Advertisement

Abstract

The purpose of this review is to summarize the important developments in the chemistry of the penicillin molecule which have been reported in the scientific literature during the approximate period 1964 through 1972. The penicillins were intensively studied from a chemical point of view during the 1940’s and this work is discussed in detail in the penicillin monograph (36). The isolation of 6-aminopenicillanic acid in 1959 (16) led to the preparation of large numbers of penicillin derivatives in which the side chain at the 6-position of the penicillanic acid nucleus was modified. These efforts, which have been successful in introducing a number of important changes in the biological properties of the penicillin molecule, have been reviewed by PRICE (144) and others (55, 175, 72, 145, 2, 91). This aspect of penicillin chemistry will be dealt with only briefly in this review, and then only with reference to the chemistry involved. Recently, and particularly during the last four years (1969 through 1972), there have been increasing numbers of reports in which the chemistry of the penicillanic acid nucleus itself has been investigated, and it is principally to these studies that this review will address itself (see also 81, 129, 130, and 66).

Keywords

Tetrahedron Letter Deuterium Incorporation Penicillanic Acid Thiazolidine Ring Penicillin Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, J., T. Watanabe, T. Take, K. Fujimoto, T. Fujii, K. Takemura, K. Nishiie, S. Satoh, T. Koide, and Y. Hotta: Process for the Production of Isoxazolyl Penicillins. United States Patent 3 668 200 (June 6, 1972).Google Scholar
  2. 2.
    Abraham, E. P.: Penicillins and Cephalosporins — Their Chemistry in Relation to Biological Activity. In Topics in Pharmaceutical Sciences. Vol. 1, D. Perlman, Ed., p. 1–31. New York: Interscience Publishers. 1968.Google Scholar
  3. 3.
    Ager, I., D. H. R. Barton, G. Lucente, and P. G. Sammes: The Reaction of Penicillin Sulphoxides with Vinyl Ethers. Chem. Commun. 1972, 601.Google Scholar
  4. 4.
    Archer, R. A., R. D. G. Cooper, P. V. Demarco, and L. F. Johnson: Structural Studies on Penicillin Derivatives: 13C Nuclear Magnetic Resonance Studies of Some Penicillins and Related Sulphoxides. Chem. Commun. 1970, 1291.Google Scholar
  5. 5.
    Archer, R. A., and P. V. Demarco: Photochemical Preparation and Conformational Analysis by Proton Magnetic Resonance of Penicillin (R)-Sulfoxides. J. Amer. Chem. Soc. 91, 1530(1969).CrossRefGoogle Scholar
  6. 6.
    Bamberg, P., B. Ekström, and B. Sjöberg: Semisynthetic Penicillins. VII. The Use of Phenacyl 6-Aminopenicillanates in Penicillin Synthesis. Acta Chem. Scand. 21, 2210 (1967).CrossRefGoogle Scholar
  7. 7.
    Semisynthetic Penicillins. VIII. The Use of Tributyltin 6-Aminopenicillanate in Penicillin Synthesis. Acta Chem. Scand. 22, 367 (1968).CrossRefGoogle Scholar
  8. 8.
    Barton, D. H. R., F. Comer, D. G. T. Greig, G. Lucente, P. G. Sammes, and W. G. E. Underwood: Rearrangements of Penicillin Sulphoxides. Chem. Commun. 1970, 1059.Google Scholar
  9. 9.
    Barton, D. H. R., F. Comer, D. G. T. Greig, P. G. Sammes, C. M. Cooper, G. Hewitt, and W. G. E. Underwood: Transformations of Penicillin. Part I. Preparation and Rearrangements of 6β-Phenylacetamidopenicillanic Sulphoxides. J. Chem. Soc. (London) (C) 1971, 3540.Google Scholar
  10. 10.
    Barton, D. H. R., F. Comer, and P. G. Sammes: Stereoisomerism of Penicillin Sulfoxides. J. Amer. Chem. Soc. 91, 1529 (1969).CrossRefGoogle Scholar
  11. 11.
    Barton, D. H. R., M. Girijavallabhan, and P. G. Sammes: Transformations of Penicillin. Part II. N,N’-Di-isopropylhydrazine, a New Reagent for Protection of Carboxylic Acids. J. Chem. Soc. (London), Perkin I 1972, 929.Google Scholar
  12. 12.
    Barton, D. H. R., D. G. T. Greig, G. Lucente, P. G. Sammes, M. V. Taylor, C. M. Cooper, G. Hewitt, and W. G. E. Underwood: On the Trapping of Sulphenic Acids from Penicillin Sulphoxides. Chem. Commun. 1970, 1683.Google Scholar
  13. 13.
    Barton, D. H. R., D. G. T. Greig, P. G. Sammes, and M. V. Taylor: Isolation of the β-Lactam Function of Penicillins. Chem. Commun. 1971, 845Google Scholar
  14. 14.
    Barton, D. H. R., and P. G. Sammes: Chemical Relationships between Cephalosporins and Penicillins. Proc. Roy. Soc. (London) 179, 345 (1971).CrossRefGoogle Scholar
  15. 15.
    Barton, D. H. R., P. G. Sammes, M. V. Taylor, C. M. Cooper, G. Hewitt, B. E. Looker, and W. G. E. Underwood: 4-Alkyl-thio-and-dithio-azetidinones from Penicillins. Chem. Commun. 1971, 1137.Google Scholar
  16. 16.
    Batchelor, F. R., F. P. Doyle, J. H. C. Nayler, and G. N. Rolinson: Synthesis of Penicillin: 6-Aminopenicillanic Acid in Penicillin Fermentations. Nature 183, 257 (1959).CrossRefGoogle Scholar
  17. 17.
    Batchelor, F. R., D. Gazzard, and J. H. C. Nayler: Action of Carbon Dioxide on 6-Aminopenicillanic Acid. Nature 191, 910 (1961).CrossRefGoogle Scholar
  18. 18.
    Bell, M. R., J. A. Carlson, and R. Oesterlin: Degradation of Penicillin G Methyl Ester and Penillonic Acid Methyl Ester to D-5,5-Dimethyl-Δ 2-thiazoline-4-carboxylic Acid Methyl Ester. J. Amer. Chem. Soc. 92, 2177 (1970).CrossRefGoogle Scholar
  19. 19.
    ___ Degradation of Penicillin G Methyl Ester with Trifluoroacetic Acid. J. Organ. Chem. (USA) 37, 2733 (1972).Google Scholar
  20. 20.
