Skip to main content

Mechanisms of Corrin Dependent Enzymatic Reactions

  • Chapter

Abstract

The mechanisms of corrin and of coenzyme B12 dependent enzymatic reactions are complex and have been the subject of intense experimental effort, discussion and controversy. The difficulties preventing the understanding of the enzymatic function of corrinoid coenzymes were initially caused by the lack of information on the inorganic and organometallic reactions of cobalt in tetradentate, strong-field complexes. Since the discovery and study of vitamin B12 model compounds a wealth of experimental and theoretical data on the chemistry of cobalt in complexes related to vitamin B12 became available, which is now recognized to be relevant to the chemistry of vitamin B12 itself. Indeed, most of the known reactions of vitamin B12 have been duplicated with simpler model complexes, and vice versa. The detailed investigation of the nonenzymatic reactions of vitamin B12 and of vitamin B12 model compounds subsequently led to the formulation of mechanisms of some of the known corrin dependent enzymatic reactions and to a number of surprising qualitative and quantitative experimental correlations between nonenzymatic and enzymatic data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, H. A., R. D. Smyth, H. Weissbach, J. I. Toohey, J. N. Ladd, and B. E. Volcani: Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole. J. Biol. Chem. 235, 480 (1960).

    CAS  Google Scholar 

  2. Lenhert, P. G., and D. Crowfoot Hodgkin: Structure of the 5,6-dimethylbenzimid-azolyl-cobamide coenzyme. Nature 192, 937 (1961).

    CAS  Google Scholar 

  3. Lenhert, P. G.: The structure of vitamin B12. VII. The X-ray analysis of the vitamin B12 coenzyme. Proc. Roy. Soc. A 303, 45 (1968).

    CAS  Google Scholar 

  4. Ingraham, L. L.: B12 coenzymes: Biological Grignard reagents. Ann. N. Y. Acad. Sci. 112, 713 (1964).

    CAS  Google Scholar 

  5. Schindler, O.: Reduktionsprodukte von Vitamin B12. Helv. Chim. Acta 34, 1356 (1951).

    CAS  Google Scholar 

  6. Müller, O., and G. Müller: Synthesen auf dem Vitamin-B12-Gebiet, XIV. Biochem. Z. 336, 299 (1962).

    Google Scholar 

  7. Schrauzer, G. N., R. J. Windgassen, and J. Kohnle: Die Konstitution von Vitamin B12s. Chem. Ber. 98, 3324 (1965).

    Google Scholar 

  8. Schrauzer, G. N., E. Deutsch, and R. J. Windgassen: The nucleophilicity of vitamin B12s. J. Am. Chem. Soc. 90, 2441 (1968).

    CAS  Google Scholar 

  9. Schrauzer, G. N., and E. Deutsch: Reactions of Co(I) supernucleophiles. The alkylation of vitamin B12s, cobaloximes (I) and related compounds. J. Am. Chem. Soc. 91, 3341 (1969).

    CAS  Google Scholar 

  10. Schrauzer, G. N.: The chemistry of Co(I) derivatives of vitamin B12 and of related compounds. Ann. N. Y. Acad. Sci. 158, 526 (1969).

    CAS  Google Scholar 

  11. Schrauzer, G. N., and R. J. Holland: Hydridocobalamin and a new synthesis of organocobalt derivatives of vitamin B12. J. Am. Chem. Soc. 93, 4060 (1971).

    CAS  Google Scholar 

  12. Weber, J. H., and G. N. Schrauzer: Bisdimethylglyoximatorhodium derivatives. Analogs of cobaloximes. J. Am. Chem. Soc. 92, 726 (1970).

    CAS  Google Scholar 

  13. Toohey, J. I.: A vitamin B12 compound containing no cobalt. Proc. Natl. Acad. Sci. U.S. 54, 934 (1966).

    Google Scholar 

  14. Sato, K., S. Shimizu, and S. Fukui: A cobalt-free corrinoid in Streptomyces olivaceus. Biochem. Biophys. Res. Comm. 39, 170 (1970).

    CAS  Google Scholar 

  15. Birnbaum, J.: Fermentation of Pseudomonas denitrificans in media containing rhodium salts. Unpublished, Merck, Sharp and Dohme Research Laboratories, Rahway, New Jersey.

    Google Scholar 

  16. Schrauzer, G. N., und J. Kohnle: Coenzym-B12-Modelle. Chem. Ber. 97, 3056 (1964).

    CAS  Google Scholar 

  17. Schrauzer, G. N.: Organocobalt chemistry of vitamin B12 model compounds. Accounts Chem. Research 1, 97 (1968).

    CAS  Google Scholar 

  18. Randall, W. C., and R. A. Alberty: Kinetics of ligand binding to aquocobalamin. Biochemistry 6, 1520 (1967).

    CAS  Google Scholar 

  19. Tsiang, H. G., and W. K. Wilmarth: Rate and equilibrium studies of the displacement of water in trans-sulfitoaquobis(dimethylglyoximato)cobalt(III) by various nucleophiles. Inorg. Chem. 7, 2535 (1968).

