Advertisement

Biogenetic-Type Syntheses of Polyketide Metabolites

  • Th. M. Harris
  • C. M. Harris
  • K. B. Hindley
Part of the Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 31)

Abstract

The term “polyketide” was coined in 1907 by Collie (37) and later defined more explicitly by Birch (13) to describe the aromatic natural products which are formed in nature from acetic acid via β-polycarbonyl intermediates. Biosynthetically, the polyketides arise by the acyl polymalonate route, which also produces the fatty acids. The latter are formed from linear arrays of acetate units but not via polycarbonyl intermediates.

Keywords

Methyl Acetoacetate Pyrone Ring Aqueous Potassium Hydroxide Triacetic Acid Lithium Diisopropylamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acker, T. E., P. E. Brenneisen, and S. W. Tanenbaum: Isolation, Structure, and Radiochemical Synthesis of 3,6-Dimethyl-4-hydroxy-2-pyrone. J. Amer. Chem. Soc. 88, 834 (1966).Google Scholar
  2. 2.
    Allport, D. C., and J. D. Bu’lock: Biosynthetic Pathways in Daldinia concentrica. J. Chem. Soc. (London) 1960, 654.Google Scholar
  3. 3.
    Arndt, F., B. Eistert, H. Scholz und E. Aron: Zur Synthese der Dehydracetsäure aus Acetessigester. Ber. Dtsch. chem. Ges. 69, 2373 (1936).Google Scholar
  4. 4.
    Baeyer, A.: Über die Synthese des Acetessigäthers und des Phloroglucins. Ber. Dtsch. chem. Ges. 18, 3454 (1885).Google Scholar
  5. 5.
    Baker, P. M., and B. W. Bycroft: A Convenient Route to Some Naturally Occurring Hydroxynaphthaquinones. Chem. Commun. 1968, 71.Google Scholar
  6. 6.
    Balenović, K., and R. Munk: Polyoxo Compounds. III. sym-Dibenzoylacetone (1,3,5-Trioxo-1,5-diphenylpentane). Arhiv Kern. 18, 41 (1946); [Chem. Abstr. 42, 2926 (1948)].Google Scholar
  7. 7.
    Balenović, K., und D. Sunko: Über γ-Benzoyl-acetessigsäure. Monatsh. Chem. 79, 1 (1948).Google Scholar
  8. 8.
    Bedford, C. T., J. L. Douglas, B. E. Mccarry, and T. Money: Pyrone Studies: Conversion of 2-Pyrones into Aromatic Compounds. Chem. Commun. 1968, 1091.Google Scholar
  9. 9.
    Bedford, C. T., and T. Money: Photochemistry of 4-Hydroxy-6-methyl-(2H)-pyran-2-one (Triacetic Acid Lactone). Chem. Commun. 1969, 685.Google Scholar
  10. 10.
    Bentley, R., and P. M. Zwitkowits: Biosynthesis of Tropolones in Penicillium stipitatum. VII. The Formation of Polyketide Lactones and Other Nontropolone Compounds as a Result of Ethionine Inhibition. J. Amer. Chem. Soc. 89, 676 (1967).Google Scholar
  11. 11.
    Bethell, J. R., and P. Maitland: Organic Reactions in Aqueous Solution at Room Temperature. Part III. The Influence of pH on the Self-condensation of Diacetylacetone: Constitution of Collie’s Naphthalene Derivative. J. Chem. Soc. (London) 1962, 3751.Google Scholar
  12. 12.
    Birch, A. J.: Biosynthetic Relations of Some Natural Phenolic and Enolic Compounds. Fortschr. Chem. organ. Naturstoffe 14, 186 (1957).Google Scholar
  13. 13.
    _ Some Pathways in Biosynthesis. Proc. Chem. Soc. (London) 1962, 3.Google Scholar
  14. 14.
    Birch, A. J., D. W. Cameron, and R. W. Rickards: Studies in Relation to Biosynthesis. Part XXIII. The Formation of Aromatic Compounds from β-Polyketones. J. Chem. Soc. (London) 1960, 4395.Google Scholar
  15. 15.
    Birch, A. J., and F. W. Donovan: Studies in Relation to Biosynthesis. I. Some Possible Routes to Derivatives of Orcinol and Phloroglucinol. Austral. J. Chem. 6, 360 (1953).Google Scholar
  16. 16.
    Birch, A. J., P. Fitton, D. C. C. Smith, D. E. Steere, and A. R. Stelfox: Studies in Relation to Biosynthesis. Part XXXII. Preparation, Spectra, and Hydrolysis of Poly-β-carbonyl Compounds. J. Chem. Soc. (London) 1963, 2209.Google Scholar
  17. 17.
    Birch, A. J., R. A. Massy-Westropp, and C. J. Moye: Studies in Relation to Biosynthesis. VII. 2-Hydroxy-6-methylbenzoic Acid in Penicillium griseofulvum Dierckx. Austral. J. Chem. 8, 539 (1955).Google Scholar
  18. 18.
    Birch, A. J., R. A. Massy-Westropp, R. W. Rickards, and H. Smith: Studies in Relation to Biosynthesis. Part XIII. Griseofulvin. J. Chem. Soc. (London) 1958, 360.Google Scholar
  19. 19.