    Bell, M. R., S. D. Clemans, and R. Oesterlin: Transformations of 6-Phenylacetamido-and 6-Tritylaminopenicillanyl p-Toluenesulfonate and p-Nitrobenzenesulfonate. J. Med. Chem. 13, 389 (1970).CrossRefGoogle Scholar
  21. 21.
    Bell, M. R., and R. Oesterlin: Novel Penicillin Transformation Products. Tetrahedron Letters 1968, 4975.Google Scholar
  22. 22.
    Böhme, E. H. W., H. E. Applegate, J. B. Ewing, P. T. Funke, M. S. Puar, and J. E. Dolfini: 6-Alkyl Penicillins and 7-Alkyl Cephalosporins. J. Organ. Chem. (USA) 38, 230 (1973).Google Scholar
  23. 23.
    Böhme, E. H. W., H. E. Applegate, B. Toeplitz, J. E. Dolfini, and J. Z. Gougoutas: 6-Methyl Penicillins and 7-Methyl Cephalosporins. J. Amer. Chem. Soc. 93, 4324 (1971).CrossRefGoogle Scholar
  24. 24.
    Brain, E. G., A. J. Eglington, J. H. C. Nayler, M. J. Pearson, and R. Southgate: Oxidation of Some 1,2-Seco-penicillins. Chem. Commun. 1972, 229.Google Scholar
  25. 25.
    Brown, L. D., W. A. Zygmunt, and H. E. Stavely: Some Active Derivatives of Penicillin. Appl. Microbiol. 17, 339 (1969).Google Scholar
  26. 26.
    Brunwin, D. M., and G. Lowe: Conversion of Benzyl 6-Diazopenicillanate into 6-Phenylacetylhydrazono-and 6β-Phenylacetylhydrazinopenicillanic Acid. Chem. Commun. 1972, 192.Google Scholar
  27. 27.
    Bundgaard, H.: Imidazole-catalyzed Isomerization of Penicillins into Penicillenic Acids. Tetrahedron Letters 1971, 4613.Google Scholar
  28. 28.
    _ Kinetic Demonstration of a Metastable Intermediate in Isomerization of Penicillin to Penicillenic Acid in Aqueous Solution. J. Pharm. Sci. 60, 1273 (1971).CrossRefGoogle Scholar
  29. 29.
    Butcher, B. T., M. K. Stanfield, G. T. Stewart, and R. Zemelman: Antibiotic Polymers: α-Aminobenzylpenicillin (Ampicillin). Mol. Cryst. Liq. Cryst. 12, 321 (1971).CrossRefGoogle Scholar
  30. 30.
    Butler, T. C., K. H. Dudley, and D. Johnson: Chemical Studies of Potential Relevance to Penicillin Hypersensitivity: Kinetics of Formation and Disappearance of Benzylpenicillenic Acid and its Derivatives in Solutions of Benzylpenicillin. J. Pharmacol. Exp. Therapeut. 181, 201 (1972).Google Scholar
  31. 31.
    Cama, L. D., W. J. Leanza, T. R. Beattie, and B. G. Christensen: Substituted Penicillin and Cephalosporin Derivatives. I. Stereospecific Introduction of the C-6(7) Methoxy Group. J. Amer. Chem. Soc. 94, 1408 (1972).CrossRefGoogle Scholar
  32. 32.
    Chauvette, R. R., H. B. Hayes, G. L. Huff, and P. A. Pennington: Preparation of 7-Aminocephalosporanic Acid and 6-Aminopenicillanic Acid. J. Antibiotics 25, 248 (1972).Google Scholar
  33. 33.
    Chauvette, R. R., P. A. Pennington, C. W. Ryan, R. D. G. Cooper, F. L. José, I. G. Wright, E. M. Van Heyningen, and G. W. Huffman: Chemistry of Cephalosporin Antibiotics. XXI. Conversion of Penicillins to Cephalexin. J. Organ. Chem. (USA) 36, 1259(1971).Google Scholar
  34. 34.
    Chow, A. W., N. M. Hall, and J. R. E. Hoover: Penicillin Sulfoxides and Sulfones. J. Organ. Chem. (USA) 27, 1381 (1962).Google Scholar
  35. 35.
    Cignarella, G., G. Pifferi, and E. Testa: 6-Chloro-and 6-Bromopenicillanic Acids. J. Organ. Chem. (USA) 27, 2668 (1962).Google Scholar
  36. 36.
    Clarke, H. T., J. R. Johnson, and R. Robinson, Eds.: The Chemistry of Penicillin. Princeton, New Jersey: Princeton University Press. 1949.Google Scholar
  37. 37.
    Clayton, J. P.: The Chemistry of Penicillanic Acids. Part I. 6,6-Dibromo-and 6,6-Diiodo-derivatives. J. Chem. Soc. (London) (C) 1969, 2123.Google Scholar
  38. 38.
    Clayton, J. P., J. H. C. Nayler, R. Southgate, and E. R. Stove: Penicillanic Acids: Requirements for Epimerization at C-6. Chem. Commun. 1969, 129.Google Scholar
  39. 39.
    Clayton, J. P., J. H. C. Nayler, R. Southgate, and P. Tolliday: Novel Alkylation of Penicillanates. Chem. Commun. 1971, 590.Google Scholar
  40. 40.
    Clayton, J. P., R. Southgate, B. G. Ramsay, and R. J. Stoodley: Studies Related to Penicillins. Part IV. The Rearrangement of Penicillanic Acid Derivatives to 1,4-Thiazepines. J. Chem. Soc. (London) (C) 1970, 2089.Google Scholar
  41. 41.
    Cooper, R. D. G.: Structural Studies on Penicillin Derivatives. V. Penicillin Sulfoxide-Sulfenic Acid Equilibrium. J. Amer. Chem. Soc. 92, 5010 (1970).CrossRefGoogle Scholar
  42. 42.
    _ Rearrangements of Cephalosporins and Penicillins. In Cephalosporins and Penicillins, E. H. Flynn, Ed., p. 183–254. New York: Academic Press. 1972.Google Scholar
  43. 43.
    _ Structural Studies on Penicillin Derivatives. VIII. A Possible Model Biosynthetic Route to Penams and Cephems. J. Amer. Chem. Soc. 94, 1018 (1972).CrossRefGoogle Scholar
  44. 44.
    Cooper, R. D. G., P. V. Demarco, J. C. Cheng, and N. D. Jones: Structural Studies on Penicillin Derivatives. I. The Configuration of Phenoxymethyl Penicillin Sulfoxide. J. Amer. Chem. Soc. 91, 1408 (1969).CrossRefGoogle Scholar
  45. 45.
