Advertisement

Abstract

The verrucarins and roridins are secondary metabolites of the soil fungi Myrothecium verrucaria (Albertini et Schweinitz) Ditmar ex Fries and Myrothecium roridum Tode ex Fries. The species Myrothecium belongs to the fungi imperfecti, order of Moniliales, family Tuberculariaceae (30, 17, 32). The distinction between these and other closely related fungal species is difficult. It has been studied and discussed by various authors (82, 16, 55, 75, 62, 43).

Keywords

Epoxy Group Adipic Acid Dimethyl Ester Mevalonic Acid Pyrrole Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamsson, S., and B. Nilsson: Direct Determination of the Molecular Structure of Trichodermin. Proc. Chem. Soc. 1964, 188.Google Scholar
  2. 2.
    Achilladelis, B., P. M. Adams, and J. R. Hanson: The Biosynthesis of the Sesquiterpenoid Trichothecane Antibiotics. Chem. Comm. 1970, 511.Google Scholar
  3. 3.
    Studies in Terpenoid Biosynthesis. Part VIII. The Formation of the Trichothecane Nucleus. J. C. S. Perkin I 1972, 1425.Google Scholar
  4. 4.
    Achini, R., U. Meyer, and Ch. Tamm: Synthese des ( ± )-Verrucarinsäurelactons. Helv. Chim. Acta 51, 1702 (1968).CrossRefGoogle Scholar
  5. 5.
    Achini, R., and Ch. Tamm: Der oxydative Abbau von Roridin A, ein weiterer Beweis für die Art der Verknüpfung der Roridinsäure mit Verrucarol. Helv. Chim. Acta 51, 1712 (1968).CrossRefGoogle Scholar
  6. 6.
    Achini, R., B. Müller, and Ch. Tamm: Biosynthesis of Verrucarol, the Sesquiterpene Moiety of the Verrucarins and Roridins. Chem. Comm. 1971, 404.Google Scholar
  7. 7.
    Adams, P. M., and J. R. Hanson: Biosynthesis of the Sesquiterpenoid Trichothecane Antibiotics. Chem. Comm. 1970, 1569.Google Scholar
  8. 8.
    A Hydrogen Shift in Trichothecane Biosynthesis. Chem. Comm.1971, 1414.Google Scholar
  9. 9.
    The Biosynthesis of Helicobasidin. J. C. S. Perkin I 1972, 586.Google Scholar
  10. 10.
    Bamburg, J. R., and F. M. Strong: 12,13-Epoxytrichothecenes in “Microbial Toxins”, Vol. 7, pg 207. New York: Academic Press, Inc. 1971.Google Scholar
  11. 11.
    Böhner, B., E. Fetz, E. Härri, H. P. Sigg, Ch. Stoll, and Ch. Tamm: Über die Isolierung von Verrucarin H, Verrucarin J, Roridin D und Roridin E aus Myrothecium-Arten. Helv. Chim. Acta 48, 1079 (1965).CrossRefGoogle Scholar
  12. 12.
    Böhner, B., and Ch. Tamm: Die Konstitution von Roridin A. Helv. Chim. Acta 49, 2527 (1966).CrossRefGoogle Scholar
  13. 13.
    Die Konstitution von Roridin D. Helv. Chim. Acta 49, 2547 (1966).CrossRefGoogle Scholar
  14. 14.
    Bowden, J. P., and E. J. Schantz: The Isolation and Characterization of Dermatitic Compounds Produced by Myrothecium verrucaria. J. Biol. Chem. 214, 365 (1955).Google Scholar
  15. 15.
    Brian, P. W., P. J. Curtis, H. G. Hemming, and G. L. F. Norris: Wortmannin, an Antibiotic Produced by Penicillium Wortmannii. Brit. Mycol. Soc. Trans. 40, 365 (1957).CrossRefGoogle Scholar
  16. 16.
    Brian, P. W., and J. G. Mcgowan: Biologically Active Metabolic Products of the Mould Metarrhizium glutinosum S. Pope. Nature 157, 334 (1946).CrossRefGoogle Scholar
  17. 17.
    Clements, F. E.: The Genera of Fungi. New York: Hafner Publishing Co. 1957.Google Scholar
  18. 18.
    Coloin, E. W., R. A. Raphael, and J. S. Roberts: The Total Synthesis of (±)-Trichodermin. Chem. Comm. 1971, 858.Google Scholar
  19. 19.
    Cornforth, J. W., R. H. Cornforth, G. Popjak, and Y. Gore: Studies on the Biosynthesis of Cholesterol. 5. Biosynthesis of Squalene from D,L-3-Hydroxy-3-methyl-[14C]pentano-5-lactone. Biochem. J. 69, 146 (1958).Google Scholar
  20. 20.