    Birch, A. J., O. C. Musgrave, R. W. Rickards, and H. Smith: Studies in Relation to Biosynthesis. Part XX. The Structure and Biosynthesis of Curvularin. J. Chem. Soc. (London) 1959, 3146.Google Scholar
  20. 20.
    Birch, A. J., J. F. Snell, and P. J. Thomson: Studies in Relation to Biosynthesis. Part XXVIII. Oxytetracycline (Terramycin). J. Chem. Soc. (London) 1962, 425.Google Scholar
  21. 21.
    Boltze, K.-H., und K. Heidenbluth: Zur Synthese 3-substituierter 4-Hydroxypyrone-(2), I. Ringschlüsse mit Malonsäure-dichloriden. Chem. Ber. 91, 2849 (1958).Google Scholar
  22. 22.
    Borsche, W., und C. K. Bodenstein: Untersuchungen über die Bestandteile der Kawawurzel, IX.: Die Synthese des Yangonins. Ber. Dtsch. chem. Ges. 62, 2515 (1929).Google Scholar
  23. 23.
    Bram, G.: Synthese d’un derive du trioxo-3,5,7 octanoate d’ethyle modele chimique de biosynthese de l’orcinol. Tetrahedron Letters 1967, 4069.Google Scholar
  24. 24.
    Brown, K. S., D. W. Cameron, and U. Weiss: Chemical Constituents of the Bright Orange Aphid, Aphis Nerii Fonscolombe. I. Neriaphin and 6-Hydroxymusizin 8-O-β-Z)-Glucoside. Tetrahedron Letters 1969, 471.Google Scholar
  25. 25.
    Bruice, T. C., and B. Holmquist: The Establishment of a Carbanion Mechanism for Ester Hydrolysis and the Unimportance of Electrostatic Effects of α Substituents on the Rates of Hydroxide Ion Attack at the Ester Carbonyl Group. J. Amer. Chem. Soc. 90, 7136 (1968).Google Scholar
  26. 26.
    Bu’lock, J. D., and H. G. Smith: Pyrones. Part I. Methyl Ethers of Tautomeric Hydroxypyrones and the Structure of Yangonin. J. Chem. Soc. (London) 1960, 502.Google Scholar
  27. 27.
    Bycroft, B. W., T. A. Dobson, and J. C. Roberts: Studies in Mycological Chemistry. Part VIII. The Structure of Flavasperone (“Asperxanthone”), a Metabolite of Aspergillus niger. J. Chem. Soc. (London) 1962, 40.Google Scholar
  28. 28.
    Bycroft, B. W., A. Hassaniali-Walji, A. W. Johnson, and T. J. King: The Structure and Synthesis of Barakol; a Novel Dioxaphenalene Derivative from Cassia siamea. J. Chem. Soc. C (London) 1970, 1686.Google Scholar
  29. 29.
    Carnduff, J., J. A. Miller, B. R. Stockdale, J. Larkin, D. C. Nonhebel, and H. C. S. Wood: Synthesis and Reactions of 3,3-Dimethylallyl Derivatives of Acetylacetone and Other Poly-β-carbonyl Compounds. J. Chem. Soc. (London) Perkin I, 1972, 692.Google Scholar
  30. 30.
    Casnati, G., A. Quilico, A. Ricca, and P. Vita-Finzi: New Synthesis of polyketones: 1,5-dibenzoylacetylacetone. Chim. et ind. 47, 993 (1965); [Chem. Abstr. 64, 8068 (1966)].Google Scholar
  31. 31.
    ____ Some Synthetic Applications of the Reaction of Reductive Opening of the Isoxazole Ring. Tetrahedron Letters 1966, 233.Google Scholar
  32. 32.
    ____ Synthesis of 5,3′-and 5,5′-Methylenediisoxazoles, Intermediates in the Preparation of β-Tetraketones. Gazz. chim. ital. 96, 1064 (1966); [Chem. Abstr. 66, 37811 (1967)].Google Scholar
  33. 33.
    Chauvelier, J.: Sur une nouvelle synthèse des pyrones. C. R. hebd. séances Acad. Sci. 226, 927 (1948).Google Scholar
  34. 34.
    Cheng, F. C., and S. F. Tan: Synthesis and Reactions of 7-Methylpyrano[4,3-b]-pyran-2,5-dione. J. Chem. Soc. (London) C 1968, 543.Google Scholar
  35. 35.
    Collie, J. N.: On the Constitution of Dehydracetic Acid. J. Chem. Soc. (London) 59, 179 (1891).Google Scholar
  36. ____ The Lactone of Triacetic Acid. J. Chem. Soc. (London) 59, 607 (1891).Google Scholar
  37. ____ Derivatives of the Multiple Ketene Group. Proc. Chem. Soc. (London) 23, 230 (1907).Google Scholar
  38. ____ Derivatives of the Multiple Keten Group. J. Chem. Soc. (London) 91, 1806 (1907).Google Scholar
  39. 39.
    Collie, J. N., and W. S. Myers: The Formation of Orcinol and other Condensation Products from Dehydracetic acid. J. Chem. Soc. (London) 63, 122 (1893).Google Scholar
  40. 40.
    Collie, J. N., and B. D. Steele: Dimethyldiacetylacetone, Tetramethylpyrone, and Orcinol Derivatives from Diacetylacetone. J. Chem. Soc. (London) 77, 961 (1900).Google Scholar
  41. 41.
    Comer, F. W., T. Money, and A. I. Scott: Conversion of a Polypyrone into Phenolic Compounds. Chem. Commun. 1967, 231.Google Scholar
  42. 42.