    Cooper, R. D. G., P. V. Demarco, and D. O. Spry: Structural Studies on Penicillin Derivatives. II. The Configuration of Phthalimidopenicillin and Epiphthalimido-penicillin Sulfoxides. J. Amer. Chem. Soc. 91, 1528 (1969).CrossRefGoogle Scholar
  46. 46.
    Cooper, R. D. G., L. D. Hatfield, and D. O. Spry: Chemical Interconversion of the β-Lactam Antibiotics. Accounts Chem. Res. 6, 32 (1973).CrossRefGoogle Scholar
  47. 47.
    Cooper, R. D. G., and F. L. José: Structural Studies on Penicillin Derivatives. IV. A Novel Rearrangement of Penicillin V Sulfoxide. J. Amer. Chem. Soc. 92, 2575 (1970).CrossRefGoogle Scholar
  48. 48.
    __ Structural Studies on Penicillin Derivatives. IX. Synthesis of Thiazolidine-Azetidinones. J. Amer. Chem. Soc. 94, 1021 (1972).CrossRefGoogle Scholar
  49. 49.
    Coronelli, C., G. C. Lancini, R. Pallanza, G. Tamoni, and P. Sensi: Idrossilamidi della Penicillina V. Il Farmaco, Ed. Sci., 21, 450 (1966).Google Scholar
  50. 50.
    Cressman, W. A., E. T. Sugita, J. T. Doluisio, and P. J. Niebergall: Cupric Ion-Catalyzed Hydrolysis of Penicillins: Mechanism and Site of Complexation. J. Pharm. Sci. 58, 1471 (1969).CrossRefGoogle Scholar
  51. 51.
    Daehne, W. v., E. Frederiksen, E. Gundersen, F. Lund, P. Mørch, H. J. Petersen, K. Roholt, L. Tybring, and W. O. Godtfredsen: Acyloxymethyl Esters of Ampicillin. J. Med. Chem. 13, 607 (1970).CrossRefGoogle Scholar
  52. 52.
    Daicoviciu, C., and D. Postescu: Penicillin Diazo Ketones. Rev. Chim. (Bucharest) 18, 179 (1967); Chem. Abstr. 67, 8538 (1967).Google Scholar
  53. 53.
    Dane, E., and T. Dockner: Synthese von 6-[D-α-Amino-phenylacetylamino]-peni-cillansäure unter Verwendung von β-Dicarbonylverbindungen als Aminoschutzgrup-pen. Chem. Ber. 98, 789 (1965).CrossRefGoogle Scholar
  54. 54.
    Dennen, D. W.: Degradation Kinetics of 6-Aminopenicillanic Acid. J. Pharm. Sci. 56, 1273 (1967).CrossRefGoogle Scholar
  55. 55.
    Doyle, F. P., and J. H. C. Nayler: Penicillins and Related Structures. Advances in Drug Research 1, 1 (1964).Google Scholar
  56. 56.
    Durbin, A. K., and H. N. Rydon: The Equilibrium between the Antibiotics Hetacillin and Ampicillin in Solution. Chem. Commun. 1970, 1249.Google Scholar
  57. 57.
    Dürckheimer, W., and M. Schorr: N-Alkylderivate der 6-Aminopenicillansäure. Liebigs Ann. Chem. 702, 163 (1967).CrossRefGoogle Scholar
  58. 58.
    Ekström, B., A. Goméz-Revilla, R. Mollberg, H. Thelin, and B. Sjöberg: Semisynthetic Penicillins. III. Aminopenicillins via Azidopenicillins. Acta Chem. Scand. 19, 281 (1965).CrossRefGoogle Scholar
  59. 59.
    Ekström, B., and B. Sjöberg: Semisynthetic Penicillins. VI. The Use of the o-Nitro-phenylsulphenyl Protecting Group in the Preparation of Aminopenicillins. Acta Chem. Scand. 19, 1245 (1965).CrossRefGoogle Scholar
  60. 60.
    Essery, J. M., K. Dadabo, W. J. Gottstein, A. Hallstrand, and L. C. Cheney: Penicillin Sulfoxides. J. Organ. Chem. (USA) 30, 4388 (1965).Google Scholar
  61. 61.
    Evrard, E., M. Claesen, and H. Vanderhaeghe: Gas Chromatography of Penicillin and Penicillanic Acid Esters. Nature 201, 1124 (1964).CrossRefGoogle Scholar
  62. 62.
    Fechtig, B., H. Bickel, and K. Heusler: Neue β-Lactamsysteme aus Penicillinen. Helv. Chim. Acta 55, 417 (1972).CrossRefGoogle Scholar
  63. 63.
    Finholt, P., G. Jürgensen, and H. Kristiansen: Catalytic Effect of Buffers on Degradation of Penicillin G in Aqueous Solution. J. Pharm. Sci. 54, 387 (1965).CrossRefGoogle Scholar
  64. 64.
    Firestone, R. A., N. Schelechow, and B. G. Christensen: Penicillin 6,6′-Dimer. Chem. Commun. 1972, 1106.Google Scholar
  65. 65.
    Firestone, R. A., N. Schelechow, D. B. R. Johnston, and B. G. Christensen: Substituted Penicillins and Cephalosporins II. C-6(7)-Alkyl Derivatives. Tetrahedron Letters 1972, 375.Google Scholar
  66. 66.
    Flynn, E. H., Ed.: Cephalosporins and Penicillins. New York: Academic Press. 1972.Google Scholar
  67. 67.
    Fosker, G. R., K. D. Hardy, J. H. C. Nayler, P. Seggery, and E. R. Stove: Derivatives of 6-Aminopenicillanic Acid. Part X. A Non-enzymatic Conversion of Benzyl-penicillin into Semi-synthetic Penicillins. J. Chem. Soc. (London) (C) 1971, 1917.Google Scholar
  68. 68.
    Glombitza, K.-W.: Acylierung der 6-Amino-penicillansäure in wasserfreiem Medium. Liebigs Ann. Chem. 673, 166 (1964).CrossRefGoogle Scholar
  69. 69.
    Glombitza, K.-W., and D. Pallenbach: Die jodometrische Penicillinbestimmung. Arch. Pharmaz. 302, 695 (1969).CrossRefGoogle Scholar
  70. 70.
    __ Die jodometrische Penicillinbestimmung. Arch. Pharmaz. 302, 985 (1969).CrossRefGoogle Scholar
  71. 71.
    Godtfredsen, W. O., W. von Daehne, and S. Vangedal: Photochemical Transformations of 6-Aminopenicillanic Acid and Phenoxymethylpenicillin. Experientia 23, 280 (1967).CrossRefGoogle Scholar
  72. 72.