    Google Scholar 

  20. Hague, D. N., and J. Halpern: Kinetics of some substitution reactions of trans-bis-dimethylglyoximato)-cobalt(III) complexes. Inorg. Chem. 6, 2059 (1967).

    CAS  Google Scholar 

  21. Fleischer, E. B., S. Jacobs, and L. Mestichelli: The kinetics of the reaction of Cobalt(III) and Iron(III) hematoporphyrin with cyanide and thiocyanate. Evidence for a dissociative mechanism. J. Am. Chem. Soc. 90, 2527 (1968).

    CAS  Google Scholar 

  22. Schrauzer, G. N., and L. P. Lee: The molecular and electronic structure of vitamin B12r, cobaloximes(II) and related compounds. J. Am. Chem. Soc. 90, 319 (1968).

    Google Scholar 

  23. Pearson, R. G., H. Sobel, and J. Songstad: Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(py)2Cl2]. J. Am. Chem. Soc. 90, 319 (1968).

    CAS  Google Scholar 

  24. Costa, G., G. Mestroni, T. Licari, and E. Mestroni: New σ-bonded bisalkyl and alkyl-aryl cobalt complexes of bis(diacetylmonoxime-imino)propane-1,3. Inorg. Nucl. Chem. Letters 5, 561 (1969).

    CAS  Google Scholar 

  25. Schrauzer, G. N., L. P. Lee, and J. W. Sibert: Alkylcobalamins, alkylcobaloximes: Electronic spectra and mechanism of photodealkylation. J. Am. Chem. Soc. 92, 2997 (1970).

    CAS  Google Scholar 

  26. Schrauzer, G. N., and R. J. Windgassen: On hydroxyalkylcobaloximes and the mechanism of a cobamide dependent diol dehydrase. J. Am. Chem. Soc. 89, 143 (1967).

    CAS  Google Scholar 

  27. Hogenkamp, H. P. C., J. E. Rush, and C. A. Swenson: Observations on the organo-metallic bond of the corrinoid coenzymes. J. Biol. Chem. 240, 3641 (1965).

    CAS  Google Scholar 

  28. Golding, B. T., H. L. Holland, U. Horn, and S. Sakrikar: Solvolysis of β-acetoxy-alkyl-bis(biacetyldioximato)pyridinecobalt: Evidence for a novel intermediate olefinic complex. Angew. Chem. Internat. Edit. 9, 959 (1970).

    CAS  Google Scholar 

  29. Silverman, R. B., D. Dolphin, and B. M. Babior: A model for the mechanism of action of coenzyme B12 dependent enzymes. Evidence for σ-π-rearrangements in cobalo-ximes. J. Am. Chem. Soc. 94, 4028 (1972).

    CAS  Google Scholar 

  30. Dolphin, D., A. W. Johnson, and R. Rodrigo: Some reactions of the vitamin B12 coenzyme and its alkyl analogues. Ann. N. Y. Acad. Sci. 112, 590 (1964).

    CAS  Google Scholar 

  31. Hogenkamp, H. P. C., J. N. Ladd, and H. A. Barker: The identification of a nucleoside derived from coenzyme B12. J. Biol. Chem. 237, 1950 (1962).

    CAS  Google Scholar 

  32. Hogenkamp, H. P. C., and H. A. Barker: Nucleoside photolysis products of coenzyme B12. Fed. Proc. 21, 470 (1962).

    Google Scholar 

  33. Schrauzer, G. N., J. A. Seck, R. J. Holland, T. M. Beckham, E. M. Rubin, and J. W. Sibert: Reductive dealkylation of alkylcobaloximes, alkylcobalamins and related compounds: Simulation of corrin dependent reductase and alkylation reactions. Bioinorganic Chem. 2, 93 (1972).

    Google Scholar 

  34. Schrauzer, G. N.: Recent advances in the chemistry of vitamin B12 and vitamin B12 model compounds: Reductive cobalt-carbon bond cleavage reactions. Pure and Applied Chem. 33, 545 (1973).

    CAS  Google Scholar 

  35. Babior, B. M., T. H. Moss, and D. C. Gould: The mechanism of action of ethanol-amine ammonia lyase, a B12-dependent enzyme. J. Biol. Chem. 247, 4389 (1972).

    CAS  Google Scholar 

  36. Cockle, S. A., H. A. O. Hill, R. J. P. Williams, S. P. Davies, and M. A. Foster: The detection of intermediates during the conversion of propane-1,2-diol to propionaldehyde by glyceroldehydrase, a coenzyme B12 dependent reaction. J. Am. Chem. Soc. 94, 275 (1972).

    CAS  Google Scholar 

  37. Schrauzer, G. N.: Model Studies in nitrogen fixation and cobalamin chemistry. Advances in Chemistry Series 100, 1 (1971).