    Cornelius, H., und H. Von Pechmann: Über die Synthese des Orcins aus Aceton-dicarbonsäureäther. Ber. Dtsch. chem. Ges. 19, 1446 (1886).Google Scholar
  43. 43.
    Crombie, L., M. Eskins, and D. E. Games: Ratio-dependent Products from Xanthophanic Enol and Magnesium Methoxide; Reaction Control by Substrate-chelation. Chem. Commun. 1968, 1015.Google Scholar
  44. 44.
    Crombie, L., D. E. Games, and M. H. Knight: Structures of Xanthophanic and Glaucophanic Acid. Tetrahedron Letters 1964, 2313.Google Scholar
  45. 45.
    _____ Base-catalysed Cyclisation of Highly Enolisable Systems: Diversion of Pathway by Magnesium Chelation. Chem. Commun. 1966, 355.Google Scholar
  46. 46.
    _____ Polyketo-enols and Chelates. Part I. The Formation and Constitution of Xanthophanic Enol and the Xanthyrones. J. Chem. Soc. (London) C 1967, 757.Google Scholar
  47. 47.
    Crombie, L., D. E. Games, and M. H. Knight: Polyketo-enols and Chelates. Part II. The Chemistry of the Xanthophanic Enols. J. Chem. Soc. (London) C 1967, 763.Google Scholar
  48. 48.
    _____ Polyketo-enols and Chelates. Part III. The Constitution and Chemistry of the Glaucophanic Enols. J. Chem. Soc. (London) C 1967, 773.Google Scholar
  49. 49.
    _____ Polyketo-enols and Chelates. Part IV. The By-Product in the Xanthophanic-Glaucophanic Enol Reaction: 2-Acetyl-4,7-alkoxycarbonyl-1,6-dimethylnaphthalene. J. Chem. Soc. (London) C 1967, 777.Google Scholar
  50. 50.
    Crombie, L., and A. W. G. James: The Control of Pyrone and Aromatic Cyclisation in Polyketonic-Polyenolic Systems by Magnesium Alkoxide Concentration. Chem. Commun. 1966, 357.Google Scholar
  51. 51.
    Dean, F. M.: Naturally Occurring Oxygen Ring Compounds. London: Butterworth & Co. 1963.Google Scholar
  52. 52.
    Deshapande, S. S., Y. V. Dingankar, and D. N. Kopil: Synthesis and Structure of Dipropionylacetone and of Di-n-butyrylacetone. J. Indian Chem. Soc. 11, 595 (1934).Google Scholar
  53. 53.
    Douglas, J. L., and T. Money: Biogenetic-type Synthesis of Benzophenones and Biphenyls. Canad. J. Chem. 45, 1990 (1967).Google Scholar
  54. 54.
    _____ Pyrone Studies. II. Biogenetic-type Synthesis of Phenolic Compounds. Tetrahedron 23, 3545 (1967).Google Scholar
  55. 55.
    _____ Pyrone Studies. Linear α-Pyrone Route to Protected β-Polyketones. Canad. J. Chem. 46, 695 (1968).Google Scholar
  56. 56.
    Edwards, R. L., and D. V. Wilson: Constituents of the Higher Fungi. Part II. The Synthesis of Hispidin. J. Chem. Soc. (London) 1961, 5003.Google Scholar
  57. 57.
    Feist, F.: Über Dehydracetsäure. Liebigs Ann. Chem. 257, 253 (1890).Google Scholar
  58. 58.
    Frei, H., und H. Schmid: Inhaltstoffe aus Eleutherine bulbosa (Mill.) Urb. VIII. Synthese des Eleutherinols. Liebigs Ann. Chem. 603, 169 (1957).Google Scholar
  59. 59.
    Gatenbeck, S.: On the Biosynthesis of the Pigments of Penicillium islandicum. II. Acta Chem. Scand. 14, 296 (1960).Google Scholar
  60. 60.
    Gatenbeck, S., and P. Barbesgård: On the Biosynthesis of the Pigments of Penicillium islandicum. III. Acta Chem. Scand. 14, 230 (1960).Google Scholar
  61. 61.
    Gatenbeck, S., P. O. Eriksson, and Y. Hansson: Cell-free C-Methylation in Relation to Aromatic Biosynthesis. Acta Chem. Scand. 23, 699 (1969).Google Scholar
  62. 62.
    Gatenbeck, S., and S. Hermodsson: Enzymic Synthesis of the Aromatic Product Alternariol. Acta Chem. Scand. 19, 65 (1965).Google Scholar
  63. 63.
    Gatenbeck, S., and K. Mosbach: Acetate Carboxyl Oxygen (18O) as Donor for Phenolic Hydroxy Groups of Orsellinic Acid Produced by Fungi. Acta Chem. Scand. 13, 1561 (1959).Google Scholar
  64. 64.
    Gaucher, G. M., and M. G. Shepherd: Isolation of Orsellinic Acid Synthase. Biochem. Biophys. Res. Comm. 32, 664 (1968).Google Scholar
  65. 65.
    Geuther, A.: Untersuchungen über einbasische Kohlenstoffsäuren: 1. Über die Essigsäure. Z. Chem. (Jena) 2, 8 (1866); [Chem. Zbl. 37, 801 (1866)].Google Scholar
  66. 66.