    Gorman, M., and C. W. Ryan: Structure-Activity Relationships of β-Lactam Antibiotics. In Cephalosporins and Penicillins, E. H. Flynn, Ed., p. 532–582. New York: Academic Press. 1972.Google Scholar
  73. 73.
    Gottstein, W. J., R. B. Babel, L. B. Crast, J. M. Essery, R. R. Fraser, J. C. Godfrey, C. T. Holdrege, W. F. Minor, M. E. Neubert, C. A. Panetta, and L. C. Cheney: Derivatives of 6-Aminopenicillanic Acid. VI. Synthesis of Some Derivatives of 6-Aminothiopenicillanic Acid. J. Med. Chem. 8, 794 (1965).CrossRefGoogle Scholar
  74. 74.
    Gottstein, W. J., G. E. Bocian, L. B. Crast, K. Dadabo, J. M. Essery, J. C. Godfrey, and L. C. Cheney: Derivatives of 6-Aminopenicillanic Acid. VII. Synthesis of Penicillin Aldehydes by a Novel Method. J. Organ. Chem. (USA) 31, 1922 (1966).Google Scholar
  75. 75.
    Gottstein, W. J., P. F. Misco, and L. C. Cheney: Conversion of Hetacillin into Cephalexin. J. Organ. Chem. (USA) 37, 2765 (1972).Google Scholar
  76. 76.
    Grant, N. H., and H. E. Alburn: Peptide Synthesis from N-Carboxy-α-amino Acid Anhydrides in Water. Aminoacylpenicillanic Acids. J. Amer. Chem. Soc. 86, 3870 (1964).CrossRefGoogle Scholar
  77. 77.
    Grant, N. H., D. E. Clark, and H. E. Alburn: Poly-6-aminopenicillanic Acid. J. Amer. Chem. Soc. 84, 876 (1962).CrossRefGoogle Scholar
  78. 78.
    Guddal, E., P. Mørch, and L. Tybring: Penicillin Oxides. Tetrahedron Letters 1962, 381.Google Scholar
  79. 79.
    Gutowski, G. E.: 6-Epi-penicillins and 7-Epi-cephalosporins. Tetrahedron Letters 1970, 1779.Google Scholar
  80. 80.
    Gutowski, G. E., B. J. Foster, C. J. Daniels, L. D. Hatfield, and J. W. Fisher: Novel 3-Hydroxy, 3-Methyl Cephalosporins from the Rearrangement of Penicillin Sulfoxides. Tetrahedron Letters 1971, 3433.Google Scholar
  81. 81.
    Hamilton-Miller, J. M. T.: Chemical Manipulations of the Penicillin Nucleus: A Review. Chemotherapia 12, 73 (1967).CrossRefGoogle Scholar
  82. 82.
    Hardcastle, Jr., G. A., D. A. Johnson, C. A. Panetta, A. I. Scott, and S. A. Sutherland: The Preparation and Structure of Hetacillin. J. Organ. Chem. (USA) 31, 897 (1966).Google Scholar
  83. 83.
    Harwood, A. J., P. J. Niebergall, E. T. Sugita, and R. L. Schnaare: Effect of Copper (II) — Glycine Chelates on Degradation of Penicillin in Mildly Acid Solution. J. Pharm. Sci. 61, 82 (1972).CrossRefGoogle Scholar
  84. 84.
    Hatfield, L. D., J. Fisher, F. L. José, and R. D. G. Cooper: Structural Studies on Penicillin Derivatives: Part VII. Rearrangement of Penicillin Sulfoxides with Trimethylphosphite — Acetic Anhydride. Tetrahedron Letters 1970, 4897.Google Scholar
  85. 85.
    Hauser, O., and H. P. Sigg: Desaminierung von 6-Aminopenicillansäure. Helv. Chim. Acta 50, 1327(1967).CrossRefGoogle Scholar
  86. 86.
    Heusler, K.: Advances in the Total Synthesis of β-Lactam Antibiotics. In Topics in Pharmaceutical Sciences, Vol. 1, D. Perlman, Ed., p. 33–51. New York: Interscience Publishers. 1968.Google Scholar
  87. 87.
    _ Structural Modifications of Penicillins. XXIII rd. International Congress of Pure and Applied Chemistry, Vol. 3, p. 87–109. London: Butterworths. 1971.Google Scholar
  88. 88.
    _ Die Umwandlung von Penicillinen in Cephalosporine. Helv. Chim. Acta 55, 388 (1972).CrossRefGoogle Scholar
  89. 89.
    _ Total Synthesis of Penicillins and Cephalosporins. In Cephalosporins and Penicillins. E. H. Flynn, Ed., p. 255–279. New York: Academic Press. 1972.Google Scholar
  90. 90.
    Ho, P. P. K., R. D. Towner, J. M. Indelicato, W. A. Spitzer, and G. A. Koppel: Biochemical and Microbiological Studies on 6-Substituted Penicillins. J. Antibiotics 25, 627 (1972).Google Scholar
  91. 91.
    Hoover, J. R. E., and R. J. Stedman: The β-Lactam Antibiotics. In Medicinal Chemistry, Third Edition, A. Burger, Ed., p. 371–408. New York: Wiley-Interscience. 1970.Google Scholar
  92. 92.
    Huber, F. M., R. R. Chauvette, and B. G. Jackson: Preparative Methods for 7-Aminocephalosporanic Acid and 6-Aminopenicillanic Acid. In Cephalosporins and Penicillins. E. H. Flynn, Ed., p. 27–73. New York: Academic Press. 1972.Google Scholar
  93. 93.
    Isaka, I., T. Kashiwagi, K. Nakano, N. Kawahara, A. Koda, Y. Numasaki, S. Kawahara, and M. Murakami: New Synthetic Procedure of Semisynthetic Penicillin. I. Studies on the Acyl Group Exchange of Natural Penicillin. Yakugaku Zasshi 92, 454 (1972).Google Scholar
  94. 94.
    Jackson, J. R., and R. J. Stoodley: A Novel Rearrangement of a Penicillanic Acid Derivative. Chem. Commun. 1970, 14.Google Scholar
  95. 95.
    __ Equilibration of Penicillanic Acid Derivatives. Chem. Commun. 1971, 647.Google Scholar
  96. 96.
    __ Studies Related to Penicillins. Part VII. The Structure of the Epimers Derived from 6β-Substituted Penicillanic Acids. J. Chem. Soc. (London), Perkin I, 1972, 895.Google Scholar
  97. 97.