    Google Scholar 

  38. Schrauzer, G. N., and J. W. Sibert: Coenzyme B12 and coenzyme B12 model compounds in the catalysis of the dehydration of glycols. J. Am. Chem. Soc. 92, 1022 (1970).

    CAS  Google Scholar 

  39. Peterkofsky, A., and H. Weissbach: Enzymatic synthesis of coenzyme B12. Ann. N.Y. Acad. Sci. 112, 622 (1964).

    CAS  Google Scholar 

  40. Pawelkiewicz, J., B. Bartosinski, and W. Walerych: Enzymic synthesis of corrin coenzymes. Ann. N.Y. Acad. Sci. 112, 638 (1964).

    CAS  Google Scholar 

  41. Smith, E. Lester, L. Mervyn, P. W. Muggleton, A. W. Johnson, and N. Shaw: Chemical Routes to coenzyme B12 and analogues. Ann. N.Y. Acad. Sci. 112, 565 (1964).

    CAS  Google Scholar 

  42. Müller, O., and K. Bernhauer: Synthesis and biological behavior of additional corrinoid coenzymes. Ann. N.Y. Acad. Sci. 112, 575 (1964).

    Google Scholar 

  43. Schrauzer, G. N., and R. J. Holland: Reactions of vitamin B12s with nucleoside phosphates. Unpublished.

    Google Scholar 

  44. Frey, P. A., M. K. Essenberg, and R. H. Abeles: Studies on the mechanism of hydrogen transfer in the cobamide coenzyme-dependent dioldehydrase reaction. J. Biol. Chem. 242, 5369 (1967).

    CAS  Google Scholar 

  45. Abeles, R. H., and H. A. Lee, Jr.: Purification and properties of dioldehydrase, an enzyme requiring a cobamide coenzyme. J. Biol. Chem. 238, 2367 (1963).

    Google Scholar 

  46. Smiley, K. L., and M. Sobolov: A cobamide-requiring glycerol dehydrase from an acrolein-forming lactobacillus. Arch. Biochem. Biophys. 97, 538 (1962).

    CAS  Google Scholar 

  47. Toraya, T., and S. Fukui: Coenzyme B12 dependent propanediol dehydrase system. Ternary complex between apoenzyme, coenzyme and substrate analog. Biochim. Biophys. Acta 284, 536 (1972).

    CAS  Google Scholar 

  48. Hogenkamp, H. P. C.: Enzymatic reactions involving corrinoids. Ann. Reviews Biochem. 37, 225 (1968).

    CAS  Google Scholar 

  49. Retey, J., A. Umani-Ronchi, J. Seibl und D. Arigoni: Zum Mechanismus der Propandioldehydrase-Reaktion. Experientia 22, 502 (1966).

    CAS  Google Scholar 

  50. Schrauzer, G. N., R. J. Holland, and J. Seck: The mechanism of coenzyme B12 action in dioldehydrase. J. Am. Chem. Soc. 93, 1503 (1971).

    CAS  Google Scholar 

  51. Henderson, R. G. S., and J. M. Pratt: Reactions of nitrous oxide with some transition metal complexes. Chem. Commun. 1967, 387.

    Google Scholar 

  52. Schrauzer, G. N., J. Seck, and R. J. Holland: The mechanism of coenzyme B12 action in dioldehydrase: New observations concerning the effects of O2, N2O and CO. Z. Naturforsch. 28 c, 1 (1973).

    CAS  Google Scholar 

  53. Toraya, T., M. Kondo, Y. Isemura, and S. Fukui: Propanediol dehydrase system. Nature of cobalamin binding and some properties of apoenzyme-coenzyme B12 analog complexes. Biochemistry 11, 2599 (1972).

    CAS  Google Scholar 

  54. Toraya, T., Y. Sugimoto, Y. Tamao, S. Shimizu, and S. Fukui: Role of monovalent cations in binding of vitamin B12 coenzyme or its analogs to apoenzyme. Biochemistry 10, 3475 (1971).

    CAS  Google Scholar 

  55. Wagner, O. W., H. A. Lee, P. A. Frey, and R. H. Abeles: Studies of the mechanism of action of cobamide coenzymes. Chemical properties of the enzyme-coenzyme complex. J. Biol. Chem. 241, 1751 (1966).

    CAS  Google Scholar 

  56. Schrauzer, G. N., and R. J. Holland: Attempted reconstitution of coenzyme B12 in dioldehydrase. Unpublished experiments. 1972.

    Google Scholar 

  57. Holland, R. J.: Reaction of 4′-fluoroadenosyl-5’-iodide with vitamin B12s. Unpublished, 1972.

    Google Scholar 

  58. ____ Studies in vitamin B12 chemistry. Thesis, University of California, San Diego.

    Google Scholar 

  59. Schrauzer, G. N., R. J. Holland, and W. J. Michaely: Concerning the mechanism of coenzyme B12 action in dioldehydrase: Synthesis and reactions of proposed intermediates. J. Am. Chem.Soc. 95, 2024 (1973).

