Vetiver Oil Components, Especially Tertiary Vetivenols. II. Hydrogenation of Bi-and Tricyclovetivenol and Ozonization of Tricyclovetivenol. Parfüm und Kosmetik 49, 143 (1968).Google Scholar
  47. 46.
    Johnson, A. P.: International Symposium on Synthetic Methods and Rearrangements in Alicyclic Chemistry, Oxford, July 22–24, 1969, Abstracts, p. 13.Google Scholar
  48. 47.
    Johnson, F.: Allylic Strain in Six-Membered Rings. Chem. Rev. 68, 375 (1968).CrossRefGoogle Scholar
  49. 47a.
    Kitagawa, I., Y. Yamazoe, R. Tadeka, and I. Yosioka: Conversion of Dihydroalantolactone to Eremophilane-Type Derivatives: A Biogenetic-Type Transformation. Tetrahedron Letters 1972, 4843.Google Scholar
  50. 48.
    Kaiser, R., and P. Naegeli: Biogenetically Significant Components in Vetiver Oil. Tetrahedron Letters 1972, 2009.Google Scholar
  51. 49.
    Kropp, P. J.: The Acid Catalyzed Cleavage of Cyclopropyl Ketones Related to Lumisantonin. J. Amer. Chem. Soc. 87, 3914 (1965).CrossRefGoogle Scholar
  52. 50.
    Lansbury, P. T.: Chloro Olefin Annelation. Accounts Chem. Res. 5, 311 (1972).CrossRefGoogle Scholar
  53. 57.
    Mc Clure, R. J., K. S. Schorno, J. A. Bertrand, and L. H. Zalkow: The Structure and Stereochemistry of a New Sesquiterpene of the Acorane Type. Chem. Commun. 1968, 1135.Google Scholar
  54. 52.
    Mc Curry, P. M. Jr.: Private Communication to J. A. Marshall.Google Scholar
  55. 53.
    ____ Ph. D. Thesis, Columbia University (1970).Google Scholar
  56. 54.
    ____ Stereochemical Factors in the Intramolecular Keto-Carbene Addition to Substituted Cyclohexenes. Tetrahedron Letters 1971, 1845.Google Scholar
  57. 54a.
    Mccurry, P. M. Jr., R. K. Singh, and S. Link: Stereochemical Factors in a Cationic Cyclization Reaction. The Synthesis of 10-epi-β-Vetivone. Tetrahedron Letters 1973, 1155.Google Scholar
  58. 54b.
    Mccurry, P. M. Jr., and R. K. Singh: Synthesis of Spirosesquiterpenes in the Vetivane Series Via an Aza Claisen Rearrangement. Tetrahedron Letters, in press.Google Scholar
  59. 55.
    Mc Eachan, C. E., A. T. McPhail, and G. A. Sim: Sesquiterpenoids Part V. The Stereochemistry of Acorone: X-Ray Analysis of Acorone p-Bromophenylsulphonyl-hydrazone. J. Chem. Soc. (C) 1966, 579.Google Scholar
  60. 56.
    ____ The Stereochemistry of Acorone. Chem. Commun. 1965, 276.Google Scholar
  61. 57.
    Macleod, W. D. JR.: The Constitution of Nootkatone, Nootketone, and Valencene. Tetrahedron Letters 1965, 4779.Google Scholar
  62. 58.
    Macsweeney, D. F., R. Ramage, and A. Satter: Biogenetic Relationships of the Vetiver Sesquiterpenes. Tetrahedron Letters 1970, 557.Google Scholar
  63. 59.
    Maheshwari, M. L., T. C. Jain, R. B. Bates, and S. C. Bhattacharyya: Terpenoids. XLI Structure and Absolute Configuration of α-Agarofuran, β-Agarofuran and Dihydroagarofuran. Tetrahedron 19, 1079 (1963).CrossRefGoogle Scholar
  64. 60.
    Marshall, J. A., and N. H. Andersen: The Structure of α-Vetivone (Isonootkatone). Tetrahedron Letters 1967, 1611.Google Scholar
  65. 61.