    __ Studies Related to Penicillins. Part VIII. The Rearrangement of Penicillanic Acid Derivatives to 1,3-Thiazines. J. Chem. Soc. (London), Perkin I, 1972, 1063.Google Scholar
  98. 98.
    Jansen, A. B. A., and T. J. Russell: Some Novel Penicillin Derivatives. J. Chem. Soc. (London) 1965, 2127.Google Scholar
  99. 99.
    Johnson, D. A., and G. A. Hardcastle, Jr.: Reaction of 6-Aminopenicillanic Acid with Carbon Dioxide. J. Amer. Chem. Soc. 83, 3534 (1961).CrossRefGoogle Scholar
  100. 100.
    Johnson, D. A., and D. Mania: Epi-6-aminopenicillanic Acid and Epi-penicillin G. Tetrahedron Letters 1969, 267.Google Scholar
  101. 101.
    Johnson, D. A., D. Mania, C. A. Panetta, and H. H. Silvestri: Epi-hetacillin. Tetrahedron Letters 1968, 1903.Google Scholar
  102. 102.
    Johnson, D. A., and C. A. Panetta: Isomerization and Decomposition Products of Methicillin. J. Organ. Chem. (USA) 29, 1826 (1964).Google Scholar
  103. 103.
    Johnson, D. A., C. A. Panetta, and R. R. Smith: Nonenzymatic Conversion of Penicillins to 6-Aminopenicillanic Acid. J. Organ. Chem. (USA) 31, 2560 (1966).Google Scholar
  104. 104.
    Johnston, D. B. R., S. M. Schmitt, R. A. Firestone, and B. G. Christensen: Substituted Penicillins and Cephalosporins V. 6(7)-Substituted Alkyl Derivatives. Tetrahedron Letters 1972, 4917.Google Scholar
  105. 105.
    Kaiser, G. V., C. W. Ashbrook, and J. E. Baldwin: Stereospecific Alkylation of a Penicillin at C-6 Using a Nitrogen Ylide. Methyl-6-α-Allyl-6-β-N,N-dimethylamino-penicillanate. J. Amer. Chem. Soc. 93, 2342 (1971).CrossRefGoogle Scholar
  106. 106.
    Kaiser, G. V., and S. Kukolja: Modifications of the β-Lactam System. In Cephalosporins and Penicillins, E. H. Flynn, Ed., p. 74–133. New York: Academic Press. 1972.Google Scholar
  107. 107.
    Kinget, R. D., and M. A. Schwartz: Model Catalysts Which Simulate Penicillinase. III. Structure-Reactivity Relationship in Catalysis of Penicillin Hydrolysis by Morpholinomethyl Derivatives of Catechol and Pyrogallol. J. Pharm. Sci. 57, 1916 (1968).CrossRefGoogle Scholar
  108. 108.
    Kinget, R. D., and M. A. Schwartz: Model Catalysts Which Simulate Penicillinase. IV. Steric and Electronic Effects in the Catalysis of Hydrolysis of Penicillins and Cephalothin by Aminoalkylcatechols. J. Pharm. Sci. 58, 1102 (1969).CrossRefGoogle Scholar
  109. 109.
    Kleiner, E. M., E. B. Senyavina, and A. S. Khokhlov: Synthesis and Properties of 6-Benzyl-and 6-Phenoxyacetylaminopenicillan-3-acetic Acids (homopenicillins). Khim. Geterotsikl. Soedin. 1966, 702; Chem. Abstr. 66, 75945 (1967).Google Scholar
  110. 110.
    Koda, A., K. Takanobu, I. Isaka, T. Kashiwagi, K. Takahashi, S. Kawahara, and M. Murakami: Studies on the New Synthetic Procedure of Semisynthetic Penicillin. II. The Reaction of Iminoethers and Acid Chlorides. Yakugaku Zasshi 92, 459 (1972).Google Scholar
  111. 111.
    Koe, B. K.: 6-Aminopenicillanamide and Methyl 6-Aminopenicillanate. Nature 195, 1200 (1962).CrossRefGoogle Scholar
  112. 112.
    Kovacs, O. K. J., B. Ekström, and B. Sjöberg: Penicillin Transformations. I. Conversion of a Penicillin into a 7-Oxo-2,3,4,7-tetrahydro-l,4-thiazepine Structure. Tetrahedron Letters 1969, 1863.Google Scholar
  113. 113.
    Kuchinskas, E. J., and G. N. Levy: Comparative Stabilities of Ampicillin and Hetacillin in Aqueous Solution. J. Pharm. Sci. 61, 727 (1972).CrossRefGoogle Scholar
  114. 114.
    Kukolja, S.: Electrophilic Opening of the Thiazolidine Ring in Penicillins. J. Amer. Chem. Soc. 93, 6267 (1971).CrossRefGoogle Scholar
  115. 115.
    _ A Stereoselective Synthesis of 6-Phthalimido-5-epipenicillanates. J. Amer. Chem. Soc. 93, 6269 (1971).CrossRefGoogle Scholar
  116. 116.
    _ Synthesis of Disulfide Analogs of Penicillins. J. Amer. Chem. Soc. 94, 7590 (1972).CrossRefGoogle Scholar
  117. 117.
    Kukolja, S., R. D. G. Cooper, and R. B. Morin: Structural Studies on Penicillin Derivatives. Part III. Rearrangement and fragmentation of Penicillin V. Tetrahedron Letters 1969, 3381.Google Scholar
  118. 118.
    Kukolja, S., P. V. Demarco, N. D. Jones, M. O. Chaney, and J. W. Paschal: Configuration and Conformation of Disulfide Analogs of Penicillins. J. Amer. Chem. Soc. 94, 7592 (1972).CrossRefGoogle Scholar
  119. 119.
    Kukolja, S., and S. R. Lammert: Thiazabicycloheptenones. Synthesis of Bicyclic Thiazoline Azetidinone Derivatives. Croat. Chem. Acta 44, 299 (1972).Google Scholar
  120. 120.
    __ Reactions of Penicillin Esters and Related Compounds with 1-Chlorobenzotriazole. Croat. Chem. Acta 44, 423 (1972).Google Scholar
  121. 121.
    __ Reversible Interconversions of Penam and Cepham Systems via a Common Thiiranium Ion Intermediate. J. Amer. Chem. Soc. 94, 7169 (1972).CrossRefGoogle Scholar
  122. 122.
    Leigh, T.: N-Alkyl Derivatives of Penicillin V. J. Chem. Soc. (London) 1965, 3616.Google Scholar
  123. 123.