    CAS  Google Scholar 

  60. Hamilton, J. A., and R. L. Blakley: Electron spin resonance studies of ribonucleotide reduction catalyzed by ribonucleotide reductase of Lactobacillus leichmannii. Biochim. Biophys. Acta 184, 224 (1969).

    CAS  Google Scholar 

  61. Vitols, E., H. P. C. Hogenkamp, C. Brownson, R. L. Blakley, and J. Connellan: Reduction of a disulphide bond of ribonucleotide reductase by the dithiol substrate. Biochem. J. 104, 58 c (1967).

    Google Scholar 

  62. Hoffman, M. Z., and E. Hayon: One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation and decay kinetics of the RSSR-radical. J. Am. Chem. Soc. 94, 7950 (1972).

    CAS  Google Scholar 

  63. Bradbeer, C.: The clostridial fermentations of choline and ethanolamine. I. Preparation and properties of cell free extracts. J. Biol. Chem. 240, 4669 (1965).

    CAS  Google Scholar 

  64. ____ The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. J. Biol. Chem. 240, 4675 (1965).

    CAS  Google Scholar 

  65. Babior, B. M.: The mechanism of action of ethanolamine deaminase. I. Studies with isotopic hydrogen and oxygen. J. Biol. Chem. 244, 449 (1969).

    CAS  Google Scholar 

  66. ____ The mechanism of action of ethanolamine deaminase, II. The spectrum of the ethanolamine deaminase-coenzyme B12 complex during the act of catalysis. Biochim. Biophys. Acta 178, 406 (1969).

    CAS  Google Scholar 

  67. ____ The mechanism of action of ethanolamine deaminase. III. Inhibition by coenzyme B12 analogues. J. Biol. Chem. 244, 2917 (1969).

    CAS  Google Scholar 

  68. ____ The mechanism of action of ethanolamine deaminase. IV. Cobamide dependent binding of substrate to ethanolamine deaminase. J. Biol. Chem. 244, 2927 (1969).

    CAS  Google Scholar 

  69. ____ The mechanism of action of ethanolamine deaminase. V. The photolysis of enzyme-bound alkylcobalamins. Biochemistry 8, 2662 (1969).

    CAS  Google Scholar 

  70. ____ The mechanism of action of ethanolamine deaminase. VI. Ethylene glycol, a quasi-substrate for ethanolamine deaminase. J. Biol. Chem. 245, 1755 (1970).

    CAS  Google Scholar 

  71. ____ The mechanism of action of ethanolamine ammonia lyase, a B12 dependent enzyme. VII. The mechanism of hydrogen transfer. J. Biol. Chem. 245, 6125 (1970).

    CAS  Google Scholar 

  72. Weisblat, D. A., and B. M. Babior: The mechanism of action of ethanolamine ammonia-lyase, a B12-dependent enzyme. VIII. Further studies with compounds labeled with isotopes of hydrogen: Identification and some properties of the rate-limiting step. J. Biol. Chem. 246, 6064 (1971).

    CAS  Google Scholar 

  73. Carty, T. J., B. M. Babior, and R. H. Abeles: The mechanism of action of ethanolamine ammonia-lyase, a B12-dependent enzyme. IX. Interaction of the enzyme-coenzyme complex with reaction products. J. Biol. Chem. 246, 6313 (1971).

    CAS  Google Scholar 

  74. Babior, B. M, T. H. Moss, and D. C. Gould: The mechanism of action of ethanolamine ammonia-lyase. X. A study of the reaction by electron spin resonance spectrometry. J. Biol. Chem. 247, 4389 (1972).

    CAS  Google Scholar 

  75. Law, P. Y., D. G. Brown, E. L. Lien, B. M. Babior, and J. M. Wood: Synthesis and catalytic activity of spin-labeled cobamide coenzymes. Biochemistry 10, 3428 (1971).

    CAS  Google Scholar 

  76. Jayme, M., and J. H. Richards: Mechanism of action of coenzyme B12. Release of 5-deoxyinosine on incubation of deoxyinosylcobalamin, 1,2-propanediol and propanediol dehydrase. Biochem. Biophys. Research Comm. 43, 1329 (1971).

    CAS  Google Scholar 

  77. Blakley, R. L.: Cobamides and ribonucleotide reduction. J. Biol. Chem. 240, 2173 (1965).

    CAS  Google Scholar 

  78. Blakley, R. L., R. K. Ghambler, P. F. Nixon, and E. Vitols: The cobamide dependent ribonucleotide triphosphate reductase of Lactobacilli. Biochem. Biophys. Res. Comm. 20, 439 (1965).

    CAS  Google Scholar 

  79. Gleason, F. K., and H. P. C. Hogenkamp: Ribonucleotide reductase from Euglena gracilis, a deoxyadenosylcobalamin-dependent enzyme. J. Biol. Chem. 245, 4894 (1970).

    CAS  Google Scholar 

  80. Follmann, H., and H. P. C. Hogenkamp: Interaction of ribonucleotide reductase with ribonucleotide analogs. Biochemistry 10, 186 (1971).