    Dieckmann, H.: Fusigenin, ein neues Sideramin aus Pilzen. Archiv für Mikrobiologie 58,1 (1967).CrossRefGoogle Scholar
  21. 21.
    Dieckmann, H., and H. Zähner: Konstitution von Fusigenin und dessen Abbau zu Δ2-Anhydromevalonsäurelacton. European J. Biochem. 3, 213 (1967).CrossRefGoogle Scholar
  22. 22.
    Dieckmann, H.: Die Isolierung und Darstellung von trans-5-Hydroxy-3-methylpenten-(2)-säure. Archiv für Mikrobiologie 62, 322 (1968).CrossRefGoogle Scholar
  23. 23.
    Fetz, E., and Ch. Tamm: Die Konstitution von Verrucarin E. Helv. Chim. Acta 49, 349 (1966).CrossRefGoogle Scholar
  24. 24.
    Fetz, E., B. Böhner, and Ch. Tamm: Die Konstitution von Verrucarin J. Helv. Chim. Acta 48, 1669 (1965).CrossRefGoogle Scholar
  25. 25.
    Fishman, J., E. R. H. Jones, G. Lowe, and M. C. Whiting: The Chemistry and Stereochemistry of Trichothecin. J. Chem. Soc. 1960, 3948.Google Scholar
  26. 26.
    Forrester, J. M., and T. Money: Sequence Studies in Biosynthesis: Trichothecin. Canad. J. Chem. 50, 3310 (1972).CrossRefGoogle Scholar
  27. 27.
    Freeman, G. G., J. E. Gill, and W. S. Waring: The Structure of Trichothecin and its Hydrolysis Products. J. Chem. Soc. 1959, 1105.Google Scholar
  28. 28.
    Freeman, G. G., and R. I. Morrison: Trichothecin: an Antifungal Metabolic Product of Trichothecium roseum Link. Nature 162, 30 (1948).CrossRefGoogle Scholar
  29. 29.
    The Isolation and Chemical Properties of Trichothecin, an Antifungal Substance from Trichothecium roseum Link. Biochem. J. 44, 1 (1949).Google Scholar
  30. 30.
    Fries, E. M.: Systema Mycologicum, Vol. 31, 216–218 (1829).Google Scholar
  31. 31.
    Gardner, D., A. T. Glen, and W. B. Turner: Calonectrin and 15-Deacetylcalonectrin, New Trichothecanes from Calonectria nivalis. J. C. S. Perkin I 1972, 2576.Google Scholar
  32. 32.
    Gilman, J. C.: A Manual of Soil Fungi, 2nd Ed. Ames, Iowa, USA: The Iowa State College Press. 1957.Google Scholar
  33. 33.
    Godtfredsen, W. O., and S. Vangedal: Trichodermin, a New Antibiotic, Related to Trichothecin. Proc. Chem. Soc. 1964, 188.Google Scholar
  34. 34.
    Trichodermin, a New Sesquiterpene Antibiotic. Acta Chem. Scand. 19, 1088 (1965).CrossRefGoogle Scholar
  35. 35.
    Godtfredsen, W. O., J. F. Grove, and Ch. Tamm: Zur Nomenklatur einer neueren Klasse von Sesquiterpenen. Helv. Chim. Acta 50, 1666 (1967).CrossRefGoogle Scholar
  36. 36.
    Grove, J. F.: The Constituents of Glutinosin. J. Chem. Soc. 1968, 810.Google Scholar
  37. 37.
    Grove, J. F., and P. H. Mortimer: The Cytotoxicity of Some Transformation Products of Diacetoxyscirpenol. Biochem. Pharmacol. 18, 1473 (1969).CrossRefGoogle Scholar
  38. 38.
    Gutzwiller, J., R. Mauli, H. P. Sigg, and Ch. Tamm: Die Konstitution von Verrucarol und Roridin C. Helv. Chim. Acta 47, 2234 (1964).CrossRefGoogle Scholar
  39. 39.
    Gutzwiller, J., and Ch. Tamm: Über die Struktur von Verrucarin A. Helv. Chim. Acta 48, 157(1965).CrossRefGoogle Scholar
  40. 40.
    Über die Verrucarine und Rondine; Struktur von Verrucarol (vorläufige Mitteilung). Helv. Chim. Acta 46, 1786 (1963).CrossRefGoogle Scholar
  41. 41.
    Über die Struktur von Verrucarin B. Helv. Chim. Acta 48, 177 (1965).CrossRefGoogle Scholar
  42. 42.
    Halliwell, G.: The Action of Cellulolytic Enzymes from Myrothecium verrucaria. Biochem. J. 79, 185 (1961).Google Scholar
  43. 43.