    Levine, B. B.: N(α-D-Penicilloyl) Amines as Univalent Hapten Inhibitors of Antibody-Dependent Allergic Reactions to Penicillin. J. Med. Pharm. Chem. 5, 1025 (1962).CrossRefGoogle Scholar
  124. 124.
    Lindsay, R. E., and S. L. Hem: Effect of Ionic Strength on Chemical Stability of Potassium Penicillin G. J. Pharm. Sci. 61, 202 (1972).CrossRefGoogle Scholar
  125. 125.
    Lo, Y. S., and J. C. Sheehan: Synthesis of Benzyl 6-Oxopenicillanate and Derivatives. I. J. Amer. Chem. Soc. 94, 8253 (1972).CrossRefGoogle Scholar
  126. 126.
    Long, A. A. W., J. H. C. Nayler, H. Smith, T. Taylor, and N. Ward: Derivatives of 6-Aminopenicillanic Acid. Part XI. α-Amino-p-hydroxybenzylpenicillin. J. Chem. Soc. (London) (C) 1971, 1920.Google Scholar
  127. 127.
    Longridge, J. L., and D. Timms: Penicillenic Acid, the Mechanism of the Acid and Base Catalysed Hydrolysis Reactions. J. Chem. Soc. (London) (B) 1971, 852.Google Scholar
  128. 128.
    Lund, F., and L. Tybring: 6β-Amidinopenicillanic Acids — a New Group of Antibiotics. Nature (New Biology) 236, 135 (1972).Google Scholar
  129. 129.
    Manhas, M. S., and A. K. Bose: Synthesis of Penicillin, Cephalosporin C and Analogs. New York: Dekker. 1969.Google Scholar
  130. 130.
    __ beta-Lactams: Natural and Synthetic. Part 1. New York: Wiley-Interscience. 1971.Google Scholar
  131. 131.
    Mcmillan, I., and R. J. Stoodley: A Novel Rearrangement of Methyl 6-Chloro-penicillanate. Tetrahedron Letters 1966, 1205.Google Scholar
  132. 132.
    __ Studies Related to Penicillins. Part I. 6-α-Chloropenicillanic Acid and its Reaction with Nucleophiles. J. Chem. Soc. (London) (C) 1968, 2533.Google Scholar
  133. 133.
    Micetich, R. G., R. Raap, J. Howard, and I. Pushkas: Antibacterial Activity of 6-(5-Membered heteroarylacetamido)penicillanic Acids. J. Med. Chem. 15, 333 (1972).CrossRefGoogle Scholar
  134. 134.
    Moll, F., and M. Hannig: Kondensierte Azetidinone — (2). Arch. Pharmaz. 303, 321 (1970).CrossRefGoogle Scholar
  135. 135.
    Moll, F., and P. Kastenmeier: Die chemische Acylierung der 6-Aminopenicillan-säure und 7-Aminocephalosporansäure. Pharmaz. Ztg. 116, 1345 (1971).Google Scholar
  136. 136.
    Morin, R. B., B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, and S. L. Andrews: Chemistry of Cephalosporin Antibiotics. III. Chemical Correlation of Penicillin and Cephalosporin Antibiotics. J. Amer. Chem. Soc. 85, 1896 (1963).CrossRefGoogle Scholar
  137. 137.
    ______ Chemistry of Cephalosporin Antibiotics. XV. Transformations of Penicillin Sulfoxide. A Synthesis of Cephalosporin Compounds. J. Amer. Chem. Soc. 91, 1401 (1969).CrossRefGoogle Scholar
  138. 138.
    Nayler, J. H. C., M. J. Pearson, and R. Southgate: Hydration of the Triple Bond in Some 4-(Alk-2-ynylthio)azetidin-2-ones. Chem. Commun. 1973, 57.Google Scholar
  139. 139.
    ___ Novel Conversion of Penicillins into Cephalosporins. Chem. Commun. 1973, 58.Google Scholar
  140. 140.
    Novak, L., and J. Weichet: Ein neues Verfahren der Partialsynthese der Penicilline. Experientia 21, 360 (1965).CrossRefGoogle Scholar
  141. 141.
    Numata, M., Y. Imashiro, I. Minamida, and M. Yamaoka: Novel Transformations of Penicillins into 2-Azetidinones with Diazo-and Azido-compounds and a Novel Synthesis of Desacetoxycephalosporin. Tetrahedron Letters 1972, 5097.Google Scholar
  142. 142.
    Pallenbach, D., and K.-W. Glombitza: Die jodometrische Penicillinbestimmung. Arch. Pharmaz. 302, 863 (1969).CrossRefGoogle Scholar
  143. 143.
    Perron, Y. G., L. B. Crast, J. M. Essery, R. R. Fraser, J. C. Godfrey, C. T. Holdrege, W. F. Minor, M. E. Neubert, R. A. Partyka, and L. C. Cheney: Derivatives of 6-Aminopenicillanic Acid V. Synthesis of 6-Aminopenicillanyl Alcohol and Certain Derivatives. J. Med. Chem. 7, 483 (1964).CrossRefGoogle Scholar
  144. 144.
    Price, K. E.: Structure-Activity Relationships of Semisynthetic Penicillins. Adv. Appl. Microbiol. 11, 17 (1969).CrossRefGoogle Scholar
  145. 145.
    Price, K. E., A. Gourevitch, and L. C. Cheney: Biological Properties of Semisynthetic Penicillins: Structure-Activity Relationships. Antimicrobial Agents and Chemotherapy 1966, p. 670–698. G. L. Hobby, Ed. Ann Arbor, Michigan: American Society for Microbiology. 1967.Google Scholar
  146. 146.
    Raap, R.: Synthesis and Antibacterial Activities of Penicillins from ( + )-and (-)-α-Amino-4-isothiazolylacetic Acids. J. Antibiotics 24, 695 (1971).Google Scholar
  147. 147.
    Raap, R., and R. G. Micetich: Penicillins and Cephalosporins from Isothiazolyl-acetic Acids. J. Med. Chem. 11, 70 (1968).CrossRefGoogle Scholar
  148. 148.
    Ramsay, B. G., and R. J. Stoodley: Studies Related to Penicillins. Part III. 6β-Phthalimidohomopenicillanic Acid. J. Chem. Soc. (London) (C) 1969, 1319.Google Scholar
  149. 149.
    __ Enlargement of the Thiazolidine Ring of Penicillanic Acid Derivatives. Chem. Commun. 1970, 1517.Google Scholar
  150. 150.