    Goetschel, C., et C. Mentzer: Synthèse de nouveaux dérivés α-pyroniques par condensation thermique de quelques esters maloniques avec des cétones. Bull. soc. chim. France 1962, 365.Google Scholar
  67. 67.
    Gottlieb, O. R., and W. B. Mors: The Chemistry of Rosewood. III. Isolation of 5,6-Dehydrokavain and 4-Methoxyparacotoin from Aniba firmula Mez. J. Organ. Chem. (USA) 24, 17 (1959).Google Scholar
  68. 68.
    Guilford, H., A. I. Scott, D. Skingle, and M. Yalpani: The Synthesis of Tetraacetic Acid Lactone and a Model for the Biosynthesis of 6-Methylsalicylic Acid. Chem. Commun. 1968, 1127.Google Scholar
  69. 69.
    Hale, W. J.: The Constitution of Dehydroacetic Acid. J. Amer. Chem. Soc. 33, 1119 (1911).Google Scholar
  70. 70.
    Hampton, K. G., T. M. Harris, C. M. Harris, and C. R. Hauser: Condensations at the Terminal Methyl Group of 1,3,5-Triketones by Means of Sodamide in Liquid Ammonia. J. Organ. Chem. (USA) 30, 4263 (1965).Google Scholar
  71. 71.
    Harris, C. M., and T. M. Harris: Synthesis of 5-Oxohexenoic Acid. J. Organ. Chem. (USA) 36, 2181 (1971).Google Scholar
  72. 72.
    _____ Unpublished results.Google Scholar
  73. 73.
    Harris, T. M.: Unpublished results.Google Scholar
  74. 74.
    Harris, T. M., and R. L. Carney: Biogenetically Modeled Synthesis of β-Resorcylic Acids. J. Amer. Chem. Soc. 88, 2053 (1966).Google Scholar
  75. 75.
    _____ Biogenetic-Type Synthesis of an Acylphloroglucinol. J. Amer. Chem. Soc. 88, 5686 (1966).Google Scholar
  76. 76.
    _____ Synthesis of 3,5,7-Triketo Acids and Esters and Their Cyclizations to Resorcinol and Phloroglucinol Derivatives. Models of Biosynthesis of Phenolic Compounds. J. Amer. Chem. Soc. 89, 6734 (1967).Google Scholar
  77. 77.
    Harris, T. M., and C. S. Combs, Jr.: Synthesis of Certain Naturally Occurring 2-Pyrones via 3,5-Diketo Acids. J. Organ. Chem. (USA) 33, 2399 (1968).Google Scholar
  78. 78.
    Harris, T. M., and C. M. Harris: Carboxylation of β-Dicarbonyl Compounds through Dicarbanions. Cyclizations to 4-Hydroxy-2-pyrones. J. Organ. Chem. (USA) 31, 1032 (1966).Google Scholar
  79. 79.
    _____ Condensations at the 6-Methyl Position of Dehydracetic Acid. A Novel Site of Reactivity. Chem. Commun. 1966, 699.Google Scholar
  80. 80.
    _____ Condensations of 2,6-Diphenyl-4-pyrone with Carbanions. J. Organ. Chem. (USA) 32, 970 (1967).Google Scholar
  81. 81.
    _____ Lactonization of 3,5,7-Trioxo-7-phenylheptanoic Acid and its 2-Methyl Homolog. Tetrahedron 25, 2687 (1969).Google Scholar
  82. 82.
    Harris, T. M., C. M. Harris, and R. J. Light: The Isolation of Triacetic Acid Lactone from Cultures of Penicillium patulum. Biochim. Biophys. Acta 121, 420 (1966).Google Scholar
  83. 83.
    Harris, T. M., C. M. Harris, and M. P. Wachter: Condensations of Dehydroacetic Acid at the 6-Methyl Position. Tetrahedron 24, 6897 (1968).Google Scholar
  84. 84.
    Harris, T. M., T. T. Howarth, and R. L. Carney: Models of the Biogenesis of Polyketide-Type Phenolic Ethers. J. Amer. Chem. Soc. 93, 2511 (1971).Google Scholar
  85. 85.
    Harris, T. M., and G. P. Murphy: Synthesis of 1,3,5,7,9-Pentacarbonyl Compounds. J. Amer. Chem. Soc. 93, 6708 (1971).Google Scholar
  86. 86.
    Harris, T. M., and M. P. Wachter: Aromatization Reactions of 4-Hydroxy-6-phenacyl-2-pyrone and Related Compounds. Tetrahedron 26, 5255 (1970).Google Scholar
  87. 87.
    Harris, T. M., M. P. Wachter, and G. A. Wiseman: The Cleavage and Aromatic Recyclization of 4-Hydroxy-6-phenacyl-2-pyrone. A Novel Metallic Cation Effect. Chem. Commun. 1969, 177.Google Scholar
  88. 88.
    Hauser, C. R., and T. M. Harris: Condensations at the Methyl Group Rather than the Methylene Group of Benzoyl-and Acetylacetone Through Intermediate Dipotassio Salts. J. Amer. Chem. Soc. 80, 6360 (1958).Google Scholar
  89. 89.
    Hay, J. V.: Biogenetic-type Synthesis of Heptaketide Phenolic Natural Products: Alternariol and Lichexanthone. Dissert., Vanderbilt Univ. 1972.Google Scholar
  90. 90.