    CAS  Google Scholar 

  81. Abeles, R. H., and W. S. Beck: The mechanism of action of cobamide coenzyme in the ribonucleotide reductase reaction. J. Biol. Chem. 242, 3589 (1967).

    CAS  Google Scholar 

  82. Beck, W. S., R. H. Abeles, and W. G. Robinson: Transfer of hydrogen from cobamide coenzyme to water during enzymatic ribonucleotide reduction. Biochem. Biophys. Res. Comm. 25, 421 (1966).

    CAS  Google Scholar 

  83. Hamilton, J. A., R. L. Blakley, F. D. Looney, and M. E. Winfield: Formation of a cobamide containing divalent cobalt by the ribonucleotide-reductase of Lactobacillus Leichmannii. Biochim. Biophys. Acta 177, 374 (1969).

    CAS  Google Scholar 

  84. Hamilton, J. A., R. Yamada, R. L. Blakley, H. P. C. Hogenkamp, F. D. Looney, and M. E. Winfield: Cobamides and ribonucleotide reduction. VII. Cob(II)alamin as a sensitive probe for the active center of ribonucleotide reductase. Biochemistry 10, 347 (1971).

    CAS  Google Scholar 

  85. Schrauzer, G. N., and R. J. Windgassen: Cobalamin model compounds. Preparation and reactions of substituted alkyl-and alkenylcobaloximes and biochemical implications. J. Am. Chem. Soc. 89, 1999 (1967).

    CAS  Google Scholar 

  86. Jacobsen, D. W., and F. M. Huennekens: Ion-dependent activation and inhibition of ribonucleotide reductase from Lactobacillus leichmannii. Biochem. and Biophys. Res. Comm. 37, 793 (1969).

    CAS  Google Scholar 

  87. Yamada, R., Y. Tamao, and R. L. Blakley: Degradation of 5-deoxyadenosyl-cobalamin by ribonucleotidetriphosphate reductase and binding of degradation products to the active center. Biochemistry 10, 3959 (1971).

    CAS  Google Scholar 

  88. Vitols, E., C. Brownson, W. Gardiner, and R. L. Blakley: Cobamides and Ribonucleotide reduction. V. A kinetic study of the ribonucleotide triphosphate reductase of Lactobacillus leichmannii. J. Biol. Chem. 242, 3035 (1967).

    CAS  Google Scholar 

  89. Barker, H. A., F. Suzuki, A. Iodice, and V. Rooze: Glutamate mutase reaction. Ann. N.Y. Acad. Sci. 112, 644 (1964).

    CAS  Google Scholar 

  90. Barker, H. A., H. Weissbach, and R. D. Smyth: A coenzyme containing pseudo-vitamin B12. Proc. Natl. Acad. Sci. 44, 1093 (1958).

    CAS  Google Scholar 

  91. Barker, H. A., R. D. Smyth, R. M. Wilson, and H. Weissbach: The purification and properties of β-methylaspartase. J. Biol. Chem. 234, 320 (1959).

    CAS  Google Scholar 

  92. Barker, H. A., V. Rooze, F. Suzuki, and A. A. Iodice: The glutamate mutase system. J. Biol. Chem. 239, 3260 (1964).

    CAS  Google Scholar 

  93. Iodice, A. A., and H. A. Barker: The glutamate isomerase reaction: Studies on the incorporation of solvent hydrogen. J. Biol. Chem. 238, 2094 (1963).

    CAS  Google Scholar 

  94. Ohmori, H., H. Ishitani, K. Sato, S. Shimizu, and S. Fukui: Vitamin B12 dependent glutamate mutase activity in photosynthetic bacteria. Biochem. Biophys. Res. Comm. 43, 156 (1971).

    CAS  Google Scholar 

  95. Eagar, R. G., Jr., B. G. Baltimore, M. M. Herbst, H. A. Barker, and J. H. Richards: Mechanism of action of coenzyme B12. Hydrogen transfer in the isomerization of β-methylaspartate to glutamate. Biochemistry 11, 253 (1972).

    CAS  Google Scholar 

  96. Switzer, R. L., B. G. Baltimore, and H. A. Barker: Hydrogen transfer between substrates and deoxyadenosylcobalamin in the glutamate mutase reaction. J. Biol. Chem. 244, 5263 (1969).

    CAS  Google Scholar 

  97. Sprecher, M., and D. B. Sprinson: The stereochemistry of the glutamate mutase reaction. Ann. N.Y. Acad. Sci. 112, 655 (1964).

    CAS  Google Scholar 

  98. Stjernholm, R., and H. G. Wood: Methylmalonyl isomerase. II. Purification and properties of the enzyme from Propionibacteria. Proc. Nat. Acad. Sci. U. S. 47, 303 (1961).

    CAS  Google Scholar 

  99. Eggerer, H., E. R. Stadtman, P. Overath und F. Lynen: Zum Mechanismus der durch Cobalamin-Coenzym katalysierten Umlagerung von Methylmalonyl-CoA in Succinyl-CoA. Biochem. Zeitschr. 333, 1 (1960).