    Härri, E., W. Loeffler, H. P. Sigg, H. Stähelin, Ch. Stoll, Ch. Tamm, and D. Wiesinger: Über die Verrucarine und Rondine, eine Gruppe von cytostatisch hochwirksamen Antibiotica aus Myrothecium-Arten. Helv. Chim. Acta 45, 839 (1962).CrossRefGoogle Scholar
  44. 44.
    Horeau, A.: Principe et applications d’une nouvelle méthode de détermination des configurations dite “par dédoublement partiel”. Tetrahedron Letters 1961, 506.Google Scholar
  45. 45.
    Détermination des configurations par “dédoublement partiel” — II. Précisions et compléments. Tetrahedron Letters 1962, 965.Google Scholar
  46. 46.
    Horeau, A., and H. B. Kagan: Détermination des Configurations par “dédoublement partiel” — III. Alcools Stéroides. Tetrahedron 20, 2431 (1964).CrossRefGoogle Scholar
  47. 47.
    Jones, E. R. H., and G. Lowe: The Biogenesis of Trichothecin. J. Chem. Soc. 1960, 3959.Google Scholar
  48. 48.
    Keller-Schierlein, W.: Stoffwechselprodukte von Mikroorganismen: Über die Konstitution von Ferrirubin, Ferrirhodin und Ferrichrom A. Helv. Chim. Acta 46, 1920 (1963).CrossRefGoogle Scholar
  49. 49.
    Kishaba, A. N., D. L. Shankland, R. W. Curtis, and M. C. Wilson: Substances Inhibitory to Insect Feeding with Insecticidal Properties from Fungi. J. Econ. Entomol. 55, 211 (1962).Google Scholar
  50. 50.
    Machida, Y., and S. Nozoe: Biosynthesis of Trichothecin and Related Compounds. Tetrahedron Letters 1972, 1969.Google Scholar
  51. 51.
    Biosynthesis of Trichothecin and Related Compounds. Tetrahedron 28, 5113 (1972).CrossRefGoogle Scholar
  52. 52.
    Macmillan, J., T. J. Simpson, and S. K. Yeboah: Absolute Stereochemistry of the Fungal Product, Wortmannin. J. C. S. Chem. Comm. 1972, 1063.Google Scholar
  53. 53.
    Macmillan, J., A. E. Vanstone, and S. K. Yeboah: The Structure of Wortmannin, a Steroidal Fungal Metabolite. Chem. Comm. 1968, 613.Google Scholar
  54. 54.
    Mcphail, A. T., and G. A. Sim: The Structure of Verrucarin A; X-Ray Analysis of Verrucarin A p-Iodobenzenesulphonate. J. Chem. Soc. 1966, 1394.Google Scholar
  55. 55.
    Nespiak, A., M. Kocór, and A. Siewinski: Antibiotic Properties of Mycelium and Metabolites of Myrothecium roridum Tode. Nature 192, 138 (1961).CrossRefGoogle Scholar
  56. 56.
    Nozoe, S., and Y. Machida: Structure of Trichodiene. Tetrahedron Letters 1970, 2671.Google Scholar
  57. 57.
    The Structures of Trichodiol and Trichodiene. Tetrahedron 28, 5105 (1972).CrossRefGoogle Scholar
  58. 58.
    Okuchi, M., M. Itoh, Y. Kaneko, and S. Doi: A new Antifungal Substance Produced by Myrothecium. Agr. Biol. Chem. (Jap.) 32, 394 (1968).CrossRefGoogle Scholar
  59. 59.
    Petcher, T. J., H.-P. Weber, and Z. Kis: Crystal Structure and Absolute Configuration of Wortmannin and of Wortmannin p-Bromobenzoate. J. C. S. Chem. Comm. 1972, 1061.Google Scholar
  60. 60.
    Pfäffli, P., and Ch. Tamm: Revidierte Struktur von Verrucarin E. Eine Synthese des Antibioticums und verwandter β-Acetyl-Pyrrol-Derivate. Helv. Chim. Acta 52, 1911 (1969).CrossRefGoogle Scholar
  61. 61.
    Über die Biosynthese des Antibioticums Verrucarin E. Helv. Chim. Acta 52, 1921 (1969).CrossRefGoogle Scholar
  62. 62.
    Preston, N. C.: Observations on the genus Myrothecium Tode. I. The three classic species. Brit. Mycol. Soc. Trans. 26, 158 (1943).CrossRefGoogle Scholar
  63. 63.
    Rauen, H. M., and K. Norpoth: Tumorspezifische Wirkungen von Substanzen der Podophyllotoxin-und Verrucaria-Reihe am Chorioallantoismembran-Tumor-System. Arzneim.-Forsch. (Drug Res.) 16, 1594 (1966).Google Scholar
  64. 64.