    Hay, J. V., and T. M. Harris: Biogenetic-type Syntheses of Heptaketide Natural Products: Alternariol and Lichexanthone. Chem. Commun. 1972, 953.Google Scholar
  91. 91.
    Hedgecock, P. F., P. F. G. Praill, and A. L. Whitear: Acid-catalysed Conversion of Pyronopyrones into Phenolic Ketones. Chem. and Ind. 1966, 1268.Google Scholar
  92. 92.
    Hillis, W. E., and N. Ishikura: An Enzyme from Eucalyptus which Converts Cinnamoyl Triacetic Acid into Pinosylvin. Phytochem. 8, 1079 (1969).Google Scholar
  93. 93.
    Hillis, W. E., and Y. Yazaki: The Biosynthesis of Stilbenes in Eucalypt Leaves. Phytochem. 10, 1051 (1971).Google Scholar
  94. 94.
    Howarth, T. T., and T. M. Harris: Methyl 2-Hydroxy-4-methoxy-6-phenylbenzoate and Methyl 2-Hydroxy-6-methoxy-4-phenylbenzoate; Reassignment of a Structure. Canad. J. Chem. 46, 3739 (1968).Google Scholar
  95. 95.
    Howarth, T. T., and T. M. Harris: Biogenetic-type Synthesis of β-Resorcylic Acids. Isolation and Characterization of the Aldol Intermediate. J. Amer. Chem. Soc. 93, 2506 (1971).Google Scholar
  96. 96.
    Howarth, T. T., G. P. Murphy, and T. M. Harris: Preparation and Biogenetic-Type Aromatizations of Tetraacetic Acid (3,5,7-Trioxooctanoic Acid). J. Amer. Chem. Soc. 91, 517 (1969).Google Scholar
  97. 97.
    Huckin, S. N., and L. Weiler: Claisen Condensation of the Dianion of β-Keto Esters. Tetrahedron Letters 1972, 2405.Google Scholar
  98. 98.
    Hünig, S., E. Benzing und K. Hübner: Synthesen mit Enaminen, VI. Reaktionen mit Diketen zu γ-Pyronen. Chem. Ber. 94, 486 (1961).Google Scholar
  99. 99.
    Iguchi, S., and K. Hisatsune: Pyrone Derivatives. I. Syntheses and Antibacterial Properties of Ethyl 4-Hydroxy-l-oxo-6-methyl-2-pyrone-3-decanoate and Related Compounds. J. Pharmac. Soc. Japan 77, 94 (1957); [Chem. Abstr. 51, 8733 (1957)].Google Scholar
  100. 100.
    Jerdan, D. S.: The Condensation of Ethylic Acetonedicarboxylate and Constitution of Triethylic Orcinoltricarboxylate. J. Chem. Soc. (London) 75, 808 (1899).Google Scholar
  101. 101.
    Jobst, J., und O. Hesse: Über die Cotorinden und ihre charakteristischen Bestandteile. Liebigs Ann. Chem. 199, 17 (1879).Google Scholar
  102. 102.
    Julia, M., et J. Bullot: Synthèses de la paracotoine et de quelques α-pyrones apparentées. Bull. soc. chim. France 1959, 1689.Google Scholar
  103. 103.
    ____ Sur quelques alcools dichlorovinyliques et leur transformation en acide éthyléniques. Bull. soc. chim. France 1959, 1828.Google Scholar
  104. 104.
    Julia, M., et C. B. Du Jassonneix: Synthèse de la méthoxy-4 paracotoine et de quelques composés apparentés. C. R. hebd. séances Acad. Sci. 253, 872 (1961).Google Scholar
  105. 105.
    Kato, T., and T. Hozumi: Studies on Ketene and Its Derivatives. XLIX. Reaction of Diketene with β-Ketoesters to Give Ethyl Orsellinate, Divarate, Olivetol Carboxylate, and Sphaeropherol Carboxylate. Chem. Pharm. Bull. (Japan) 20, 1574 (1972).Google Scholar
  106. 106.
    Kirby, F. B., T. M. Harris, and C. R. Hauser: Acylation vs. Conjugate Addition of Dipotassio β-Diketones with Cinnamic Esters. Synthesis of Unsaturated 1,3,5-Triketones and t-Butyl 5,7-Dioxoalkanoates. J. Organ. Chem. (USA) 28, 2266 (1963).Google Scholar
  107. 107.
    Kögl, F., und C. A. Salemink: Untersuchungen über Derivate von 2,3-Dihydropyran-2,4-dion. (1. Mitteilung.) Rec. trav. chim. Pays-Bas 71, 779 (1952).Google Scholar
  108. 108.
    ____ Untersuchungen über Derivate von 2,3-Dihydro-pyran-2,4-dion. (2. Mitteilung.) Rec. trav. chim. Pays-Bas 74, 221 (1955).Google Scholar
  109. 109.
    Komninos, T.: Nouveau mode de passage de la série grasse a la série aromatique. Bull. soc. chim. France [iv] 23, 449 (1918).Google Scholar
  110. 110.
    Lefeuvre, A., et C. Mentzer: Applications du phényl-thiomalonate d’éthyle en synthèse hétérocyclique. Bull. soc. chim. France 1964, 623.Google Scholar
  111. 111.
    Light, R. J.: The Biosynthesis of 6-Methylsalicylic Acid. J. Biol. Chem. 242, 1880 (1967).Google Scholar
  112. 112.