    __ Epimerization of Penicillanic Acid Derivatives and their Rearrangement to 1,4-Thiazepines: Evidence for an ElcB Mechanism. Chem. Commun. 1971, 450.Google Scholar
  151. 151.
    __ Studies Related to Penicillins. Part V. The Conversion of 6β-Phthalimido-penicillanic Acid into Cepham Derivatives. J. Chem. Soc. (London) (C) 1971, 3859.Google Scholar
  152. 152.
    __ Studies Related to Penicillins. Part VI. The Conversion of Penicillin V and 6-Aminopenicillanic Acid into Cepham Derivatives. J. Chem. Soc. (London) (C) 1971, 3864.Google Scholar
  153. 153.
    Rasmusson, G. H., G. F. Reynolds, and G. E. Arth: 6-Substituted Penicillin Derivatives, VI. Tetrahedron Letters 1973, 145.Google Scholar
  154. 154.
    Reiner, R., and P. Zeller: Substitution der 6-Aminopenicillansäure am Kohlenstoffatom 6. Helv. Chim. Acta 51, 1905 (1968).CrossRefGoogle Scholar
  155. 155.
    Scartazzini, R., and H. Bickel: Neue β-Lactam-Antibiotika. Über die Darstellung von N-Acylderivaten der 7-Amino-ceph-3-em-4-carbonsäure. Helv. Chim. Acta 55, 423 (1972).CrossRefGoogle Scholar
  156. 156.
    Scartazzini, R., J. Gosteli, H. Bickel, and R. B. Woodward: Neue β-Lactam-Antibiotika. Über die Darstellung der 8-β-Phenylacetamido-homoceph-4-em-5-carbonsäure. Helv. Chim. Acta 55, 2567 (1972).CrossRefGoogle Scholar
  157. 157.
    Scartazzini, R., H. Peter, H. Bickel, K. Heusler, and R. B. Woodward: Neue β-Lactam-Antibiotika. Über die Darstellung der „7-Aminocephalocillansäure“. Helv. Chim. Acta 55, 408 (1972).CrossRefGoogle Scholar
  158. 158.
    Schneider, C. H., and A. L. De Weck: Studies of the Direct Neutral Penicilloylation of Functional Groups occuring on Proteins. Biochem. Biophys. Acta 168, 27 (1968).Google Scholar
  159. 159.
    Schorr, M., and W. Schmitt: Synthese von 6-(Aminomethylphenoxyacetylamino)-penicillansäuren. Arch. Pharmaz. 304, 325 (1971).CrossRefGoogle Scholar
  160. 160.
    Schwartz, M. A.: Mechanism of Degradation of Penicillin G in Acidic Solution. J. Pharm. Sci. 54, 472 (1965).CrossRefGoogle Scholar
  161. 161.
    _ Model Catalysts Which Simulate Penicillinase. I. Effect of Ionic Interaction on Catalysis of Penicillin Hydrolysis by Certain Catecholamines. J. Pharm. Sci. 54, 1308 (1965).CrossRefGoogle Scholar
  162. 162.
    Schwartz, M. A., and W. L. Hayton: Relative Stability of Hetacillin and Ampicillin in Solution. J. Pharm. Sci. 61, 906 (1972).CrossRefGoogle Scholar
  163. 163.
    Schwartz, M. A., and G.-M. Wu: Kinetics of Reactions Involved in Penicillin Allergy. I. Mechanism of Reaction of Penicillins and 6-Aminopenicillanic Acid with Glycine in Alkaline Solution. J. Pharm. Sci. 55, 550 (1966).CrossRefGoogle Scholar
  164. 164.
    Sheehan, J. C.: Peptide-type Antibiotics. Pure Appl. Chem. 6, 297 (1963).CrossRefGoogle Scholar
  165. 165.
    _ The synthetic Penicillins. In Molecular Modification in Drug Design, Advances in Chemistry Series 45, R. F. Gould, Ed., p. 15–23. Washington, D. C.: American Chemical Society, 1964.CrossRefGoogle Scholar
  166. 166.
    Sheehan, J. C., and K. G. Brandt: A Novel Cleavage of the Penicillin Nucleus. J. Amer. Chem. Soc. 87, 5468 (1965).CrossRefGoogle Scholar
  167. 167.
    Simon, G. L., R. B. Morin, and L. F. Dahl: Structural Characterization of an An-hydropenicillin and its Stereochemical Relationship to Penicillins. J. Amer. Chem. Soc. 94, 8557 (1972).CrossRefGoogle Scholar
  168. 168.
    Smart, M. L., and D. Rogers: The Crystal and Molecular Structure of (-)-3β-Acetoxy-4α-t-butylcarbamoyl-3α-methyl-7β-(p-bromophenyl)acetamidocepham lα-Oxide, C22H28N3O6BrS. Chem. Commun. 1970, 1060.Google Scholar
  169. 169.
    Smith, H., J. M. Dewdney, and A. W. Wheeler: A Comparison of the Amounts and the Antigenicity of Polymeric Materials Formed in Aqueous Solution by Some β-Lactam Antibiotics. Immunology 21, 527 (1971).Google Scholar
  170. 170.
    Smith, H., and A. C. Marshall: Polymers Formed by Some β-Lactam Antibiotics. Nature (New Biology) 232, 45 (1971).CrossRefGoogle Scholar
  171. 171.
    Smith, J. T., and J. M. T. Hamilton-Miller: Hetacillin: A Chemical and Biological Comparison with Ampicillin. Chemotherapy 15, 366 (1970).CrossRefGoogle Scholar
  172. 172.
    Spitzer, W. A., T. Goodson, R. J. Smithey, and I. G. Wright: General Method for the Synthesis of β-Lactam Antibiotics Substituted a to the β-Lactam Carbonyl. Chem. Commun. 1972, 1138.Google Scholar
  173. 173.
    Spry, D. O.: Conversion of Penicillin to Cephalosporin via a Double Sulfoxide Rearrangement. J. Amer. Chem. Soc. 92, 5006 (1970).CrossRefGoogle Scholar
  174. 174.
    _ Oxidation of Penicillin and Dihydrocephalosporin Derivatives with Ozone. J. Organ. Chem. (USA) 37, 793 (1972).Google Scholar
  175. 175.
    Stewart, G. T.: The Penicillin Group of Drugs. New York: Elsevier Publishing Co. 1965.Google Scholar
  176. 176.
    Stoodley, R. J.: Deamination of 6-Aminopenicillanic Acid — the Origin of a 2,3-Dihydro-l,4-thiazin-3-one. Tetrahedron Letters 1967, 941.Google Scholar
  177. 177.