    Marshall, J. A., N. H. Andersen, and P. C. Johnson: A Stereoselective Synthesis of Hydroazulenes. Grounds for Structure Revision of the Vetivane Sesquiterpenes. J. Amer. Chem. Soc. 89, 2748 (1967).CrossRefGoogle Scholar
  66. 62.
    Marshall, J. A., and S. F. Brady: Stereochemical Relationships in Spirovetivane Sesquiterpenes: The Total Synthesis of (±)-Hinesol. Tetrahedron Letters 1969, 1387; J. Org. Chem. 35, 4068 (1970).Google Scholar
  67. 63.
    Marshall, J. A., and M. T. Pike: A Stereoselective Synthesis of α-and β-Agarofuran. J. Org. Chem. 33, 435 (1968).CrossRefGoogle Scholar
  68. 64.
    Marshall, J. A., and P. C. Johnson: The Structure of β-Vetivone and Related Vetivane Sesquiterpenes. J. Amer. Chem. Soc. 89, 2750 (1967).CrossRefGoogle Scholar
  69. 65.
    ____ The Total Synthesis of (±)-β-Vetivone. Chem. Commun. 1968, 391.Google Scholar
  70. 66.
    Masamune, S.: Synthesis of 4a,6-Ethano-5,6,7,8-tetrahydro-2(4a)-naphthalenone. J. Amer. Chem. Soc. 83, 1009 (1961).CrossRefGoogle Scholar
  71. 67.
    Mellor, J. M., and S. Munavalli: Synthesis of Sesquiterpenes. Quart. Rev. 18, 270 (1964).CrossRefGoogle Scholar
  72. 68.
    Minato, H., R. Fujioka, and K. Takeda: Components of the Root of Acorus Calamus L. Chem. Pharm. Bull. 19, 638 (1971).Google Scholar
  73. 69.
    Motl, O., W. Z. Chow, and F. Sorm: Structure of the Sesquiterpenic Alcohol Hinesol. Chem. and Ind. 1961, 207.Google Scholar
  74. 70.
    Mongrain, M., J. Lafontaine, A. Belanger, and P. Deslongchamps: Stereoselective Synthesis of (±)-Epihinesol (Agarospirol). Canad. J. Chem. 48, 3273 (1970).CrossRefGoogle Scholar
  75. 70a.
    Naegeli, P.: Private communication to N. H. Andersen.Google Scholar
  76. 71.
    Naegeli, P., and R. Kaiser: A New Synthetic Approach to the Acorane, Daucane, and Cedrane Skeleton. Tetrahedron Letters 1972, 2013Google Scholar
  77. 72.
    Nigam, I. C., H. Komae, G. A. Neville, C. Radecka, and S. K. Paknikar: Structural Relationships Between Tricyclic Sesquiterpenes in Oils of Vetiver. Tetrahedron Letters 1968, 2497.Google Scholar
  78. 73.
    Nigam, I. C., and L. Levi: Gas Liquid Partition Chromatography of Sesquiterpene Compounds. Canad. J. Chem. 40, 2083 (1962).CrossRefGoogle Scholar
  79. 74.
    ____ Preparation and Isolation of Isomeric Ketones by the Girard Reaction. Analyt. Chemistry 35, 1087 (1963).CrossRefGoogle Scholar
  80. 75.
    Naves, Y. R.: Etudes sur les matières végétales volatiles (CXII). Sur l’absorption des vétivones α et β et de leurs derivés dan l’ultraviolet moyen. Bull. Soc. chim. France 1951, 369.Google Scholar
  81. 76.
    Naves, Y. R., et E. Perrottet: Études sur les matières végétales volatiles (XIII). Sur les α-et β-vetivones. Helv. Chim. Acta 24, 3 (1941).CrossRefGoogle Scholar
  82. 77.