    Light, R. J., T. M. Harris, and C. M. Harris: Metabolism of Triacetic Acid and Triacetic Acid Lactone. Biochemistry 5, 4037 (1966).Google Scholar
  113. 113.
    Light, R. J., and C. R. Hauser: Aroylations of β-Diketones at the Terminal Methyl Group to Form 1,3,5-Triketones. Cyclizations to 4-Pyrones and 4-Pyridones. J. Organ. Chem. (USA) 25, 538 (1960).Google Scholar
  114. 114.
    Lynen, F., E. Reichert und L. Rueff: Zum biologischen Abbau der Essigsäure. VI. („Aktivierte Essigsäure“, ihre Isolierung aus Hefe und ihre chemische Natur.) Liebigs Ann. Chem. 574, 1 (1951).Google Scholar
  115. 115.
    Lynen, F., und M. Tada: Die biochemischen Grundlagen der „Polyacetat-Regel“. Angew. Chem. 73, 513 (1961).Google Scholar
  116. 116.
    Macierewicz, Z.: Synthesis of the Lactone of the Mother Substance of Yangonin. Roczniki Chem. 24, 144 (1950); [Chem. Abstr. 48, 10013 (1954)].Google Scholar
  117. 117.
    Marcus, E., J. F. Stephen, and J. K. Chan: A Study of the Acylation of 4-Hydroxy-6-methyl-2-pyrone and 4-Hydroxy-6-phenyl-2-pyrone. J. Heterocycl. Chem. 6, 13 (1969).Google Scholar
  118. 118.
    Mccormick, J. R. D.: Biosynthesis of the Tetracyclines. In: Z. Vaněk and Z. Hoštálek, Biogenesis of Antibiotic Substances, p. 73. Prague: Publishing House of the Czechoslovak Academy of Sciences 1965.Google Scholar
  119. 119.
    Mccormick, J. R. D., and E. R. Jensen: Biosynthesis of Tetracyclines. X. Protettone. J. Amer. Chem. Soc. 90, 7126 (1968).Google Scholar
  120. 120.
    Mccormick, J. R. D., E. R. Jensen, N. H. Arnold, H. S. Corey, U. H. Joachim, S. Johnson, P. A. Miller, and N. O. Sjolander: Biosynthesis of Tetracyclines. XI. The Methylanthrone Analog of Protetrone. J. Amer. Chem. Soc. 90, 7127 (1968).Google Scholar
  121. 121.
    Miles, M. L., T. M. Harris, and C. R. Hauser: Aroylation at the Terminal Methyl Group of a 1,3,5-Triketone to Form a 1,3,5,7-Tetraketone. J. Amer. Chem. Soc. 85, 3884 (1963).Google Scholar
  122. 122.
    ____ Aroylations at the Methyl Group of Benzoylacetone and Related β-Diketones with Esters to Form 1,3,5-Triketones by Sodium Hydride. Other Terminal Condensations. J. Organ. Chem. (USA) 30, 1007 (1965).Google Scholar
  123. 123.
    Money, T.: Biogenetic-type Synthesis of Phenolic Compounds. Chem. Rev. 70, 553 (1970).Google Scholar
  124. 124.
    Money, T., F. W. Comer, G. R. B. Webster, I. G. Wright, and A. I. Scott: Pyrone Studies. I. Biogenetic-type Synthesis of Phenolic Compounds. Tetrahedron 23, 3435 (1967).Google Scholar
  125. 125.
    Money, T., J. L. Douglas, and A. I. Scott: Biogenetic-type Synthesis of Phenolic Compounds. J. Amer. Chem. Soc. 88, 624 (1966).Google Scholar
  126. 126.
    Money, T., I. H. Qureshi, G. B. Webster, and A. I. Scott: Chemistry of Polypyrones. A Model for Acetogenin Biosynthesis. J. Amer. Chem. Soc. 87, 3004 (1965).Google Scholar
  127. 127.
    Mors, W. B., O. R. Gottlieb, and C. Djerassi: The Chemistry of Rosewood. Isolation and Structure of Anibine and 4-Methoxyparacotoin. J. Amer. Chem. Soc. 79, 4507 (1957).Google Scholar
  128. 128.
    Mors, W. B., M. T. Magalhães, and O. R. Gottlieb: Naturally Occurring Aromatic Derivatives of Monocyclic α-Pyrones. Fortschr. Chem. organ. Naturstoffe 20, 131 (1962).Google Scholar
  129. 129.
    Mühlemann, H.: Anthraquinones and Anthraquinone Glycosides. XII. Nuclear Synthesis of the Emodins of Frangula and of a Chrysophanic Acid Isomer (1,6-Dihydroxy-3-methylanthraquinone). Pharm. Acta Helv. 26, 195 (1951). [Chem. Abstr. 46, 8078 (1952)].Google Scholar
  130. 130.
    Murphy, G. P.: Synthesis of Tetra-and Pentacarbonyl Compounds Using Lithium Diisopropylamide. Dissert., Vanderbilt Univ. 1971.Google Scholar
  131. 131.
    Murray, T. P., and T. M. Harris: Negatively Charged Electrophiles. Acylation of Strong Nucleophiles by Enolate Salts of β-Keto Esters. J. Amer. Chem. Soc. 94, 8253 (1972).Google Scholar
  132. 132.
    ____ Unpublished results.Google Scholar
  133. 133.