    CAS  Google Scholar 

  100. Kellermeyer, R. W., and H. G. Wood: Methylmalonyl isomerase: A study of the mechanism of isomerization. Biochemistry 1, 1124 (1962).

    CAS  Google Scholar 

  101. Williams, D. L., G. H. Spray, G. E. Newman, and J. R. O’Brien: Dietary depletion of vitamin B12 and the excretion of methylmalonic acid in the rat. Brit. J. Nutrition 23, 343 (1969).

    CAS  Google Scholar 

  102. Mudd, S. H., H. L. Levy, and R. H. Abeles: A derangement in B12 metabolism leading to homocystinemia, cystathioninemia and methylmalonic aciduria. Biochem. Biophys. Res. Comm. 35, 121 (1969).

    CAS  Google Scholar 

  103. Rosenberg, L. E., A. C. Lilljequist, and Y. E. Hsia: B12-dependent methylmalonic-aciduria: Defective B12 metabolism in cultured fibroblasts. Biochem. Biophys. Res. Comm. 37, 607 (1969).

    CAS  Google Scholar 

  104. Miller, W. W., and J. H. Richards: Mechanism of action of coenzyme B12: H-Transfer in the isomerization of methylmalonyl-CoA to succinyl-CoA. J. Am. Chem. Soc. 91, 1498 (1969).

    CAS  Google Scholar 

  105. Wood, H. G., R. W. Kellermeyer, R. Stjernholm, and S. H. G. Allen: Metabolism of methylmalonyl-CoA and the role of biotin and B12 coenzymes. Ann. N. Y. Acad. Sci. 112, 661 (1964).

    CAS  Google Scholar 

  106. Erfle, J. D., J. M. Clark, Jr., and B. Connor Johnson: Direct hydrogen transfer in the conversion of methylmalonyl-CoA to succinyl-CoA. Ann. N. Y. Acad. Sci. 112, 684 (1964).

    CAS  Google Scholar 

  107. Kung, H. F., S. Cederbaum, L. Tsai, and T. C. Stadtman: Nicotinic acid metabolism. V. A cobinamide coenzyme dependent conversion of α-methyleneglutarate to dimethylmalonate. Proc. Natl. Acad. Sci. U.S. 65, 978 (1970).

    CAS  Google Scholar 

  108. Kung, H. F., and T. C. Stadtman: Nicotinic acid metabolism. VT. Purification of α-methylene-glutarate mutase (B12-dependent) and methylitaconate isomerase. J. Biol. Chem. 246, 3378 (1971).

    Google Scholar 

  109. Kung, H. F., and L. Tsai: Nicotinic acid metabolism. VII. Mechanism of action of clostridial α-methylene glutarate mutase (Bn-dependent) and methylitaconate isomerase. J. Biol. Chem. 246, 6436 (1971).

    CAS  Google Scholar 

  110. Schrauzer, G. N., and R. J. Holland: Hydridocobaloximes. J. Am. Chem. Soc. 93, 1505 (1971).

    CAS  Google Scholar 

  111. Whitlock, H. W.: Mechanistic possibilities for some coenzyme B12 catalyzed reactions. Ann. N.Y. Acad. Sci. 112, 721 (1964).

    CAS  Google Scholar 

  112. Lowe, J. N., and L. L. Ingraham: A model of the methylmalonyl isomerase reaction. J. Am. Chem. Soc. 93, 3801 (1971).

    CAS  Google Scholar 

  113. Tsai, L., and T. C. Stadtman: Anaerobic degradation of lysine. IV. Cobamide coenzyme dependent migration of an amino group from carbon 6 of β-lysine to carbon 5, etc. Arch. Biochem. Biophys. 125, 210 (1968).

    CAS  Google Scholar 

  114. Dekker, E. E., and H. A. Barker: Identification and cobamide coenzyme dependent formation of 3,5-diaminohexanoic acid. An intermediate in lysine fermentation. J. Biol. Chem. 243, 3232 (1968).

    CAS  Google Scholar 

  115. Stadtman, T. C., and L. Tsai: A cobamide coenzyme dependent migration of the ε-amino group of D-lysine. Biochem. Biophys. Res. Comm. 28, 920 (1967).

    CAS  Google Scholar 

  116. Dyer, J. K., and R. N. Costilow: 2,4-Diaminovaleric acid: Intermediate in the anerobic oxidation of ornithine by Clostridium sticklandii. J. Bacteriol. 101, 77 (1970).

    CAS  Google Scholar 

  117. Morley, C. G. D., and T. C. Stadtman: Studies on the fermentation of D-β-lysine. Purification and properties of an ATP regulated B12 coenzyme dependent D-β-lysine mutase complex from Clostridium sticklandii. Biochemistry 9, 4890 (1970).