    Ogiso, A., M. Kurabayashi, H. Nagahori, and H. Mishima: Preparation of 6,10-Dimethylspiro[4.5]dec-6-en-2-one. Experiments directed towards the Synthesis of Spirovetivane Sesquiterpenes. Chem. Pharm. Bull. 18, 1283 (1970).Google Scholar
  83. 78.
    Ohta, Y., and Y. Hirose: Electrophile Induced Cyclization of Farnesol. Chemistry Letters 1972, 263.Google Scholar
  84. 79.
    ____ New Sesquiterpenoids from Schisandra Chinensis. Tetrahedron Letters 1968, 2483.Google Scholar
  85. 80.
    Parker, W., J. S. Roberts, and R. Ramage: Sesquiterpene Biogenesis. Quart. Rev. 21, 331 (1967).CrossRefGoogle Scholar
  86. 81.
    Penfold, A. R., and J. L. Simonsen: The Constitutions of Eremophilone, Hydroxyeremophilone, and Hydroxydihydroeremophilone. Part III. J. Chem. Soc. 1939, 87.Google Scholar
  87. 82.
    Pfau, A. St., und Pl. A. Plattner: Zur Kenntnis der flüchtigen Pflanzenstoffe (VIII). Synthese des Vetivazulens. Helv. Chim. Acta 22, 202 (1939).CrossRefGoogle Scholar
  88. 83.
    ____ Études sur les matières végétales volatiles (X). Sur les vétivones, constituants odorants des essences de vetiver. Helv. Chim. Acta 22, 640 (1939).CrossRefGoogle Scholar
  89. 84.
    ____ Études sur les matières vegetales volatiles (XI). Sur la constitution de la β-vétivone. Helv. Chim. Acta 23, 768 (1940).CrossRefGoogle Scholar
  90. 85.
    Piers, E., and P. M. Worster: Stereochemistry of the Lithium Ammonia Reduction of cis-1,7-Dimethyltricyclo[]decan-3-one and Related Compounds. J. Amer. Chem. Soc. 94, 2895 (1972).CrossRefGoogle Scholar
  91. 86.
    Romanuk, M., and V. Herout: On Terpenes. CXIV. On Stereoisomeric Vetivanes and Sesquiterpenic Hydrocarbons of Vetiver Oil. Collect Czech. Chem. Commun. 25, 2540 (1960).Google Scholar
  92. 87.
    Ruzicka, L.: The Isoprene Rule and the Biogenesis of Terpenic Compounds. Experientia 9, 357 (1953).CrossRefGoogle Scholar
  93. 88.
    Sakuma, R., and A. Yoshikoshi: Tricyclovetivene. Chem. Commun. 1968, 41.Google Scholar
  94. 89.
    Smith, S. E.: The Crystal and Molecular Structures of Azetidine-3-carboxylic Acid, the ortho-Chlorophenyl Urethan Derivative of 2-Methylene-4αH-(1βH)-bicyclo-[5.4.0]undecanol, and endo-1,2-dihydroxyzizaane. The Structure Elucidation of Postzizaene C, Ph. D. Thesis, University of Washington (1972).Google Scholar
  95. 90.
    Šorm, F.: Mediumring Terpenes. Fortschr. Chem. organ. Naturstoffe 19, 2 (1961).Google Scholar
  96. 91.
    Šorm, F., and V. Herout: On Terpenes (V). On the Constitution of the Essential Oil of Sweet Flag (Acorus Calamus L.). Collect. Czech. Chem. Commun. 13, 177 (1948).Google Scholar
  97. 92.
    ____ On Terpenes (XV). On the Constitution of Acorone and Isoacorone I. Collect. Czech. Chem. Commun. 14, 723 (1949).Google Scholar
  98. 93.
    Stork, G.: Private communication to J. A. Marshall.Google Scholar
  99. 94.
    Stork, G., R. L. Danheiser, and B. Ganem: Spiroannelation of Enol Ethers of Cyclic 1,3-Diketones. A Simple Stereospecific Synthesis of β-Vetivone. J. Amer. Chem. Soc. 95, 3414 (1973).CrossRefGoogle Scholar
  100. 95.