    Ollis, W. D., I. O. Sutherland, R. C. Codner, J. J. Gordon, and G. A. Miller: The Incorporation of Propionate in the Biosynthesis of ε-Pyrromycinone (Rutilan-tinone). Proc. Chem. Soc. (London) 1960, 347.Google Scholar
  134. 134.
    O’sullivan, W. I., and C. R. Hauser: Certain Condensations at the Terminal Methyl Group of 3-Phenylpentane-2,4-dione through Its Dipotassio Derivative. Cyclizations. J. Organ. Chem. (USA) 25, 1110 (1960).Google Scholar
  135. 135.
    Pike, D. G., J. J. Ryan, and A. I. Scott: Synthesis and Aromatisation of the Linear Hepta-β-carbonyl System. Chem. Commun. 1968, 629.Google Scholar
  136. 136.
    Pollak, J.: Notiz über das Cotoin. Monatsh. Chem. 22, 996 (1901).Google Scholar
  137. 137.
    Praill, P. F. G., and A. L. Whitear: The Acid-catalysed Self-condensation of Acetic Anhydride and Analogous Compounds. Proc. Chem. Soc. (London) 1961, 112.Google Scholar
  138. 138.
    Rassweiler, C. F., and R. Adams: The Structure of Dehydroacetic Acid. J. Amer. Chem. Soc. 46, 2758 (1924).Google Scholar
  139. 139.
    Resplandy, A.: Synthèse et propriétés de deux α-pyrones permettant d’accéder à la méthoxy-4, paracotoine. Étude de quelques substances apparentées. Bull. soc. chim. France 1962, 1332.Google Scholar
  140. 140.
    Rittenberg, D., and K. Bloch: The Utilization of Acetic Acid for Fatty Acid Synthesis. J. Biol. Chem. 154, 311 (1944).Google Scholar
  141. 141.
    Robinson, Sir Robert: The Structural Relations of Some Plant Products. J. Roy. Soc. Arts 96, 795 (1948).Google Scholar
  142. 142.
    Ruhemann, S.: The Formation of 4-Pyrone Compounds from Acetylenic Acids. Part I. J. Chem. Soc. (London) 93, 431 (1908).Google Scholar
  143. 143.
    ____ The Formation of 4-Pyrone Compounds from Acetylenic Acids. Part II. J. Chem. Soc. (London) 93, 1281 (1908).Google Scholar
  144. 144.
    Schmidt, U., und M. Schwochau: β-Polycarbonylverbindungen, 3. Mitt.: Über Synthesen mit den Trimethylsilylestern der Acetessigsäure und Malonsäure. Ein neuer Weg zu Diacyl-methanen und Diacyl-essigsäureestern. Monatsh. Chem. 98, 1492 (1967).Google Scholar
  145. 145.
    Scott, A. I., H. Guilford, J. J. Ryan, and D. Skingle: Biogenetic-type Synthesis of Polyketides. Part VIII. Experiments with the Tetra-and Hexa-acetate Systems. Tetrahedron 27, 3025 (1971).Google Scholar
  146. 146.
    Scott, A. I., H. Guilford, and D. Skingle: Biogenetic-type Synthesis of Polyketides. Part IX. A Model for the Biosynthesis of 6-Methyl Salicylic Acid. Tetrahedron 27, 3039 (1971).Google Scholar
  147. 147.
    Scott, A. I., D. G. Pike, J. J. Ryan, and H. Guilford: Biogenetic-type Synthesis of Polyketides. Part X. Synthesis and Reactions of Hepta-and Nona-β-Carbonyl Chains as Substrate Models. Tetrahedron 27, 3051 (1971).Google Scholar
  148. 148.
    Semmler, F. W., und E. Schossberger: Zur Kenntnis der Bestandteile ätherischer Öle. (Zusammensetzung des ätherischen Öles von Xanthoxylum aubertia Cordemoy [Evodia aubertia Cordemoy] und Xanthoxylum alatum Roxb.) Ber. Dtsch. chem. Ges. 44, 2885 (1912).Google Scholar
  149. 149.
    Sjöland, S., and S. Gatenbeck: Studies on the Enzyme Synthesizing the Aromatic Product Alternariol. Acta Chem. Scand. 20, 1053 (1966).Google Scholar
  150. 150.
    Smith Laboratories, T. and H.: Further Note on Brevifolin. Pharm. J. 123, 604 and 611 (1929); [Chem. Abstr. 24, 2547 (1930)].Google Scholar
  151. 151.
    Soliman, G., and I. E. El-Kholy: The Pyrone Series. Part I. 2:6-Diaryl-4-pyrones. J. Chem. Soc. (London) 1954, 1755.Google Scholar
  152. 152.
    Sproxton, F.: The Esters of Triacetic Lactone and Triacetic Acid. J. Chem. Soc. (London) 89, 1186 (1906).Google Scholar
  153. 153.
    Stadtman, E. R., M. Doudoroff, and F. Lipmann: The Mechanism of Acetoacetate Synthesis. J. Biol. Chem. 191, 377 (1951).Google Scholar
  154. 154.
    Steglich, W., and W. Reininger: A Synthesis of Endocrocin, Endocrocin-9-anthrone and Related Compounds. Chem. Commun. 1970, 178.Google Scholar
  155. 155.
    Stephen, J. F., and E. Marcus: A Facile Route to a Novel Derivative of 2,4,6,8-Nonanetetraone. J. Organ. Chem. (USA) 35, 258 (1970).Google Scholar
  156. 156.