    _ Studies Related to Penicillins. Part II. The Rearrangement of 6-β-Amino-penicillanic Acid to 2,3-Dihydro-6-methoxycarbonyl-2,2-dimethyl-l,4-thiazin-3-one. J. Chem. Soc. (London) (C) 1968, 2891.Google Scholar
  178. 178.
    Strominger, J. L., and D. J. Tipper: Bacterial Cell Wall Synthesis and Structure in Relation to the Mechanism of Action of Penicillins and Other Antibacterial Agents. Amer. J. Med. 39, 708 (1965).CrossRefGoogle Scholar
  179. 179.
    Sutherland, R., and O. P. W. Robinson: Laboratory and Pharmacological Studies in Man with Hetacillin and Ampicillin. Brit. Med. J. 2, 804 (1967).CrossRefGoogle Scholar
  180. 180.
    Terao, S., T. Matsuo, S. Tsushima, N. Matsumoto, T. Miyawaki, and M. Miyamoto: Transformation of Penicillin Sulphoxides into Cephalosporins by Azo-compounds. Chem. Commun. 1972, 1304.Google Scholar
  181. 181.
    Tutt, D. E., and M. A. Schwartz: Specificity in the Cyclohepta-amylose-catalyzed Hydrolysis of Penicillins. Chem. Commun. 1970, 113.Google Scholar
  182. 182.
    __ Model Catalysts Which Simulate Penicillinase V. The Cycloheptaamylose-Catalyzed Hydrolysis of Penicillins. J. Amer. Chem. Soc. 93, 767 (1971).CrossRefGoogle Scholar
  183. 183.
    Vlietinck, A., E. Roets, P. Claes, and H. Vanderhaeghe: A Facile Method for the Preparation of 6-Epi-penicillins. Tetrahedron Letters 1972, 285.Google Scholar
  184. 184.
    Wagner, E. S., W. W. Davis, and M. Gorman: The Reaction of Benzylpenicillenic Acid with Thiol-Containing Compounds. The Formation of a Possible Penicillin Antigenic Determinant. J. Med. Chem. 12, 483 (1969).CrossRefGoogle Scholar
  185. 185.
    Wagner, E. S., and M. Gorman: The Reaction of Cysteine and Related Compounds with Penicillins and Cephalosporins. J. Antibiotics 24, 647 (1971).Google Scholar
  186. 186.
    Weck, A. L. de, C. H. Schneider, and J. Gutersohn: The Role of Penicilloylated Protein Impurities, Penicillin Polymers and Dimers in Penicillin Allergy. Int. Arch. Allergy 33, 535 (1968).CrossRefGoogle Scholar
  187. 187.
    Weissenburger, H. W. O., and M. G. van der Hoeven: An Efficient Nonenzymatic Conversion of Benzylpenicillin to 6-Aminopenicillanic Acid. Rec. trav. chim. Pays-Bas. 89, 1081 (1970).CrossRefGoogle Scholar
  188. 188.
    Wolfe, S.: TWO General Intermediates for the Synthesis of Anhydropenicillins. Canad. J. Chem. 46, 459 (1968).CrossRefGoogle Scholar
  189. 189.
    Wolfe, S., R. N. Bassett, S. M. Caldwell, and F. I. Wasson: Reversal of the Anhydropenicillin Rearrangement. J. Amer. Chem. Soc. 91, 7205 (1969).CrossRefGoogle Scholar
  190. 190.
    Wolfe, S., J.-B. Ducep, G. Kannengiesser, and W. S. Lee: Sulfur-free Penicillin Derivatives. III. Regeneration of Fused β-Lactams via Intramolecular Displacement. Canad. J. Chem. 50, 2902 (1972).CrossRefGoogle Scholar
  191. 191.
    Wolfe, S., C. Ferrari, and W. S. Lee: Mercuric Acetate Oxidation of an Anhydropenicillin. Anhydro-α-phenoxyethylpenicillene, a Novel Antibacterial Agent. Tetrahedron Letters 1969, 3385.Google Scholar
  192. 192.
    Wolfe, S., J. C. Godfrey, C. T. Holdrege, and Y. G. Perron: Anhydropenicillins: A Novel Rearrangement of the Thiazolidine Ring. J. Amer. Chem. Soc. 85, 643 (1963).CrossRefGoogle Scholar
  193. 193.
    ____ Rearrangement of Penicillins to Anhydropenicillins. Canad. J. Chem. 46, 2549 (1968).CrossRefGoogle Scholar
  194. 194.
    Wolfe, S., and S. K. Hasan: β-Elimination as a General Process in Penicillin Chemistry. The Stereochemistry and Mechanism of Raney Nickel Desulphurization of Penicillin G and Penicillin V. Chem. Commun. 1970, 833.Google Scholar
  195. 195.
    Wolfe, S., and W. S. Lee: A Ready C-6 Epimerization of the Penicillin Nucleus. Chem. Commun. 1968, 242.Google Scholar
  196. 196.
    Wolfe, S., W. S. Lee, J.-B. Ducep, and G. Kannengiesser: Sulfur-free Penicillin Derivatives. II. Functionalization of the Methyl Groups. Canad. J. Chem. 50, 2898 (1972).CrossRefGoogle Scholar
  197. 197.
    Wolfe, S., W. S. Lee, G. Kannengiesser, and J.-B. Ducep: Sulfur-free Penicillin Derivatives. I. Functionalization at C-5. Canad. J. Chem. 50, 2894 (1972).CrossRefGoogle Scholar
  198. 198.
    Wolfe, S., W. S. Lee, and R. Misra: On the Conditions for C-6 Epimerization of the Penicillin Nucleus by a β-Elimination Mechanism. Chem. Commun. 1970, 1067.Google Scholar
  199. 199.
    Woodward, R. B., K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer, R. Ramage, S. Ranganathan, and H. Vorbrüggen: The Total Synthesis of Cephalosporin C. J. Amer. Chem. Soc. 88, 852 (1966).CrossRefGoogle Scholar
  200. 200.
    Yoshimoto, M., S. Ishihara, E. Nakayama, E. Shoji, H. Kuwano, and N. Soma: Studies on β-Lactam Antibiotics II. A New Synthesis of 1,2-Secopenicillin and its Conversion to the Cepham Nucleus. Tetrahedron Letters 1972, 4387.Google Scholar
  201. 201.
    Yurchenko, J. A., M. W. Hopper, T. D. Vince, and G. H. Warren: Substituted Penicillin Amides. Chemotherapy 17, 405 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • D. N. McGregor
    • 1
  1. 1.SyracuseUSA

Personalised recommendations