    Sulser, H., J. R. Scherer, and K. L. Stevens: The Structure of Paradisiol, a New Sesquiterpene Alcohol from Grapefruit Oil. J. Org. Chem. 36, 2422 (1971).CrossRefGoogle Scholar
  101. 96.
    Suzuki, M., E. Kurosawa, and T. Irie: Spirolaurenone, A New Sesquiterpenoid containing Bromine from Laurencia glandulifera Kutzing. Tetrahedron Letters 1970, 4995.Google Scholar
  102. 97.
    Sýkora, V., V. Herout, J. Plíva, and F. Sorm: Constitution of Acorone. Chem. and Ind. 1956, 1231.Google Scholar
  103. 98.
    ____ Über Terpene LXXXII. Die Konstitution von Acoron. Collect. Czech. Chem. Commun. 23, 1072 (1958).Google Scholar
  104. 99.
    Sýkora, V., V. Herout, A. Reiser, and F. Sorm: On Terpenes. XCVI. The Stereochemistry of Acorone and its Stereoisomers. Collect. Czech. Chem. Commun. 24, 1306 (1959).Google Scholar
  105. 100.
    Syrdal, D. D.: Sesquiterpenes of Chamaecyparis nootkatensis. I. Isolation and Structure Determination; II. Absolute Stereochemistry; III. Chemical Simulation of Biogenesis. Ph. D. Thesis, University of Washington (1971).Google Scholar
  106. 101.
    Tomita, B., and Y. Hirose: Terpenoids. XXVI. Acoradiene and Acorenol, Key Intermediates of Cedrane Group Sesquiterpenoids and their Transformation into (-)-α-Cedrene. Tetrahedron Letters 1970, 143.Google Scholar
  107. 102.
    Tomita, B., Y. Hirose, and T. Nakatsuka: Terpenoids. XXIII. Chemotaxonomy of Cuppressaceae. Sesquiterpenes in Biota-(Thuja-)orientalis wood. Mokuzai Gakkaishi 15, 48 (1970).Google Scholar
  108. 103.
    Tomita, B., T. Isono, and Y. Hirose: Terpenoids. XXVIII. Acorane Type Sesquiterpenoids from Juniperus rigida and Hypothesis for the Formation of New Tricarbo-cyclic Sesquiterpenoids. Tetrahedron Letters 1970, 1371.Google Scholar
  109. 103a.
    Trost, E. M.: New Alkylation Reactions. Lecture to U.S.-Japan Seminar on Natural Product Synthesis. Tokyo. July 16–20, 1973.Google Scholar
  110. 104.
    Varma, K. R., M. L. Maheshwari. and S. C. Bhattacharyya: Terpenoids-LXII. The Constitution of Agarospirol, a Sesquiterpenoid with a New Skeleton. Tetrahedron 21, 115 (1965).CrossRefGoogle Scholar
  111. 105.
    Venkataramani, P. S., J. E. Karoglan, and W. Reusch: Transformations of Cyclopropanol Intermediates. I. Synthesis of Angularly Substituted Perhydroindan Systems via a Stereospecific Cyclopropanol Rearrangement. J. Amer. Chem. Soc. 93, 269 (1971).CrossRefGoogle Scholar
  112. 106.
    Vrkoč, J., V. Herout, and F. Šorm: On Terpenes. CXXII. Composition of Sesquiterpenic Ketonic Fraction of Sweet Flag Oil. Collect. Czech. Chem. Commun. 26, 1021 (1961).Google Scholar
  113. 107.
    ____ On Terpenes. CXXXIII. Structure of Acorenone, a Sesquiterpenic Ketone from Sweet FlagOil (Acoruscalamus L.). Collect. Czech. Chem. Commun. 26, 3183 (1961).Google Scholar
  114. 108.
    ____ On Terpenes. CXLIII. Cryptoacorone, a New Stereoisomer of Acorone. Collect. Czech. Chem. Commun. 27, 2709 (1962).Google Scholar
  115. 109.