    Stetter, H., und S. Vestner: Synthese des 2,4,6-Trioxa-adamantan-Ringsystems. Chem. Ber. 97, 169 (1964).Google Scholar
  157. 157.
    Stewart, A. W.: Recent Advances in Organic Chemistry, vol. II, 5th edition, chapt. IX. London: Longmans, Green & Co. 1927.Google Scholar
  158. 158.
    Stout, G. H., D. L. Dreyer, and L. H. Jensen: Structure of Rubrofusarin. Chem. and Ind. 1961, 289.Google Scholar
  159. 159.
    Thomas, R.: The Biosynthesis of Alternariol. Proc. Chem. Soc. (London) 1959, 88.Google Scholar
  160. 160.
    Tobias, P. S., and F. J. Kézdy: The Alkaline Hydrolysis of 5-Nitrocoumaranone. A Method for Determining the Intermediacy of Carbanions in the Hydrolysis of Esters with Labile α Protons. J. Amer. Chem. Soc. 91, 5171 (1969).Google Scholar
  161. 161.
    Towers, G. H. N.: Metabolism of Phenolics in Higher Plants and Micro-organisms. In: J. B. Harborne, Biochemistry of Phenolic Compounds, p. 249. New York: Academic Press, Inc. 1964.Google Scholar
  162. 162.
    Van Tamelen, E. E.: Biogenetic-type Syntheses of Natural Products. Fortschr. Chem. Organ. Naturstoffe 19, 242 (1961).Google Scholar
  163. 163.
    Vorländer, O., and G. A. Meyer: Überführung des Dibenzal-acetons in α,α-Diphenylpyron. Ber.Dtsch. chem. Ges. 45, 3355 (1912).Google Scholar
  164. 164.
    Wachter, M. P., and T. M. Harris: Condensations at the 6α-Position of Triacetic Lactone Via the Dianion. Tetrahedron 26, 1685 (1970).Google Scholar
  165. 165.
    Wakil, S. J., and J. Ganguly: On the Mechanism of Fatty Acid Synthesis. J. Amer. Chem. Soc. 81, 2597 (1959).Google Scholar
  166. 166.
    Wiley, R. H., C. H. Jarboe, and H. G. Ellert: 2-Pyrones. XV. Substituted 3-Cinnamoyl-4-hydroxy-6-methyl-2-pyrones from Dehydroacetic Acid. J. Amer. Chem. Soc. 77, 5102 (1955).Google Scholar
  167. 167.
    Winzheimer, E.: Investigation of Kava Root. Arch. Pharmaz. 246, 338 (1908); [Chem. Abstr. 3, 429 (1909)].Google Scholar
  168. 168.
    Wittek, P. J., and T. M. Harris: Unpublished results.Google Scholar
  169. 169.
    Wittek, P. J., K. B. Hindley, and T. M. Harris: Synthesis of C-Methyl Derivatives of 1-Phenyl-1,3,5-hexanetrione. J. Organ. Chem. (USA) 38, 896 (1973).Google Scholar
  170. 170.
    Witter, R. F., and E. Stotz: Synthesis and Properties of Triacetic Acid. J. Biol. Chem. 176, 485 (1948).Google Scholar
  171. 171.
    Wolfe, J. F., T. M. Harris, and C. R. Hauser: Condensations at the Methyl Group of Ethyl Acetoacetate by Means of Potassium Amide or Sodium Hydride. J. Organ. Chem. (USA) 29, 3249 (1964).Google Scholar
  172. 172.
    Woods, L. L., and P. A. Dix: Acylation, Bromination and Oxidation of 4-Pyrones and Pyronones. J. Organ. Chem. (USA) 26, 2588 (1961).Google Scholar
  173. 173.
    Woods, L. L., D. Johnson, and F. Thomas: 6-Aryl-5-carboxy-4-hydroxy-2-pyrones. Texas J. Science 19, 227 (1967); [Chem. Abstr. 68, 21777 (1968)].Google Scholar
  174. 174.
    Work, S. D., and C. R. Hauser: Acylations of Dilithio β-Diketones with Aliphatic Esters to Form 1,3,5-Triketones. Cyclizations to 4-Pyrones and 4-Pyridones. J. Organ. Chem. (USA) 28, 725 (1963).Google Scholar
  175. 175.
    Yamamura, S., K. Kato, and Y. Hirata: The Reaction of 6-Carboxymethyl-4-methoxy-2-pyrone with Acetic Anhydride. Chem. Commun. 1968, 1580.Google Scholar
  176. 176.
    ____ Reactions of 4-Methoxy-2-oxopyran-6-ylacetic Acid With Acid Anhydrides. J. Chem. Soc. (London) C 1969, 2461.Google Scholar
  177. 177.
    Ziegler, E., und H. Junek: Synthesen von Heterocyclen. XI. Mitteilung: 4-Hydroxy-2-pyrone. Monatsh. Chem. 89, 323 (1958).Google Scholar
  178. 178.
    Ziegler, E., und E. Nölken: Synthesen von Heterocyclen. XII. Mitteilung: Über das Anibin. Monatsh. Chem. 89, 391 (1958).Google Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • Th. M. Harris
    • 1
  • C. M. Harris
    • 1
  • K. B. Hindley
    • 1
  1. 1.NashvilleUSA

Personalised recommendations