    CAS  Google Scholar 

  118. Stadtman, T. C.: Vitamin B12. Science 171, 859 (1971).

    CAS  Google Scholar 

  119. Stadtman, T. C., and P. Renz: Anaerobic degradation of lysine. V. Some properties of the cobamide coenzyme dependent β-lysine mutase of Clostridium sticklandii. Arch. Biochem. Biophys. 125, 226 (1968).

    CAS  Google Scholar 

  120. Retey, J., F. Kunz, T. C. Stadtman und D. Arigoni: Zürn Mechanismus der β-Lysin-Mutase-Reaktion. Experientia 25, 801 (1969).

    CAS  Google Scholar 

  121. Stadtman, T. C.: Methane Fermentation. Ann. Rev. Microbiol. 21, 121 (1967).

    CAS  Google Scholar 

  122. Mcbride, B. C., and R. S. Wolfe: A new coenzyme of methyl transfer: Coenzyme M. Biochemistry 10, 2317 (1971).

    CAS  Google Scholar 

  123. Mcbride, B. C., J. M. Wood, J. W. Sibert, and G. N. Schrauzer: Methylcobalt derivatives of vitamin B12 model compounds as substrates in enzymatic methane formation. J. Am. Chem. Soc. 90, 5276 (1968).

    Google Scholar 

  124. Sibert, J. W., and G. N. Schrauzer: Enzymatic and nonenzymatic demethylation of methylcobalamin and of abiogenic cobaloxime model substrates. Methane biosynthesis by Methanobacillus omelianskii. J. Am. Chem. Soc. 92, 1421 (1970).

    CAS  Google Scholar 

  125. Schrauzer, G. N., J. A. Seck, and T. M. Beckham: Reductive Co-C bond cleavage of alkylcorrins and of vitamin B12 model compounds by alkaline CO, S2O 4 and stannite. Bioinorganic Chemistry 2, 211 (1973).

    CAS  Google Scholar 

  126. Roberton, A. M., and R. S. Wolfe: ATP requirement for methanogenesis in cell extracts of Methanobacterium strain M. o. H. Biochim. Biophys. Acta 192, 420 (1969).

    CAS  Google Scholar 

  127. Wood, J. M., and R. S. Wolfe: Alkylation of an enzyme in the methane-forming system of Methanobacillus omelianskii. Biochem. Biophys. Res. Comm. 22, 119 (1966).

    CAS  Google Scholar 

  128. Barker, H. A., and M. D. Kamen: Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. Natl. Acad. Sci. U.S. 31, 219 (1945).

    CAS  Google Scholar 

  129. Lentz, K., and H. G. Wood: Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J. Bacteriol. 69, 645 (1955).

    Google Scholar 

  130. Poston, J. M., K. Kuratomi, and E. R. Stadtman: Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. Ann. N. Y. Acad. Sci. 112, 804 (1964).

    CAS  Google Scholar 

  131. Ghambeer, R. K., H. G. Wood, M. Schulman, and L. Ljungdahl: Total synthesis of acetate from CO2. III. Inhibition by alkylhalides of the synthesis from CO2, methyltetrahydrofolate and methyl-B12 by Clostridium thermoaceticum. Arch. Biochem. Biophys. 143, 471 (1970), and previous papers cited therein.

    Google Scholar 

  132. Schrauzer, G. N., and J. W. Sibert: Acetate synthesis from carbon dioxide and methylcorrinoids. Simulation of the microbial carbon dioxide fixation reaction in a model system. J. Am. Chem. Soc. 92, 3509 (1970).

    CAS  Google Scholar 

  133. Parker, D. J., H. G. Wood, R. K. Ghambeer, and L. G. Ljungdahl: Total synthesis of acetate from carbon dioxide. Retention of deuterium during carboxylation of trideuteriomethyltetrahydrofolate or trideuteriomethylcobalamin. Biochemistry 11, 3074 (1972).

    CAS  Google Scholar 

  134. Ljungdahl, L., and H. G. Wood: Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann. Rev. Microbiol. 23, 515 (1970).

    Google Scholar 

  135. Mcbride, B. C., and R. S. Wolfe: Biosynthesis of dimethylarsine by Methanobacterium. Biochemistry 10, 4312 (1971).

    CAS  Google Scholar 

  136. Wood, J. M., F. S. Kennedy, and C. G. Rosen: Synthesis of methylmercury compounds by extracts of a methanogenic bacterium. Nature (London) 220, 173 (1968).

    CAS  Google Scholar 

  137. Hill, H. A. O., J. M. Pratt, S. Ridsdale, F. R. Williams, and J. R. P. Williams: Kinetics of substitution of coordinated carbanions in Co(III) corrinoids. Chem. Commun. 1970, 341.

    Google Scholar 

  138. Schrauzer, G. N., J. H. Weber, T. M. Beckham, and R. K. Y. Ho: Alkyl group transfer from cobalt to mercury: The reaction of alkylcobalamins, alkylcobaloximes and of related compounds with mercuric acetate. Tetrahedron Letters 1971, 275.