    ____ On Terpenes. CXLIX. The Proof of Position of Cyclopentanone Carbonyl Group in Acorone and its Stereoisomers. Collect. Czech. Chem. Commun. 28, 1084 (1963).Google Scholar
  116. 110.
    Vrkoč, J., J. JONÁŠ, V. Herout, and F. Šorm: On Terpenes. CLVII. Steric Structure of Acorone, Isoacorone and Cryptoacorone. Collect. Czech. Chem. Commun. 29, 539 (1964).Google Scholar
  117. 111.
    Wenninger, J. A., R. L. Yates, and M. Dolinsky: High Resolution Infrared Spectra of Some Naturally Occurring Sesquiterpene Hydrocarbons. J. Assoc. Off. Agric. Chem. 50, 1304 (1967).Google Scholar
  118. 111a.
    Whitlock, H. W. Jr., and L. E. Overman: Solvolytic Rearrangements Accompanied by Multiple Alkyl Shifts. J. Amer. Chem. Soc. 93, 2247 (1971).CrossRefGoogle Scholar
  119. 111b.
    Williams, J. R., and G. M. Sarkisian: [1,3]-vs, [1,2]-Sigmatropic Photorearrangements in Cyclic βγ-Unsaturated Ketones. Conversion of Bicyclo[5.4.0]undec-l(7)-en-3-one into 6-Methylenespiro[4.5]decan-l-one. Chem. Commun., 1564 (1971). Photochemical Syntheses of Spiro[4.5]decane-1,6-dione. J. Org. Chem. 37, 4463 (1972).CrossRefGoogle Scholar
  120. 111c.
    Yamada, K.: Synthetic Studies on Spirovetivanes-Stereospecific Synthesis of (±)-β-Vetivone and (±)-Hinesol. Lecture to U.S.-Japan Seminar on Natural Product Synthesis, Tokyo, July 16–20, 1973.Google Scholar
  121. 111d.
    Yamasaki, M.: Total Synthesis of the Sesquiterpene (-)-Daucene. Chem. Commun. 1972, 606.Google Scholar
  122. 112.
    Yosioka, I., H. Hikino, and Y. Sasaki: Studies on the Constituents of Atractylodes. IV. The Structure of Hinesol. (1). The Skeleton. Chem. Pharm. Bull. (Japan) 7, 817 (1959).Google Scholar
  123. 113.
    ____ Abstracts Chem. Soc. Japan Symposium Nat. Prod., Kyoto (1960).Google Scholar
  124. 114.
    Yosioka, I., and T. Kimura: Studies on the Constituents of Atractylodes. X. Correlation of Hinesol and β-Vetivone. Chem. Pharm. Bull. (Japan) 13, 1430 (1961).Google Scholar
  125. 114a.
    ____ The Structure and Absolute Configuration of Hinesol. Chem. Pharm. Bull. (Japan) 17, 856 (1969).Google Scholar
  126. 115.
    Yosioka, I., Y. Sasaki, and H. Hikino: Structure of Hinesol. Chem. Pharm. Bull. (Japan) 9, 84 (1961).Google Scholar
  127. 116.
    Yosioka, I., S. Takahashi, H. Hikino, and Y. Sasaki: Studies on the Constituents of Atractylodes. III. Separation of Atraetylol into Eudesmol and Hinesol. Chem. Pharm. Bull. (Japan) 7, 319 (1959).Google Scholar
  128. 117.
    Zalkow, L. H., F. X. Markey, and C. Djerassi: Terpenoids. XLVIII. The Absolute Configuration of Eremophilone and Related Sesquiterpenes. J. Amer. Chem. Soc. 82, 6354 (1960).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • J. A. Marshall
    • 1
  • St. F. Brady
    • 2
  • N. H. Andersen
    • 3
  1. 1.EvanstonUSA
  2. 2.RahwayUSA
  3. 3.SeattleUSA

Personalised recommendations