    Rüsch, M. E., and H. Stähelin: Über einige biologische Wirkungen des Cytostaticums Verrucarin A. Arzneim.-Forsch. (Drug. Res.) 15, 893 (1965).Google Scholar
  65. 65.
    Ruzicka, L.: Perspectives of the Biogenesis and Chemistry of Terpenes. Pure and Appl. Chem. 6, 493 (1963).CrossRefGoogle Scholar
  66. 66.
    Selby, K.: The Degradation of Cotton Cellulose by the Extracellular Cellulase of Myrothecium verrucaria. Biochem. J. 79, 562 (1961).Google Scholar
  67. 67.
    Sigg, H. P., R. Mauli, E. Flury, and D. Hauser: Die Konstitution von Diacetoxy-scirpenol. Helv. Chim. Acta 48, 962 (1965).CrossRefGoogle Scholar
  68. 68.
    Snatzke, G., and Ch. Tamm: Konformation und Circulardichroismus der Sesquiterpene vom Trichothecan-Typ und deren makrocyclischen Estern. Helv. Chim. Acta 50, 1618 (1967).CrossRefGoogle Scholar
  69. 69.
    Schumacher, R., J. Gutzwiller, and Ch. Tamm: 2β,13-Oxido-apotrichothecane: Synthese, chemische und physikalische Eigenschaften. Helv. Chim. Acta 54, 2080 (1971).CrossRefGoogle Scholar
  70. 70.
    Tamm, Ch., B. Böhner, and W. Zürcher: Myrochromanol und Myrochromanon, zwei weitere Metaboliten von Myrothecium roridum Tode ex Fr. Helv. Chim. Acta 55, 510 (1972).CrossRefGoogle Scholar
  71. 71.
    Tamm, Ch., and J. Gutzwiller: Über die Verrucarine und Rondine, Partialstruktur von Verrucarin A (Vorläufige Mitteilung) Helv. Chim. Acta 45, 1726 (1962).CrossRefGoogle Scholar
  72. 72.
    Tamm, Ch., et al., unpublished results.Google Scholar
  73. 73.
    Tamm, Ch.: Biogenetic Pathways of Fungal Metabolites, XXIIIrd Internat. Congress Pure and Appl. Chemistry, Spec. Lectures, Vol. 5, pg 49. London: Butterworths. 1971.Google Scholar
  74. 74.
    Tamura, G., K. Ando, S. Suzuki, A. Takatsuki, and K. Arima: Antiviral Activity of Brefeldin A and Verrucarin A. J. Antibiotics 21, 160 (1968).Google Scholar
  75. 75.
    Thompson, K. V. A., and St. C. Simmens: Appendages on the Spores of Myrothecium verrucaria. Nature 193, 196 (1962).CrossRefGoogle Scholar
  76. 76.
    Traxler, P., and Ch. Tamm: Die Struktur des Antibioticums Roridin H. Helv. Chim. Acta 53, 1846 (1970).CrossRefGoogle Scholar
  77. 77.
    Traxler, P., W. Zürcher, and Ch. Tamm: Die Struktur des Antibioticums Roridin E. Helv. Chim. Acta 53, 2071 (1970).CrossRefGoogle Scholar
  78. 78.
    Vittimberga, B. M.: Studies on the Structure of Muconomycin A, a New Biologically Active Compound. J. Org. Chemistry 28, 1786 (1963).CrossRefGoogle Scholar
  79. 79.
    Vittimberga, J. S., and B. M. Vittimberga: Muconomycin B, a New Biologically Active Compound. J. Org. Chemistry 30, 746 (1965).CrossRefGoogle Scholar
  80. 80.
    Welch, St. C., and R. Y. Wong: A Synthetic Precursor of (±)-Trichodermin. Tetrahedron Letters 1972, 1853.Google Scholar
  81. 81.
    __ A Synthetic Intermediate for Trichothecane Phytotoxic Sesquiterpenoids. Synthetic Comm. 2, 291 (1972).CrossRefGoogle Scholar
  82. 82.
    White, W. L., and M. H. Downing: The Identity of “Metarrhizium glutinosum”. Mycologia 39, 546 (1947).CrossRefGoogle Scholar
  83. 83.
    Zürcher, W., and Ch. Tamm: Isolierung von 2′-Dehydroverrucarin A als Metabolit von Myrothecium roridum Tode ex Fr. Gattungstyp bei Fries. Helv. Chim. Acta 49, 2594 (1966).CrossRefGoogle Scholar
  84. 84.
    Zürcher, W., J. Gutzwiller, and Ch. Tamm: Der oxydative Abbau von Verrucarin A, ein weiterer Strukturbeweis. Helv. Chim. Acta 48, 840 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • Ch. Tamm
    • 1
  1. 1.BaselSwitzerland

Personalised recommendations