    Google Scholar 

  139. Schrauzer, G. N., und G. Kratel: Organometallderivate des Bisdimethylglyoximatokobalts. Chem. Ber. 102, 2392 (1969).

    CAS  Google Scholar 

  140. Schrauzer, G. N., and E. M. Rubin: Formation of Methylcobalamin from dimethylmercury and vitamin B12s. Unpublished results, 1972.

    Google Scholar 

  141. Buchanan, J. M, H. L. Elford, R. E. Loughlin, B. M. Mcdougall, and S. Rosenthal: The role of vitamin B12 in methyl transfer to homocysteine. Ann. N. Y. Acad. Sci. 112, 756 (1964).

    CAS  Google Scholar 

  142. Guest, J. R., S. Friedman, M. J. Dilworth, and D. D. Woods: Methylcobalamin as a source of the methyl group of methionine. Ann. N. Y. Acad. Sci. 112, 774 (1964).

    CAS  Google Scholar 

  143. Dickerman, H. W., B. G. Redfield, J. G. Bieri, and H. Weissbach: Studies on the role of vitamin B12 for the synthesis of methionine in liver. Ann. N. Y. Acad. Sci. 112, 791 (1964).

    CAS  Google Scholar 

  144. Larrabee, A. R., S. Rosenthal, R. E. Cathou, and J. M. Buchanan: A methylated derivative of tetrahydrofolate as an intermediate of methionine biosynthesis. J. Am. chem. Soc. 83, 4094 (1961).

    CAS  Google Scholar 

  145. Kerwar, S. S., J. H. Mangum, K. G. Scrimgeour, and F. M. Huennekens: Function of methylcobalamin in methionine synthesis. Biochem. Biophys. Res. Comm. 15, 377 (1964).

    CAS  Google Scholar 

  146. Taylor, R. T., and H. Weissbach: N5-Methyltetrahydrofolate-homocysteine trans-methylase. J. Biol. Chem. 242, 1502 (1967).

    CAS  Google Scholar 

  147. Blakley, R. L.: The biochemistry of folic acid and related pteridines. Amsterdam: North Holland Publishing Co. 1969. Chapter 9, 332.

    Google Scholar 

  148. Weissbach, H., and R. T. Taylor: Roles of vitamin B12 and folic acid in methionine synthesis. Vitamins and Hormones 28, 415 (1970).

    CAS  Google Scholar 

  149. Stavrianopoulos, J., und L. Jaenicke: Reaktionsschritte der Methioninsynthese bei E. coli. Eur. J. Biochem. 3, 95 (1967).

    CAS  Google Scholar 

  150. Taylor, R. T., and H. Weissbach: Escherichia Coli B N5-methyltetrahydrofolate-homocysteine methyltransferase. Sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate. Arch. Biochem. Biophys. 129, 728 (1969).

    CAS  Google Scholar 

  151. ____ Escherichia Coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: Activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer. Arch. Biochem. Biophys. 129, 745 (1969).

    CAS  Google Scholar 

  152. Schrauzer, G. N., and R. J. Windgassen: On cobaloximes with cobalt-sulfur bonds and some model studies related to cobamide dependent methyl group transfer reactions. J. Am. Chem. Soc. 89, 3607 (1967).

    CAS  Google Scholar 

  153. Bied-Charreton, C., et A. Gaudemer: Acoylation de complexes du cobalt(I) par les sels d’ammonium quaternaires. Compt. Rend. Sc. Paris 272, 1241 (1971).

    CAS  Google Scholar 

  154. Taylor, R. T.: Methylcobalamin as a substrate at a separate site on Escherichia Coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase. Arch. Biochem. Biophys. 144, 352 (1971).

    CAS  Google Scholar 

  155. Taylor, R. T., and H. Weissbach: Escherichia Coli B N5-methyltetrahydrofolate-homocysteine vitamin B transmethylase: Formation and photolability of a methylcobalamin enzyme. Arch. Biochem. Biophys. 123, 109 (1968).

    CAS  Google Scholar 

  156. Pailes, W. H., and H. P. C. Hogenkamp: The photolability of Co-alkylcobinamides. Biochemistry 7, 4160 (1968).

    CAS  Google Scholar 

  157. Schrauzer, G. N., and R. J. Windgassen: Synthesis of methyl groups catalysed by vitamin B12r in vitro. Nature (London) 214, 492 (1967).

    CAS  Google Scholar 

  158. Rüdiger, H., and L. Jaenicke: Methionine synthetase: Existence and interconversion of two enzyme species. Europ. J. Biochem. 16, 92 (1970).

    Google Scholar 

  159. ____ On the role of S-adenosylmethionine in the vitamin dependent methionine synthesis. Europ. J. Biochem. 10, 557 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag/Wien

About this chapter

Cite this chapter

Schrauzer, G.N. (1974). Mechanisms of Corrin Dependent Enzymatic Reactions. In: Herz, W., Grisebach, H., Kirby, G.W. (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 31. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7094-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7094-6_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7096-0

  • Online ISBN: 978-3-7091-7094-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics