Advertisement

Abstract

The mechanisms of corrin and of coenzyme B12 dependent enzymatic reactions are complex and have been the subject of intense experimental effort, discussion and controversy. The difficulties preventing the understanding of the enzymatic function of corrinoid coenzymes were initially caused by the lack of information on the inorganic and organometallic reactions of cobalt in tetradentate, strong-field complexes. Since the discovery and study of vitamin B12 model compounds a wealth of experimental and theoretical data on the chemistry of cobalt in complexes related to vitamin B12 became available, which is now recognized to be relevant to the chemistry of vitamin B12 itself. Indeed, most of the known reactions of vitamin B12 have been duplicated with simpler model complexes, and vice versa. The detailed investigation of the nonenzymatic reactions of vitamin B12 and of vitamin B12 model compounds subsequently led to the formulation of mechanisms of some of the known corrin dependent enzymatic reactions and to a number of surprising qualitative and quantitative experimental correlations between nonenzymatic and enzymatic data.

Keywords

Ribonucleotide Reductase Reductive Cleavage Methionine Biosynthesis Clostridium Thermoaceticum Ribonucleotide Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barker, H. A., R. D. Smyth, H. Weissbach, J. I. Toohey, J. N. Ladd, and B. E. Volcani: Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole. J. Biol. Chem. 235, 480 (1960).Google Scholar
  2. 2.
    Lenhert, P. G., and D. Crowfoot Hodgkin: Structure of the 5,6-dimethylbenzimid-azolyl-cobamide coenzyme. Nature 192, 937 (1961).Google Scholar
  3. 3.
    Lenhert, P. G.: The structure of vitamin B12. VII. The X-ray analysis of the vitamin B12 coenzyme. Proc. Roy. Soc. A 303, 45 (1968).Google Scholar
  4. 4.
    Ingraham, L. L.: B12 coenzymes: Biological Grignard reagents. Ann. N. Y. Acad. Sci. 112, 713 (1964).Google Scholar
  5. 5.
    Schindler, O.: Reduktionsprodukte von Vitamin B12. Helv. Chim. Acta 34, 1356 (1951).Google Scholar
  6. 6.
    Müller, O., and G. Müller: Synthesen auf dem Vitamin-B12-Gebiet, XIV. Biochem. Z. 336, 299 (1962).Google Scholar
  7. 7.
    Schrauzer, G. N., R. J. Windgassen, and J. Kohnle: Die Konstitution von Vitamin B12s. Chem. Ber. 98, 3324 (1965).Google Scholar
  8. 8.
    Schrauzer, G. N., E. Deutsch, and R. J. Windgassen: The nucleophilicity of vitamin B12s. J. Am. Chem. Soc. 90, 2441 (1968).Google Scholar
  9. 9.
    Schrauzer, G. N., and E. Deutsch: Reactions of Co(I) supernucleophiles. The alkylation of vitamin B12s, cobaloximes (I) and related compounds. J. Am. Chem. Soc. 91, 3341 (1969).Google Scholar
  10. 10.
    Schrauzer, G. N.: The chemistry of Co(I) derivatives of vitamin B12 and of related compounds. Ann. N. Y. Acad. Sci. 158, 526 (1969).Google Scholar
  11. 11.
    Schrauzer, G. N., and R. J. Holland: Hydridocobalamin and a new synthesis of organocobalt derivatives of vitamin B12. J. Am. Chem. Soc. 93, 4060 (1971).Google Scholar
  12. 12.
    Weber, J. H., and G. N. Schrauzer: Bisdimethylglyoximatorhodium derivatives. Analogs of cobaloximes. J. Am. Chem. Soc. 92, 726 (1970).Google Scholar
  13. 13.
    Toohey, J. I.: A vitamin B12 compound containing no cobalt. Proc. Natl. Acad. Sci. U.S. 54, 934 (1966).Google Scholar
  14. 14.
    Sato, K., S. Shimizu, and S. Fukui: A cobalt-free corrinoid in Streptomyces olivaceus. Biochem. Biophys. Res. Comm. 39, 170 (1970).Google Scholar
  15. 15.
    Birnbaum, J.: Fermentation of Pseudomonas denitrificans in media containing rhodium salts. Unpublished, Merck, Sharp and Dohme Research Laboratories, Rahway, New Jersey.Google Scholar
  16. 16.
    Schrauzer, G. N., und J. Kohnle: Coenzym-B12-Modelle. Chem. Ber. 97, 3056 (1964).Google Scholar
  17. 17.
    Schrauzer, G. N.: Organocobalt chemistry of vitamin B12 model compounds. Accounts Chem. Research 1, 97 (1968).Google Scholar
  18. 18.
    Randall, W. C., and R. A. Alberty: Kinetics of ligand binding to aquocobalamin. Biochemistry 6, 1520 (1967).Google Scholar
  19. 19.
    Tsiang, H. G., and W. K. Wilmarth: Rate and equilibrium studies of the displacement of water in trans-sulfitoaquobis(dimethylglyoximato)cobalt(III) by various nucleophiles. Inorg. Chem. 7, 2535 (1968).Google Scholar
  20. 20.
    Hague, D. N., and J. Halpern: Kinetics of some substitution reactions of trans-bis-dimethylglyoximato)-cobalt(III) complexes. Inorg. Chem. 6, 2059 (1967).Google Scholar
  21. 21.
    Fleischer, E. B., S. Jacobs, and L. Mestichelli: The kinetics of the reaction of Cobalt(III) and Iron(III) hematoporphyrin with cyanide and thiocyanate. Evidence for a dissociative mechanism. J. Am. Chem. Soc. 90, 2527 (1968).Google Scholar
  22. 22.
    Schrauzer, G. N., and L. P. Lee: The molecular and electronic structure of vitamin B12r, cobaloximes(II) and related compounds. J. Am. Chem. Soc. 90, 319 (1968).Google Scholar
  23. 23.
    Pearson, R. G., H. Sobel, and J. Songstad: Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(py)2Cl2]. J. Am. Chem. Soc. 90, 319 (1968).Google Scholar
  24. 24.
    Costa, G., G. Mestroni, T. Licari, and E. Mestroni: New σ-bonded bisalkyl and alkyl-aryl cobalt complexes of bis(diacetylmonoxime-imino)propane-1,3. Inorg. Nucl. Chem. Letters 5, 561 (1969).Google Scholar
  25. 25.
    Schrauzer, G. N., L. P. Lee, and J. W. Sibert: Alkylcobalamins, alkylcobaloximes: Electronic spectra and mechanism of photodealkylation. J. Am. Chem. Soc. 92, 2997 (1970).Google Scholar
  26. 26.
    Schrauzer, G. N., and R. J. Windgassen: On hydroxyalkylcobaloximes and the mechanism of a cobamide dependent diol dehydrase. J. Am. Chem. Soc. 89, 143 (1967).Google Scholar
  27. 27.
    Hogenkamp, H. P. C., J. E. Rush, and C. A. Swenson: Observations on the organo-metallic bond of the corrinoid coenzymes. J. Biol. Chem. 240, 3641 (1965).Google Scholar
  28. 28.
    Golding, B. T., H. L. Holland, U. Horn, and S. Sakrikar: Solvolysis of β-acetoxy-alkyl-bis(biacetyldioximato)pyridinecobalt: Evidence for a novel intermediate olefinic complex. Angew. Chem. Internat. Edit. 9, 959 (1970).Google Scholar
  29. 29.
    Silverman, R. B., D. Dolphin, and B. M. Babior: A model for the mechanism of action of coenzyme B12 dependent enzymes. Evidence for σ-π-rearrangements in cobalo-ximes. J. Am. Chem. Soc. 94, 4028 (1972).Google Scholar
  30. 30.
    Dolphin, D., A. W. Johnson, and R. Rodrigo: Some reactions of the vitamin B12 coenzyme and its alkyl analogues. Ann. N. Y. Acad. Sci. 112, 590 (1964).Google Scholar
  31. 31.
    Hogenkamp, H. P. C., J. N. Ladd, and H. A. Barker: The identification of a nucleoside derived from coenzyme B12. J. Biol. Chem. 237, 1950 (1962).Google Scholar
  32. 32.
    Hogenkamp, H. P. C., and H. A. Barker: Nucleoside photolysis products of coenzyme B12. Fed. Proc. 21, 470 (1962).Google Scholar
  33. 33.
    Schrauzer, G. N., J. A. Seck, R. J. Holland, T. M. Beckham, E. M. Rubin, and J. W. Sibert: Reductive dealkylation of alkylcobaloximes, alkylcobalamins and related compounds: Simulation of corrin dependent reductase and alkylation reactions. Bioinorganic Chem. 2, 93 (1972).Google Scholar
  34. 34.
    Schrauzer, G. N.: Recent advances in the chemistry of vitamin B12 and vitamin B12 model compounds: Reductive cobalt-carbon bond cleavage reactions. Pure and Applied Chem. 33, 545 (1973).Google Scholar
  35. 35.
    Babior, B. M., T. H. Moss, and D. C. Gould: The mechanism of action of ethanol-amine ammonia lyase, a B12-dependent enzyme. J. Biol. Chem. 247, 4389 (1972).Google Scholar
  36. 36.
    Cockle, S. A., H. A. O. Hill, R. J. P. Williams, S. P. Davies, and M. A. Foster: The detection of intermediates during the conversion of propane-1,2-diol to propionaldehyde by glyceroldehydrase, a coenzyme B12 dependent reaction. J. Am. Chem. Soc. 94, 275 (1972).Google Scholar
  37. 37.
    Schrauzer, G. N.: Model Studies in nitrogen fixation and cobalamin chemistry. Advances in Chemistry Series 100, 1 (1971).Google Scholar
  38. 38.
    Schrauzer, G. N., and J. W. Sibert: Coenzyme B12 and coenzyme B12 model compounds in the catalysis of the dehydration of glycols. J. Am. Chem. Soc. 92, 1022 (1970).Google Scholar
  39. 39.
    Peterkofsky, A., and H. Weissbach: Enzymatic synthesis of coenzyme B12. Ann. N.Y. Acad. Sci. 112, 622 (1964).Google Scholar
  40. 40.
    Pawelkiewicz, J., B. Bartosinski, and W. Walerych: Enzymic synthesis of corrin coenzymes. Ann. N.Y. Acad. Sci. 112, 638 (1964).Google Scholar
  41. 41.
    Smith, E. Lester, L. Mervyn, P. W. Muggleton, A. W. Johnson, and N. Shaw: Chemical Routes to coenzyme B12 and analogues. Ann. N.Y. Acad. Sci. 112, 565 (1964).Google Scholar
  42. 42.
    Müller, O., and K. Bernhauer: Synthesis and biological behavior of additional corrinoid coenzymes. Ann. N.Y. Acad. Sci. 112, 575 (1964).Google Scholar
  43. 43.
    Schrauzer, G. N., and R. J. Holland: Reactions of vitamin B12s with nucleoside phosphates. Unpublished.Google Scholar
  44. 44.
    Frey, P. A., M. K. Essenberg, and R. H. Abeles: Studies on the mechanism of hydrogen transfer in the cobamide coenzyme-dependent dioldehydrase reaction. J. Biol. Chem. 242, 5369 (1967).Google Scholar
  45. 45.
    Abeles, R. H., and H. A. Lee, Jr.: Purification and properties of dioldehydrase, an enzyme requiring a cobamide coenzyme. J. Biol. Chem. 238, 2367 (1963).Google Scholar
  46. 46.
    Smiley, K. L., and M. Sobolov: A cobamide-requiring glycerol dehydrase from an acrolein-forming lactobacillus. Arch. Biochem. Biophys. 97, 538 (1962).Google Scholar
  47. 47.
    Toraya, T., and S. Fukui: Coenzyme B12 dependent propanediol dehydrase system. Ternary complex between apoenzyme, coenzyme and substrate analog. Biochim. Biophys. Acta 284, 536 (1972).Google Scholar
  48. 48.
    Hogenkamp, H. P. C.: Enzymatic reactions involving corrinoids. Ann. Reviews Biochem. 37, 225 (1968).Google Scholar
  49. 49.
    Retey, J., A. Umani-Ronchi, J. Seibl und D. Arigoni: Zum Mechanismus der Propandioldehydrase-Reaktion. Experientia 22, 502 (1966).Google Scholar
  50. 50.
    Schrauzer, G. N., R. J. Holland, and J. Seck: The mechanism of coenzyme B12 action in dioldehydrase. J. Am. Chem. Soc. 93, 1503 (1971).Google Scholar
  51. 57.
    Henderson, R. G. S., and J. M. Pratt: Reactions of nitrous oxide with some transition metal complexes. Chem. Commun. 1967, 387.Google Scholar
  52. 52.
    Schrauzer, G. N., J. Seck, and R. J. Holland: The mechanism of coenzyme B12 action in dioldehydrase: New observations concerning the effects of O2, N2O and CO. Z. Naturforsch. 28 c, 1 (1973).Google Scholar
  53. 53.
    Toraya, T., M. Kondo, Y. Isemura, and S. Fukui: Propanediol dehydrase system. Nature of cobalamin binding and some properties of apoenzyme-coenzyme B12 analog complexes. Biochemistry 11, 2599 (1972).Google Scholar
  54. 54.
    Toraya, T., Y. Sugimoto, Y. Tamao, S. Shimizu, and S. Fukui: Role of monovalent cations in binding of vitamin B12 coenzyme or its analogs to apoenzyme. Biochemistry 10, 3475 (1971).Google Scholar
  55. 55.
    Wagner, O. W., H. A. Lee, P. A. Frey, and R. H. Abeles: Studies of the mechanism of action of cobamide coenzymes. Chemical properties of the enzyme-coenzyme complex. J. Biol. Chem. 241, 1751 (1966).Google Scholar
  56. 56.
    Schrauzer, G. N., and R. J. Holland: Attempted reconstitution of coenzyme B12 in dioldehydrase. Unpublished experiments. 1972.Google Scholar
  57. 57.
    Holland, R. J.: Reaction of 4′-fluoroadenosyl-5’-iodide with vitamin B12s. Unpublished, 1972.Google Scholar
  58. 58.
    ____ Studies in vitamin B12 chemistry. Thesis, University of California, San Diego.Google Scholar
  59. 59.
    Schrauzer, G. N., R. J. Holland, and W. J. Michaely: Concerning the mechanism of coenzyme B12 action in dioldehydrase: Synthesis and reactions of proposed intermediates. J. Am. Chem.Soc. 95, 2024 (1973).Google Scholar
  60. 60.
    Hamilton, J. A., and R. L. Blakley: Electron spin resonance studies of ribonucleotide reduction catalyzed by ribonucleotide reductase of Lactobacillus leichmannii. Biochim. Biophys. Acta 184, 224 (1969).Google Scholar
  61. 61.
    Vitols, E., H. P. C. Hogenkamp, C. Brownson, R. L. Blakley, and J. Connellan: Reduction of a disulphide bond of ribonucleotide reductase by the dithiol substrate. Biochem. J. 104, 58 c (1967).Google Scholar
  62. 62.
    Hoffman, M. Z., and E. Hayon: One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation and decay kinetics of the RSSR-radical. J. Am. Chem. Soc. 94, 7950 (1972).Google Scholar
  63. 63.
    Bradbeer, C.: The clostridial fermentations of choline and ethanolamine. I. Preparation and properties of cell free extracts. J. Biol. Chem. 240, 4669 (1965).Google Scholar
  64. 64.
    ____ The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. J. Biol. Chem. 240, 4675 (1965).Google Scholar
  65. 65.
    Babior, B. M.: The mechanism of action of ethanolamine deaminase. I. Studies with isotopic hydrogen and oxygen. J. Biol. Chem. 244, 449 (1969).Google Scholar
  66. 66.
    ____ The mechanism of action of ethanolamine deaminase, II. The spectrum of the ethanolamine deaminase-coenzyme B12 complex during the act of catalysis. Biochim. Biophys. Acta 178, 406 (1969).Google Scholar
  67. 67.
    ____ The mechanism of action of ethanolamine deaminase. III. Inhibition by coenzyme B12 analogues. J. Biol. Chem. 244, 2917 (1969).Google Scholar
  68. 68.
    ____ The mechanism of action of ethanolamine deaminase. IV. Cobamide dependent binding of substrate to ethanolamine deaminase. J. Biol. Chem. 244, 2927 (1969).Google Scholar
  69. 69.
    ____ The mechanism of action of ethanolamine deaminase. V. The photolysis of enzyme-bound alkylcobalamins. Biochemistry 8, 2662 (1969).Google Scholar
  70. 70.
    ____ The mechanism of action of ethanolamine deaminase. VI. Ethylene glycol, a quasi-substrate for ethanolamine deaminase. J. Biol. Chem. 245, 1755 (1970).Google Scholar
  71. 71.
    ____ The mechanism of action of ethanolamine ammonia lyase, a B12 dependent enzyme. VII. The mechanism of hydrogen transfer. J. Biol. Chem. 245, 6125 (1970).Google Scholar
  72. 72.
    Weisblat, D. A., and B. M. Babior: The mechanism of action of ethanolamine ammonia-lyase, a B12-dependent enzyme. VIII. Further studies with compounds labeled with isotopes of hydrogen: Identification and some properties of the rate-limiting step. J. Biol. Chem. 246, 6064 (1971).Google Scholar
  73. 73.
    Carty, T. J., B. M. Babior, and R. H. Abeles: The mechanism of action of ethanolamine ammonia-lyase, a B12-dependent enzyme. IX. Interaction of the enzyme-coenzyme complex with reaction products. J. Biol. Chem. 246, 6313 (1971).Google Scholar
  74. 74.
    Babior, B. M, T. H. Moss, and D. C. Gould: The mechanism of action of ethanolamine ammonia-lyase. X. A study of the reaction by electron spin resonance spectrometry. J. Biol. Chem. 247, 4389 (1972).Google Scholar
  75. 75.
    Law, P. Y., D. G. Brown, E. L. Lien, B. M. Babior, and J. M. Wood: Synthesis and catalytic activity of spin-labeled cobamide coenzymes. Biochemistry 10, 3428 (1971).Google Scholar
  76. 76.
    Jayme, M., and J. H. Richards: Mechanism of action of coenzyme B12. Release of 5-deoxyinosine on incubation of deoxyinosylcobalamin, 1,2-propanediol and propanediol dehydrase. Biochem. Biophys. Research Comm. 43, 1329 (1971).Google Scholar
  77. 77.
    Blakley, R. L.: Cobamides and ribonucleotide reduction. J. Biol. Chem. 240, 2173 (1965).Google Scholar
  78. 78.
    Blakley, R. L., R. K. Ghambler, P. F. Nixon, and E. Vitols: The cobamide dependent ribonucleotide triphosphate reductase of Lactobacilli. Biochem. Biophys. Res. Comm. 20, 439 (1965).Google Scholar
  79. 79.
    Gleason, F. K., and H. P. C. Hogenkamp: Ribonucleotide reductase from Euglena gracilis, a deoxyadenosylcobalamin-dependent enzyme. J. Biol. Chem. 245, 4894 (1970).Google Scholar
  80. 80.
    Follmann, H., and H. P. C. Hogenkamp: Interaction of ribonucleotide reductase with ribonucleotide analogs. Biochemistry 10, 186 (1971).Google Scholar
  81. 81.
    Abeles, R. H., and W. S. Beck: The mechanism of action of cobamide coenzyme in the ribonucleotide reductase reaction. J. Biol. Chem. 242, 3589 (1967).Google Scholar
  82. 82.
    Beck, W. S., R. H. Abeles, and W. G. Robinson: Transfer of hydrogen from cobamide coenzyme to water during enzymatic ribonucleotide reduction. Biochem. Biophys. Res. Comm. 25, 421 (1966).Google Scholar
  83. 83.
    Hamilton, J. A., R. L. Blakley, F. D. Looney, and M. E. Winfield: Formation of a cobamide containing divalent cobalt by the ribonucleotide-reductase of Lactobacillus Leichmannii. Biochim. Biophys. Acta 177, 374 (1969).Google Scholar
  84. 84.
    Hamilton, J. A., R. Yamada, R. L. Blakley, H. P. C. Hogenkamp, F. D. Looney, and M. E. Winfield: Cobamides and ribonucleotide reduction. VII. Cob(II)alamin as a sensitive probe for the active center of ribonucleotide reductase. Biochemistry 10, 347 (1971).Google Scholar
  85. 85.
    Schrauzer, G. N., and R. J. Windgassen: Cobalamin model compounds. Preparation and reactions of substituted alkyl-and alkenylcobaloximes and biochemical implications. J. Am. Chem. Soc. 89, 1999 (1967).Google Scholar
  86. 86.
    Jacobsen, D. W., and F. M. Huennekens: Ion-dependent activation and inhibition of ribonucleotide reductase from Lactobacillus leichmannii. Biochem. and Biophys. Res. Comm. 37, 793 (1969).Google Scholar
  87. 87.
    Yamada, R., Y. Tamao, and R. L. Blakley: Degradation of 5-deoxyadenosyl-cobalamin by ribonucleotidetriphosphate reductase and binding of degradation products to the active center. Biochemistry 10, 3959 (1971).Google Scholar
  88. 88.
    Vitols, E., C. Brownson, W. Gardiner, and R. L. Blakley: Cobamides and Ribonucleotide reduction. V. A kinetic study of the ribonucleotide triphosphate reductase of Lactobacillus leichmannii. J. Biol. Chem. 242, 3035 (1967).Google Scholar
  89. 89.
    Barker, H. A., F. Suzuki, A. Iodice, and V. Rooze: Glutamate mutase reaction. Ann. N.Y. Acad. Sci. 112, 644 (1964).Google Scholar
  90. 90.
    Barker, H. A., H. Weissbach, and R. D. Smyth: A coenzyme containing pseudo-vitamin B12. Proc. Natl. Acad. Sci. 44, 1093 (1958).Google Scholar
  91. 91.
    Barker, H. A., R. D. Smyth, R. M. Wilson, and H. Weissbach: The purification and properties of β-methylaspartase. J. Biol. Chem. 234, 320 (1959).Google Scholar
  92. 92.
    Barker, H. A., V. Rooze, F. Suzuki, and A. A. Iodice: The glutamate mutase system. J. Biol. Chem. 239, 3260 (1964).Google Scholar
  93. 93.
    Iodice, A. A., and H. A. Barker: The glutamate isomerase reaction: Studies on the incorporation of solvent hydrogen. J. Biol. Chem. 238, 2094 (1963).Google Scholar
  94. 94.
    Ohmori, H., H. Ishitani, K. Sato, S. Shimizu, and S. Fukui: Vitamin B12 dependent glutamate mutase activity in photosynthetic bacteria. Biochem. Biophys. Res. Comm. 43, 156 (1971).Google Scholar
  95. 95.
    Eagar, R. G., Jr., B. G. Baltimore, M. M. Herbst, H. A. Barker, and J. H. Richards: Mechanism of action of coenzyme B12. Hydrogen transfer in the isomerization of β-methylaspartate to glutamate. Biochemistry 11, 253 (1972).Google Scholar
  96. 96.
    Switzer, R. L., B. G. Baltimore, and H. A. Barker: Hydrogen transfer between substrates and deoxyadenosylcobalamin in the glutamate mutase reaction. J. Biol. Chem. 244, 5263 (1969).Google Scholar
  97. 97.
    Sprecher, M., and D. B. Sprinson: The stereochemistry of the glutamate mutase reaction. Ann. N.Y. Acad. Sci. 112, 655 (1964).Google Scholar
  98. 98.
    Stjernholm, R., and H. G. Wood: Methylmalonyl isomerase. II. Purification and properties of the enzyme from Propionibacteria. Proc. Nat. Acad. Sci. U. S. 47, 303 (1961).Google Scholar
  99. 99.
    Eggerer, H., E. R. Stadtman, P. Overath und F. Lynen: Zum Mechanismus der durch Cobalamin-Coenzym katalysierten Umlagerung von Methylmalonyl-CoA in Succinyl-CoA. Biochem. Zeitschr. 333, 1 (1960).Google Scholar
  100. 100.
    Kellermeyer, R. W., and H. G. Wood: Methylmalonyl isomerase: A study of the mechanism of isomerization. Biochemistry 1, 1124 (1962).Google Scholar
  101. 101.
    Williams, D. L., G. H. Spray, G. E. Newman, and J. R. O’Brien: Dietary depletion of vitamin B12 and the excretion of methylmalonic acid in the rat. Brit. J. Nutrition 23, 343 (1969).Google Scholar
  102. 102.
    Mudd, S. H., H. L. Levy, and R. H. Abeles: A derangement in B12 metabolism leading to homocystinemia, cystathioninemia and methylmalonic aciduria. Biochem. Biophys. Res. Comm. 35, 121 (1969).Google Scholar
  103. 103.
    Rosenberg, L. E., A. C. Lilljequist, and Y. E. Hsia: B12-dependent methylmalonic-aciduria: Defective B12 metabolism in cultured fibroblasts. Biochem. Biophys. Res. Comm. 37, 607 (1969).Google Scholar
  104. 104.
    Miller, W. W., and J. H. Richards: Mechanism of action of coenzyme B12: H-Transfer in the isomerization of methylmalonyl-CoA to succinyl-CoA. J. Am. Chem. Soc. 91, 1498 (1969).Google Scholar
  105. 105.
    Wood, H. G., R. W. Kellermeyer, R. Stjernholm, and S. H. G. Allen: Metabolism of methylmalonyl-CoA and the role of biotin and B12 coenzymes. Ann. N. Y. Acad. Sci. 112, 661 (1964).Google Scholar
  106. 106.
    Erfle, J. D., J. M. Clark, Jr., and B. Connor Johnson: Direct hydrogen transfer in the conversion of methylmalonyl-CoA to succinyl-CoA. Ann. N. Y. Acad. Sci. 112, 684 (1964).Google Scholar
  107. 107.
    Kung, H. F., S. Cederbaum, L. Tsai, and T. C. Stadtman: Nicotinic acid metabolism. V. A cobinamide coenzyme dependent conversion of α-methyleneglutarate to dimethylmalonate. Proc. Natl. Acad. Sci. U.S. 65, 978 (1970).Google Scholar
  108. 108.
    Kung, H. F., and T. C. Stadtman: Nicotinic acid metabolism. VT. Purification of α-methylene-glutarate mutase (B12-dependent) and methylitaconate isomerase. J. Biol. Chem. 246, 3378 (1971).Google Scholar
  109. 109.
    Kung, H. F., and L. Tsai: Nicotinic acid metabolism. VII. Mechanism of action of clostridial α-methylene glutarate mutase (Bn-dependent) and methylitaconate isomerase. J. Biol. Chem. 246, 6436 (1971).Google Scholar
  110. 110.
    Schrauzer, G. N., and R. J. Holland: Hydridocobaloximes. J. Am. Chem. Soc. 93, 1505 (1971).Google Scholar
  111. 111.
    Whitlock, H. W.: Mechanistic possibilities for some coenzyme B12 catalyzed reactions. Ann. N.Y. Acad. Sci. 112, 721 (1964).Google Scholar
  112. 112.
    Lowe, J. N., and L. L. Ingraham: A model of the methylmalonyl isomerase reaction. J. Am. Chem. Soc. 93, 3801 (1971).Google Scholar
  113. 113.
    Tsai, L., and T. C. Stadtman: Anaerobic degradation of lysine. IV. Cobamide coenzyme dependent migration of an amino group from carbon 6 of β-lysine to carbon 5, etc. Arch. Biochem. Biophys. 125, 210 (1968).Google Scholar
  114. 114.
    Dekker, E. E., and H. A. Barker: Identification and cobamide coenzyme dependent formation of 3,5-diaminohexanoic acid. An intermediate in lysine fermentation. J. Biol. Chem. 243, 3232 (1968).Google Scholar
  115. 115.
    Stadtman, T. C., and L. Tsai: A cobamide coenzyme dependent migration of the ε-amino group of D-lysine. Biochem. Biophys. Res. Comm. 28, 920 (1967).Google Scholar
  116. 116.
    Dyer, J. K., and R. N. Costilow: 2,4-Diaminovaleric acid: Intermediate in the anerobic oxidation of ornithine by Clostridium sticklandii. J. Bacteriol. 101, 77 (1970).Google Scholar
  117. 117.
    Morley, C. G. D., and T. C. Stadtman: Studies on the fermentation of D-β-lysine. Purification and properties of an ATP regulated B12 coenzyme dependent D-β-lysine mutase complex from Clostridium sticklandii. Biochemistry 9, 4890 (1970).Google Scholar
  118. 118.
    Stadtman, T. C.: Vitamin B12. Science 171, 859 (1971).Google Scholar
  119. 119.
    Stadtman, T. C., and P. Renz: Anaerobic degradation of lysine. V. Some properties of the cobamide coenzyme dependent β-lysine mutase of Clostridium sticklandii. Arch. Biochem. Biophys. 125, 226 (1968).Google Scholar
  120. 120.
    Retey, J., F. Kunz, T. C. Stadtman und D. Arigoni: Zürn Mechanismus der β-Lysin-Mutase-Reaktion. Experientia 25, 801 (1969).Google Scholar
  121. 121.
    Stadtman, T. C.: Methane Fermentation. Ann. Rev. Microbiol. 21, 121 (1967).Google Scholar
  122. 122.
    Mcbride, B. C., and R. S. Wolfe: A new coenzyme of methyl transfer: Coenzyme M. Biochemistry 10, 2317 (1971).Google Scholar
  123. 123.
    Mcbride, B. C., J. M. Wood, J. W. Sibert, and G. N. Schrauzer: Methylcobalt derivatives of vitamin B12 model compounds as substrates in enzymatic methane formation. J. Am. Chem. Soc. 90, 5276 (1968).Google Scholar
  124. 124.
    Sibert, J. W., and G. N. Schrauzer: Enzymatic and nonenzymatic demethylation of methylcobalamin and of abiogenic cobaloxime model substrates. Methane biosynthesis by Methanobacillus omelianskii. J. Am. Chem. Soc. 92, 1421 (1970).Google Scholar
  125. 125.
    Schrauzer, G. N., J. A. Seck, and T. M. Beckham: Reductive Co-C bond cleavage of alkylcorrins and of vitamin B12 model compounds by alkaline CO, S2O4 and stannite. Bioinorganic Chemistry 2, 211 (1973).Google Scholar
  126. 126.
    Roberton, A. M., and R. S. Wolfe: ATP requirement for methanogenesis in cell extracts of Methanobacterium strain M. o. H. Biochim. Biophys. Acta 192, 420 (1969).Google Scholar
  127. 127.
    Wood, J. M., and R. S. Wolfe: Alkylation of an enzyme in the methane-forming system of Methanobacillus omelianskii. Biochem. Biophys. Res. Comm. 22, 119 (1966).Google Scholar
  128. 128.
    Barker, H. A., and M. D. Kamen: Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. Natl. Acad. Sci. U.S. 31, 219 (1945).Google Scholar
  129. 129.
    Lentz, K., and H. G. Wood: Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J. Bacteriol. 69, 645 (1955).Google Scholar
  130. 130.
    Poston, J. M., K. Kuratomi, and E. R. Stadtman: Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. Ann. N. Y. Acad. Sci. 112, 804 (1964).Google Scholar
  131. 131.
    Ghambeer, R. K., H. G. Wood, M. Schulman, and L. Ljungdahl: Total synthesis of acetate from CO2. III. Inhibition by alkylhalides of the synthesis from CO2, methyltetrahydrofolate and methyl-B12 by Clostridium thermoaceticum. Arch. Biochem. Biophys. 143, 471 (1970), and previous papers cited therein.Google Scholar
  132. 132.
    Schrauzer, G. N., and J. W. Sibert: Acetate synthesis from carbon dioxide and methylcorrinoids. Simulation of the microbial carbon dioxide fixation reaction in a model system. J. Am. Chem. Soc. 92, 3509 (1970).Google Scholar
  133. 133.
    Parker, D. J., H. G. Wood, R. K. Ghambeer, and L. G. Ljungdahl: Total synthesis of acetate from carbon dioxide. Retention of deuterium during carboxylation of trideuteriomethyltetrahydrofolate or trideuteriomethylcobalamin. Biochemistry 11, 3074 (1972).Google Scholar
  134. 134.
    Ljungdahl, L., and H. G. Wood: Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann. Rev. Microbiol. 23, 515 (1970).Google Scholar
  135. 135.
    Mcbride, B. C., and R. S. Wolfe: Biosynthesis of dimethylarsine by Methanobacterium. Biochemistry 10, 4312 (1971).Google Scholar
  136. 136.
    Wood, J. M., F. S. Kennedy, and C. G. Rosen: Synthesis of methylmercury compounds by extracts of a methanogenic bacterium. Nature (London) 220, 173 (1968).Google Scholar
  137. 137.
    Hill, H. A. O., J. M. Pratt, S. Ridsdale, F. R. Williams, and J. R. P. Williams: Kinetics of substitution of coordinated carbanions in Co(III) corrinoids. Chem. Commun. 1970, 341.Google Scholar
  138. 138.
    Schrauzer, G. N., J. H. Weber, T. M. Beckham, and R. K. Y. Ho: Alkyl group transfer from cobalt to mercury: The reaction of alkylcobalamins, alkylcobaloximes and of related compounds with mercuric acetate. Tetrahedron Letters 1971, 275.Google Scholar
  139. 139.
    Schrauzer, G. N., und G. Kratel: Organometallderivate des Bisdimethylglyoximatokobalts. Chem. Ber. 102, 2392 (1969).Google Scholar
  140. 140.
    Schrauzer, G. N., and E. M. Rubin: Formation of Methylcobalamin from dimethylmercury and vitamin B12s. Unpublished results, 1972.Google Scholar
  141. 141.
    Buchanan, J. M, H. L. Elford, R. E. Loughlin, B. M. Mcdougall, and S. Rosenthal: The role of vitamin B12 in methyl transfer to homocysteine. Ann. N. Y. Acad. Sci. 112, 756 (1964).Google Scholar
  142. 142.
    Guest, J. R., S. Friedman, M. J. Dilworth, and D. D. Woods: Methylcobalamin as a source of the methyl group of methionine. Ann. N. Y. Acad. Sci. 112, 774 (1964).Google Scholar
  143. 143.
    Dickerman, H. W., B. G. Redfield, J. G. Bieri, and H. Weissbach: Studies on the role of vitamin B12 for the synthesis of methionine in liver. Ann. N. Y. Acad. Sci. 112, 791 (1964).Google Scholar
  144. 144.
    Larrabee, A. R., S. Rosenthal, R. E. Cathou, and J. M. Buchanan: A methylated derivative of tetrahydrofolate as an intermediate of methionine biosynthesis. J. Am. chem. Soc. 83, 4094 (1961).Google Scholar
  145. 145.
    Kerwar, S. S., J. H. Mangum, K. G. Scrimgeour, and F. M. Huennekens: Function of methylcobalamin in methionine synthesis. Biochem. Biophys. Res. Comm. 15, 377 (1964).Google Scholar
  146. 146.
    Taylor, R. T., and H. Weissbach: N5-Methyltetrahydrofolate-homocysteine trans-methylase. J. Biol. Chem. 242, 1502 (1967).Google Scholar
  147. 147.
    Blakley, R. L.: The biochemistry of folic acid and related pteridines. Amsterdam: North Holland Publishing Co. 1969. Chapter 9, 332.Google Scholar
  148. 148.
    Weissbach, H., and R. T. Taylor: Roles of vitamin B12 and folic acid in methionine synthesis. Vitamins and Hormones 28, 415 (1970).Google Scholar
  149. 149.
    Stavrianopoulos, J., und L. Jaenicke: Reaktionsschritte der Methioninsynthese bei E. coli. Eur. J. Biochem. 3, 95 (1967).Google Scholar
  150. 150.
    Taylor, R. T., and H. Weissbach: Escherichia Coli B N5-methyltetrahydrofolate-homocysteine methyltransferase. Sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate. Arch. Biochem. Biophys. 129, 728 (1969).Google Scholar
  151. 151.
    ____ Escherichia Coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: Activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer. Arch. Biochem. Biophys. 129, 745 (1969).Google Scholar
  152. 152.
    Schrauzer, G. N., and R. J. Windgassen: On cobaloximes with cobalt-sulfur bonds and some model studies related to cobamide dependent methyl group transfer reactions. J. Am. Chem. Soc. 89, 3607 (1967).Google Scholar
  153. 153.
    Bied-Charreton, C., et A. Gaudemer: Acoylation de complexes du cobalt(I) par les sels d’ammonium quaternaires. Compt. Rend. Sc. Paris 272, 1241 (1971).Google Scholar
  154. 154.
    Taylor, R. T.: Methylcobalamin as a substrate at a separate site on Escherichia Coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase. Arch. Biochem. Biophys. 144, 352 (1971).Google Scholar
  155. 155.
    Taylor, R. T., and H. Weissbach: Escherichia Coli B N5-methyltetrahydrofolate-homocysteine vitamin B transmethylase: Formation and photolability of a methylcobalamin enzyme. Arch. Biochem. Biophys. 123, 109 (1968).Google Scholar
  156. 156.
    Pailes, W. H., and H. P. C. Hogenkamp: The photolability of Co-alkylcobinamides. Biochemistry 7, 4160 (1968).Google Scholar
  157. 157.
    Schrauzer, G. N., and R. J. Windgassen: Synthesis of methyl groups catalysed by vitamin B12r in vitro. Nature (London) 214, 492 (1967).Google Scholar
  158. 158.
    Rüdiger, H., and L. Jaenicke: Methionine synthetase: Existence and interconversion of two enzyme species. Europ. J. Biochem. 16, 92 (1970).Google Scholar
  159. 159.
    ____ On the role of S-adenosylmethionine in the vitamin dependent methionine synthesis. Europ. J. Biochem. 10, 557 (1969).Google Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • G. N. Schrauzer
    • 1
  1. 1.La JollaUSA

Personalised recommendations