Advertisement

Abstract

During the past decade solutions of an increasing variety of problems in the field of molecular genetics have rested on the availability of synthetic polynucleotides. Thus, to cite only a few examples, the elucidation of the genetic code was based on synthesis of the 64 possible trinucleoside diphosphates and on the preparation of poly-nucleotides containing repeating sequences (186, 249). More recently the development of synthetic procedures has culminated in the total synthesis of two tRNA-genes (2, 188, 190). A further useful application has been demonstrated in the use of synthetic oligomers of specific base sequence as specific primers for DNA sequencing (247, 366, 379, 467).Because of the many problems which remain with respect to our understanding in gene function or to future gene manipulation, it seems not surprising that the effort for finding new methods or for improving earlier methods in polynucleotide synthesis still continues or even increases in many laboratories all over the world.

Keywords

Blocking Group Polymer Support Oligonucleotide Synthesis Tetrahedron Letter Terminal Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, K. L., and M. M. Dhar: The use of 2,3’-anhydronucleosides in the synthesis of the internucleotide bond. Tetrahedron Letters 2451 (1965).Google Scholar
  2. 2.
    Agarwal, K. L., H. Buchi, M. H. Caruthers, N. Gupta, H. G. Khorana, K. Kleppe, E. Ohtsuka, U. L. Rajbhandary, J. H. van de Sande, V. Sgaramella, H. Weber, and T. Yamada: Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature 227, 27 (1970).CrossRefGoogle Scholar
  3. 3.
    Agarwal, K. L., A. Yamazaki, and H. G. Khorana: Studies on polynucleotides. XCVIII. A convenient and general method for the preparation of protected dideoxyribonucleotides containing 5’-phosphate end groups. J. Amer. Chem. Soc. 93, 2754 (1971).CrossRefGoogle Scholar
  4. 4.
    Agarwal, K. L., and H. G. Khorana: Studies on Polynucleotides. CII. The Use of Aromatic Isocyanates for Selective Blocking of the Terminal 3’-Hydroxyl Group in Protected Deoxyribooligonucleotides. J. Amer. Chem. Soc. 94, 3578 (1972).CrossRefGoogle Scholar
  5. 5.
    Agarwal, K. L., A. Kumar, and H. G. Khorana: Studies on Polynucleotides. CIX. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of a dodecadeoxynucleotide and a decadeoxynucleotide corresponding to the nucleotide sequence 46 to 65. J. Mol. Biol. 72, 351 (1972).CrossRefGoogle Scholar
  6. 6.
    Agarwal, K. L., A. Yamazaki, P. J. Cashion, and H. G. Khorana: Chemische Synthese von Polynucleotiden. Angew. Chem. 84, 489 (1972).CrossRefGoogle Scholar
  7. 7.
    Agarwal, K. L., M. Fridkin, E. Jay, and H. G. Khorana: Deoxynucleotide synthesis using a new phosphate protecting group. J. Amer. Chem. Soc. 95, 2020 (1973).CrossRefGoogle Scholar
  8. 8.
    Akutsu, H., and M. Tsuboi: Structure of polynucleotide complex with non-complementary nucleosides. I. Poly A, G+poly U. Bull. Chem. Soc. Japan 43, 3391 (1970).CrossRefGoogle Scholar
  9. 9.
    Akutsu, H., and M. Tsuboi: Structure of polynucleotide complex with non-complementary nucleosides. II. Poly I, U + poly C. Bull. Chem. Soc. Japan 44, 20 (1971).CrossRefGoogle Scholar
  10. 10.
    Amagaeva, A. A., A. M. Yurkevitch, I. P. Rudakova, L. V. Khristenko, I. M. Kustanovich, and N. A. Preobrashenskii: 5’-O-p-Tolylsulfonyladenosine derivatives. Rhim. Prir. Soedin. 4, 304 (1968). Chem. Abstr. 70, 115471 s (1969).Google Scholar
  11. 11.
    Asai, M., M. Miyaki, and B. Shimizu: Synthetic nucleotides. II. A direct synthetic method for ribonucleotides. Chem. Pharm. Bull. (Tokyo) 15, 1856 (1967).CrossRefGoogle Scholar
  12. 12.
    Badashkeeva, A. G., G. N. Kabasheva, D. G. Knorre, G. G. Shamovskii, and T. N. Shubina: Condensation of trideoxyadenylate by means of a water-soluble carbodiimide in the presence of polyuridylic acid. Dokl. Akad. Nauk SSSR 206, 870 (1972).Google Scholar
  13. 13.
    Bahr, W., H. Sommer, and K. H. Scheit: Synthesis and properties of oligodeoxy-4-thiothymidylic acid. Biochim. Biophys. Acta 287, 427 (1972).CrossRefGoogle Scholar
  14. 14.
    Baker, B. R., P. M. Tanna, and G. D. F. Jackson: Non-classical antimetabolites. XXII. Simulation of 5’-phosphoribosyl binding. IV. Attempted simulation with nucleoside-5’-carbamates. J. Pharm. Sci. 54, 987 (1965).CrossRefGoogle Scholar
  15. 15.
    Barzilay, I., J. L. Sussman, and Y. Lapidot: Further studies on the chromatograph behaviour of dinucleoside monophosphates. J. Chromatog. 79, 139 (1973).CrossRefGoogle Scholar
  16. 16.
    Bauer, S., R. Lamed, and Y. Lapidot: Large scale synthesis of dinucleoside mono-phosphates catalyzed by ribonuclease from Aspergillus clavatus. Biotechnol. Bioeng. XIV, 861 (1972).CrossRefGoogle Scholar
  17. 17.
    Beikirch, H. H., and A. G. Lezius: Double-stranded Polydeoxyribonucleotides containing6-Thiodeoxyguanosineand6-Thiodeoxyinosine. Poly [d(A - C). d(T - S6G)], Poly[d(A-S6G).d(T-C)], and Poly[d(A-C).d(T-S6I)]. Eur. J. Biochem. 27, 381 (1972).CrossRefGoogle Scholar
  18. 18.
    Bennett, G. N., J. K. Mackey, J. L. Wiebers, and P. T. Gilham: 2’-(O-α-methoxyethyl-)nucleoside-5’-diphosphates as Single Addition Substrates in the Synthesis of Specific Oligoribonucleotides with Polynucleotide Phosphorylase. Biochemistry 12, 3956 (1973).CrossRefGoogle Scholar
  19. 19.
    Berger, H.: Solvolysis and phosphorylating activity of polyphosphate esters. Z. Naturforsch. B 26, 694 (1971).Google Scholar
  20. 20.
    Berlin, Yu. A., O. G. Chakhmakhcheva, V. A. Efimov, M. N. Kolosov, and V. G. Korobko: Arenesulfonyl imidazolides, new reagents for polynucleotide synthesis. Tetrahedron Letters 1353 (1973).Google Scholar
  21. 21.
    Bernfield, M. R., and F. M. Rottman: Ribonuclease and oligoribonucleotide synthesis. III. Oligonucleotide synthesis with 5’-substituted uridine 2’,3’-cyclic phosphates. J. Biol. Chem. 242, 4134 (1967).Google Scholar
  22. 22.
    Blackburn, G. M., M. J. Brown, and M. R. Harris: Nucleic acid studies on insoluble polymer supports. Chem. Commun. 611 (1966).Google Scholar
  23. 23.
    Blackburn, G. M., M. J. Brown, and M. R. Harris: Synthetic studies of nucleic acids on polymer supports. Part I. Oligodeoxyribonucleotide synthesis on an insoluble polymer support. J. Chem. Soc. 2438 (1967).Google Scholar
  24. 24.
    Blackburn, G. M., M. J. Brown, M. R. Harris, and D. Shire: Synthetic studies of nucleic acids on polymer supports. Part II. Mechanisms of phosphorylation with carbodi-imides and arenesulphonyl chlorides. J. Chem. Soc. 676 (1969).Google Scholar
  25. 25.
    Blank, H. U., D. Frahne, A. Myles, and W. Pfleiderer: Nucleosides. IV. Tritylation and benzylation of adenosine derivatives. Liebigs. Ann. Chem. 742, 34 (1970).CrossRefGoogle Scholar
  26. 26.
    Blank, H. U., and W. Pfleiderer: Nucleosides. I. Syntheses of O’-benzyl derivatives of uridine. Liebigs Ann. Chem. 742, 1 (1970).CrossRefGoogle Scholar
  27. 27.
    Blank, H. U., and W. Pfleiderer: Nucleosides. II. Tritylations and benzylations of cytidine derivatives. Liebigs Ann. Chem. 742, 16 (1970).CrossRefGoogle Scholar
  28. 28.
    Blank, H. U., and W. Pfleiderer: Nucleosides. III. New mild method for the selective N6-acylation of cytidine. Liebigs Ann. Chem. 742, 29 (1970).CrossRefGoogle Scholar
  29. 29.
    Bobst, A. M., P. A. Cerutti, and F. Rottman: The structure of poly 2’-O-methyladenylic acid at acidic and neutral pH. J. Amer. Chem. Soc. 91, 1246 (1969).CrossRefGoogle Scholar
  30. 30.
    Bollum, F. J.: Terminal deoxynucleotidyl transferase. In: The Enzymes, X (P. D. Boyer, ed.), 145 (1974).Google Scholar
  31. 31.
    Boom, J. H. van, P. M. J. Burgers, G. P. Owen, C. B. Reese, and R. Saffhill: Approaches to oligoribonucleotide synthesis via phosphotriester intermediates. Chem. Commun. 869 (1971).Google Scholar
  32. 32.
    Boots, J. H. van, P. van Deursen, J. Meeuwse, and C. B. Reese: Two sulfur-containing protecting groups for alcoholic hydrogen functions. J. Chem. Soc., Chem. Commun. 766 (1972).Google Scholar
  33. 33.
    Brandstetter, F., H. Schott, und E. Bayer: Liquid-phase-Synthese von Nucleotiden. Tetrahedron Letters 2997 (1973).Google Scholar
  34. 34.
    Breitenbach, J. W., and O. F. Olaj: Über die proliferierende Polymerisation in Vernetzungssystemen und dynamisch-kalorimetrische Messungen an Popcorn-Polymeren. Chimia 22, 157 (1968).Google Scholar
  35. 35.
    Brown, D. M.: Phosphorylation. Advances Org. Chemistry 3, 75 (1963).Google Scholar
  36. 36.
    Brunngraber, E. F., and E. Chargafp: Transferase from Escherischia coli effecting low-energy phosphate transfer to nucleosides and nucleotides. Proc. Natl. Acad. Sci. US 67, 107 (1970).CrossRefGoogle Scholar
  37. 37.
    Buchi, H., and H. G. Khorana: Studies on Polynucleotides. CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J. Mol. Biol. 72, 251 (1972).CrossRefGoogle Scholar
  38. 38.
    Caruthers, M. H., and H. G. Khorana: Studies on Polynucleotides. CXI. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of a dodecadeoxynucleotide and a heptadeoxynucleotide corresponding to the nucleotide sequence 66 to 77. J. Mol. Biol. 72, 407 (1972).CrossRefGoogle Scholar
  39. 39.
    Caruthers, M. H., K. Kleppe, J. H. van de Sande, V. Sgaramella, K. L. Agarwal, H. Buchi, N. K. Gupta, A. Kumar, E. Ohtsuka, U. L. Raj Bhandary, T. Terao, H. Weber, T. Yamada, and H. G. Khorana: Studies On Polynucleotides. CXV. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining to form the total DNA duplex. J. Mol. Biol. 72, 475 (1972).CrossRefGoogle Scholar
  40. 40.
    Caruthers, M. H., J. H. van de Sande, and H. G. Khorana: Studies On Polynucleotides. CX. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of three decadeoxynucleotides corresponding to the nucleotide sequence 51 to 70. J. Mol. Biol. 72, 375 (1972).CrossRefGoogle Scholar
  41. 41.
    Cashion, P. J., M. Fridkin, K. L. Agarwal, E. Jay, and H. G. Khorana: Studies On Polynucleotides. CXXI. The use of trityl- and α-naphthylcarbamoyl cellulose derivatives in oligonucleotide synthesis. Biochemistry 12, 1985 (1973).CrossRefGoogle Scholar
  42. 42.
    Catlin, J. C., and F. Cramer: Deoxyoligonucleotide synthesis via the triester method. J. Org. Chem. 38, 245 (1973).CrossRefGoogle Scholar
  43. 43.
    Cedergren, R. J., B. Larue, and P. Laporte: The acylation of ribonucleotides with benzoic and acetic anhydrides in aqueous solutions. Can. J. Biochem. 49, 730 (1971).Google Scholar
  44. 44.
    Chapman, T. M., and D. G. Kleid: Oligonucleotide synthesis on polar polymer supports: The use of a polypeptide support. J. Chem. Soc. D, Chem. Comm. 193 (1973).Google Scholar
  45. 45.
    Chargaff, E., and J. N. Davidson: The nucleic acids. Vol. 1, 2 (1955); Vol. 3. New York-London: Academic Press. 1960.Google Scholar
  46. 46.
    Chen, H.-C., L. C. Craig, and E. Stoner: On the removal of the residual carboxylic acid groups from cellulosic membranes and Sephadex. Biochem. 11, 3559 (1972).CrossRefGoogle Scholar
  47. 47.
    Chladek, S., J. Zemlicka, and V. Gut: 5-chloro-8-hydroxyquinoline (chloroxine) esters of carboxylic acids — selective reagents for acylation of nucleoside and nucleotide aminoacyl derivatives. Biochem. Biophys. Res. Commun. 35, 306 (1969).CrossRefGoogle Scholar
  48. 48.
    Chong, K. J., and T. Hata: p-Nitrophenyl phosphates as phosphorylating reagents for alcohols. Bull. Chem. Soc. Jap. 44, 2741 (1971).CrossRefGoogle Scholar
  49. 49.
    Chou, J. Y., and M. F. Singer: Synthesis of a copolymer containing adenylic and deoxyadenylic acid residues with polynucleotide phosphorylase. Biochem. Biophys. Res. Commun. 42, 306 (1971).CrossRefGoogle Scholar
  50. 50.
    Chou, J. Y., and M. F. Singer: Deoxyadenosine diphosphate as a substrate and inhibitor of polynucleotide phosphorylase of Micrococcus luteus. I. Deoxyadenosine diphosphate as a substrate for polymerization and the exchange reaction with inorganic 32P. J. Biol. Chem. 246, 7486 (1971).Google Scholar
  51. 51.
    Chou, J. Y., and M. F. Singer: Deoxyadenosine diphosphate as a substrate and inhibitor of polynucleotide phosphorylase of Micrococcus luteus. III. Copolymerization of adenosine diphosphate and deoxyadenosine diphosphate. J. Biol. Chem. 246, 7505 (1971).Google Scholar
  52. 52.
    Christensen, L. F., and A. D. Broom: Specific chemical synthesis of ribonucleoside O-Benzyl ethers. J. Org. Chem. 37, 3398 (1972).CrossRefGoogle Scholar
  53. 53.
    Clark, V. M., D. W. Hutchinson, A. J. Kirby, and S. G. Warren: Phosphorylierungsmittel — Bauprinzip und Reaktionsweise. Angew. Chem. 76, 704 (1964).CrossRefGoogle Scholar
  54. 54.
    Cook, A. F.: The use of β,β,β-tribromoethylchloroformate for the protection of nucleoside hydroxyl groups. J. Org. Chemistry 33, 3589 (1968).CrossRefGoogle Scholar
  55. 55.
    Cook, A. F., M. J. Holman, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. II. Preparation and chemical and enzymatic properties. J. Amer. Chem. Soc. 91, 1522 (1969).CrossRefGoogle Scholar
  56. 56.
    Cook, A. F., M. J. Holman, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. III. Application to oligonucleotide synthesis. J. Amer. Chem. Soc. 91, 6479 (1969).CrossRefGoogle Scholar
  57. 57.
    Cook, A. F., and D. T. Maichuck: Use of chloroacetic anhydride for the protection of nucleoside hydroxyl groups. J. Org. Chem. 35, 1940 (1970).CrossRefGoogle Scholar
  58. 58.
    Cook, A. F., E. P. Heimer, M. J. Holman, D. T. Maichuk, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. V. Synthesis of a tridecadeoxyribonucleotide. J. Amer. Chem. Soc. 95, 1334 (1972).CrossRefGoogle Scholar
  59. 59.
    Cooperman, B. S., G. J. Lloyd, and C.-M. Hsu: Reactivity of phosphorylimidazole, an analog of known phosphorylated enzymes. J. Amer. Chem. Soc. 93, 4889 (1971).CrossRefGoogle Scholar
  60. 60.
    Cozzarelli, N. R., N. E. Melechen, T. M. Jovin, and A. Kornberg: Polynucleotide cellulose as a substrate for polynucleotide ligase induced by phage T4. Biochem. Biophys. Res. Comm. 28, 578 (1967).CrossRefGoogle Scholar
  61. 61.
    Cramer, F.: Probleme der chemischen Polynucleotidsynthese. Angew. Chem. 73, 49 (1961).CrossRefGoogle Scholar
  62. 62.
    Cramer, F., H. Neunhoeffer, K. H. Scheit, G. Schneider, and J. Tennigkeit: Neue Phosphorylierungsreaktionen und Schutzgruppen für Nucleotide. Angew. Chem. 74, 387 (1962).CrossRefGoogle Scholar
  63. 63.
    Cramer, F., H. P. Bär, H. J. Rhaese, W. Saenger, K. H. Scheit, G. Schneider, and J. Tennigkeit: Stabilität von Schutzgruppen für Nucleoside und Nucleotide. Tetrahedron Letters 1039 (1963).Google Scholar
  64. 64.
    Cramer, F., and K. H. Scheit: Über Benzhydrylester von Nucleotiden. Liebigs Ann. Chem. 679, 150 (1964).CrossRefGoogle Scholar
  65. 65.
    Cramer, F.: Die Synthese von Oligo-und Polynucleotiden. Angew. Chem. 78, 186 (1966).CrossRefGoogle Scholar
  66. 66.
    Cramer, F., and T. Hata: Chemie der energiereichen Phosphate. XIX. Phosphorylierung mit der Additionsverbindung aus Bromcyanacetamid und Triphenylphosphin. Liebigs Ann. Chem. 692, 22 (1966).CrossRefGoogle Scholar
  67. 67.
    Cramer, F., R. Helbig, H. Hettler, K. H. Scheit, and H. Seliger: OligonucleotidSynthese an einem löslichen Polymeren als Träger. Angew. Chem. 12, 640 (1966).CrossRefGoogle Scholar
  68. 68.
    Cramer, F., and H. Köster: Synthesis of oligonucleotides on a polymeric carrier. Angew. Chem. 80, 488 (1968). Angew. Chem. Internat. Edit. 7, 473 (1968).Google Scholar
  69. 69.
    Cramer, F.: Chemical synthesis of oligo-and polynucleotides. Pure Appl. Chem. 18, 197 (1969).CrossRefGoogle Scholar
  70. 70.
    Cramer, F.: Recent methods of phosphorylation and the application to nucleotide chemistry. Colloq. Int. Cent. Nat. Rech. Sci. 343 (1970).Google Scholar
  71. 71.
    Cramer, F., E. M. Gottschalk, H. Matzura, K. H. Scheit, and H. Sternbach: The synthesis of the alternating copolymer poly[r(A-s 4 U)] by RNA polymerase of Escherichia coli. Eur. J. Biochem. 19, 379 (1971).CrossRefGoogle Scholar
  72. 72.
    Cuatrecases, P.: Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J. Biol. Chem. 245, 3059 (1970).Google Scholar
  73. 73.
    Cusack, N. J., C. B. Reese, and J. H. van Boom: Block synthesis of oligonucleotides by the phosphotriester approach. Tetrahedron Letters 2209 (1973).Google Scholar
  74. 74.
    Darlix, J. L., and P. Fromageot: 5’-Monophosphonucleotides. Fr. Pat. 1,539,962 (Cl. C 07f), 20. Sep. 1968, Appl. 11. Aug. 1967. Chem. Abstr. 72, 32179 t (1970).Google Scholar
  75. 75.
    Eckstein, F., and I. Rizk: Oligonucleotidsynthesen mit Phosphorsäure-β,β,β-trichloräthylester-dichlorid. Angew. Chem. 79, 939 (1967).CrossRefGoogle Scholar
  76. 76.
    Eckstein, F., and I. Rizk: Synthesis of oligonucleotides by use of phosphoric triesters. Angew. Chem. 6, 695 (1967).Google Scholar
  77. 77.
    Eckstein, F., and H. Gindl: Polyribonucleotides containing a thiophosphate backbone. FEBS Letters 2, 262 (1969).CrossRefGoogle Scholar
  78. 78.
    Eckstein, F., and I. Rizk: Synthese von Oligodesoxynucleotiden über Phosphorsäuretriester. Chem. Ber. 102, 2362 (1969).CrossRefGoogle Scholar
  79. 79.
    Eckstein, F.: Nucleoside phosphorothioates. J. Amer. Chem. Soc. 92, 4718 (1970).CrossRefGoogle Scholar
  80. 80.
    Eckstein, F., and H. Gindl: Polyribonucleotides containing a phosphorothioate backbone. Eur. J. Biochem. 13, 558 (1970).CrossRefGoogle Scholar
  81. 81.
    Eckstein, F., and K.-H. Scheit: Procedures in nucleic acid research. 2, 665 (G. L. Cantoni and D. R. Davies, eds.). New York: Harper and Row. 1971.Google Scholar
  82. 82.
    Eckstein, F.: Protection of phosphoric and related acids. In: Protective groups in organic chemistry. (J. F. W. McOmie, ed.). London-New York: Plenum Press. 1973.Google Scholar
  83. 83.
    Endo, T., K. Ikeda, Y. Kawamura, and Y. Mizuno: 1-oxidopyridine-2-yl-diazomethane. A water-soluble alkylating agent for nucleosides and nucleotides. J. Chem. Soc. D, Chem. Comm. 673 (1973).Google Scholar
  84. 84.
    Ermishkina, S. A., and A. M. Yurkevich: 2’,3’-O-phenyiboric esters of ribonucleosides in the synthesis of diribonucleoside phosphates. Zh. Obshch. Khim. 40, 652 (1970).Google Scholar
  85. 85.
    Eto, M., M. Sasaki, M. Ito, M. Eto, and H. Ohkawa: Synthesis of 2-(methylthio)-4H-1,3,2-benzodioxaphosphorine-2-oxide by thiono-thiol conversion and its use as a phosphorylating agent. Tetrahedron Letters 4263 (1971).Google Scholar
  86. 86.
    Faerber, P., K.-H. Scheit, and H. Sommer: A new poly-nucleotide complex poly(s2C). poly(I). Eur. J. Biochem. 27, 109 (1972).CrossRefGoogle Scholar
  87. 87.
    Falk, W., and C. Tamm: Nucleoside und Nucleotide. Tei13. Über die Polykondensation von Thymidin-3’-phosphat nach der Triestermethode. Hely. Chim. Acta 55, 1928 (1972).CrossRefGoogle Scholar
  88. 88.
    Farmer, P. B.: personal communication.Google Scholar
  89. 89.
    Feix, G., R. Pollet, and C. Weissmann: Replication of Viral RNA. XVI. Enzymatic Synthesis of Infectious Viral RNA with Noninfectious Qβ, Minus Strands as Template. Proc. Natl. Acad. Sci. US 59, 145 (1968).CrossRefGoogle Scholar
  90. 90.
    Feix, G.: Oligoribonucleotides as primer for terminal deoxynucleotidyl transferase. FEBS Letters 18, 280 (1971).CrossRefGoogle Scholar
  91. 91.
    Feix, G.: Enzymatic synthesis of polydeoxynucleotides covalently linked to an oligoribonucleotide primer. Biochem. Biophys. Res. Commun. 46, 2141 (1972).CrossRefGoogle Scholar
  92. 92.
    Feix, G.: Initiation of DNA synthesis by oligoribonucleotides. In: Gene expression and its regulation (F. T. Kenney, B. A. Hamkalo, G. Favelukes, and J. T. August, eds.), p. 301. New York: Plenum Press. 1973.CrossRefGoogle Scholar
  93. 93.
    Filtr, J., and L. Bohacek: Preparation of uridine 5’-monophosphate-5-3H and uridine 5’-monophosphate-6-3H with high molar activity. Radioisotopy 12, 343 (1971).Google Scholar
  94. 94.
    Franke, A., F. Eckstein, K. H. Scheit, and F. Cramer: Synthese von Oligo- und Polynucleotiden. XVI. Synthese von Desoxyoligonucleotiden mit der Trichloräthylphosphatschutzgruppe. Chem. Ber. 101, 944 (1968).CrossRefGoogle Scholar
  95. 95.
    Franke, A., K. H. Scheit, and F. Eckstein: Selektive Phosphorylierung von Nucleosiden. Chem. Ber. 101, 2998 (1968).CrossRefGoogle Scholar
  96. 96.
    Freist, W., and F. Cramer: Synthese von Oligonucleotid-5’-phosphaten an einem polymeren Träger mit 2-(α-Pyridyl)-äthanol als funktioneller Gruppe. Angew. Chem. 82, 358 (1970).CrossRefGoogle Scholar
  97. 97.
    Freist, W., and F. Cramer: Synthese von Oligodesoxynucleotiden mit 2-[a-Pyridyl]äthanol als Phosphatschutzgruppe. Chem. Ber. 103, 3122 (1970).CrossRefGoogle Scholar
  98. 98.
    Freist, W., R. Helbig, and F. Cramer: 2-[α-Pyridyl]-äthanol als Phosphatschutzgruppe. Chem. Ber. 103, 1032 (1970).CrossRefGoogle Scholar
  99. 99.
    Fromageot, H. P. M., B. E. Griffin, C. B. Reese, and J. E. Sulston: Synthesis of oligoribonucleotides. III. Monoacylation of ribonucleosides and derivatives by orthoester exchange. Tetrahedron 23, 2315 (1967).CrossRefGoogle Scholar
  100. 100.
    Fujimoto, Y. (Kyowa Fermentation Industry Co., Ltd.): 2’,3’-O-Substituted ribonucleosides. Jap. Pat. 68 25,496 (Cl. 16 E 362), 4. Nov. 1968, Appl. 10. Nov. 1965. Chem. Abstr. 70, 68707m (1969).Google Scholar
  101. 101.
    Fujimoto, Y. (Kyowa Fermentation Industry Co., Ltd.): 2’,3’-O-Substituted ribonucleosides. Jap. Pat. 68 25,498 (Cl. 16 E 431), 4. Nov. 1968, Appl. 10. Nov. 1965. Chem. Abstr. 70, 68708 n (1969).Google Scholar
  102. 102.
    Gallo, R. C.: Reverse Transcriptase — The DNA Polymerase of Oncogenic RNA Viruses. Nature 234, 194 (1973).CrossRefGoogle Scholar
  103. 103.
    Gassen, H. G.: Synthesis by ribonuclease A of codons containing modified nucleosides in the “wobble” position. FEBS Letters 14, 225 (1971).CrossRefGoogle Scholar
  104. 104.
    Gassen, H. G., and R. Nolte: Synthesis by polymer-bound ribonuclease of the termination codons U-A-A, U-A-G, and U-G-A. Biochem. Biophys. Res. Commun. 44, 1410 (1971).CrossRefGoogle Scholar
  105. 105.
    Gassen, H. G.: personal communication.Google Scholar
  106. 106.
    Gillam, S., and M. Smith: Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Nature 238, 233 (1972).Google Scholar
  107. 107.
    Glaser, R., U. Sequin, and C. Tamm: Nucleoside und Nucleotide. Festphasensynthese von Oligonucleotiden an einem unlöslichen, makroporösen Träger. Helv. Chim. Acta 56, 654 (1973).CrossRefGoogle Scholar
  108. 108.
    Glinski, R. P., A. B. Ash, C. L. Stevens, M. B. Sporn, and H. M. Lazarus: Nucleotide synthesis. I. Derivatives of thymidine containing p-nitrophenyl phosphate groups. J. Org. Chem. 36, 245 (1971).CrossRefGoogle Scholar
  109. 109.
    Glinski, R. P., C. C. Bacon, and C. L. Stevens: Synthesis of partially protected oligonucleotides. Presented at 161 st National Meeting of American Chemical Society, Los Angeles, Calif., No. CARB29 (1971).Google Scholar
  110. 110.
    Goldberg, I. H.: Preparation and properties of polypseudouridylic acid. In: Methods in enzymology (L. Grossman and K. Moldave, eds.), XII B, 519. New York-London: Academic Press. 1968.Google Scholar
  111. 111.
    Goulian, M., A. Kornberg, and R. L. Sinsheimer: Enzymatic Synthesis of DNA. XXIV. Synthesis of Infectious Phage øX 174 - DNA. Proc. Natl. Acad. Sci. 58, 2321 (1967).CrossRefGoogle Scholar
  112. 112.
    Grams, G. W., and R. L. Letsinger: N6,3’-O-disubstituted deoxyadenosine. J. Org. Chem. 33, 2589 (1968).CrossRefGoogle Scholar
  113. 113.
    Grams, G. W., and R. L. Letsinger: Synthesis of a diribonucleoside monophosphate by the β-cyanoethyi phosphotriester method. J. Org. Chem. 35, 868 (1970).CrossRefGoogle Scholar
  114. 114.
    Grant, R. C., S. J. Harwood, and R. D. Wells: The synthesis and characterization of poly d(I-C). poly d(I-C). J. Amer. Chem. Soc. 90, 4474 (1968).CrossRefGoogle Scholar
  115. 115.
    Grant, R. C., M. Kodama, and R. D. Wells: Enzymatic and physical studies on (dI-dC)n (dI-dC)n and (dG-dC)n.(dG-dC)n. Biochemistry 11, 805 (1972).CrossRefGoogle Scholar
  116. 116.
    Green, ll. P. L., T. Ravindraathan, C. B. Reese, and R. Saffhill: Synthesis of oligoribonucleotides. VIII. Preparation of ribonucleoside 2’,5’-bisacetals. Tetrahedron Letters 1031 (1970).Google Scholar
  117. 117.
    Griffin, B. E., M. Jarman, C. B. Reese, and R. E. Sulston: The synthesis of oligoribonucleotides. II. Methoxymethylidene derivatives of ribonucleosides and 5’-ribonucleotides. Tetrahedron 23, 2301 (1967).CrossRefGoogle Scholar
  118. 118.
    Grineva, N. I., V. F. Zarytova, D. G. Knorre, and E. V. Yarmolinskaya: Alkylating derivatives of nucleic acid components. XI. Mechanism of formation of benzylidene derivatives of nucleotides. Izv. Sib. Otd. Akad. Nauk. Chem. Abstr. 76, 107 (1971).Google Scholar
  119. 119.
    GrÜnberger, D., A. Holý, and F. Šorm: Synthesis of Triribonucleoside Diphosphates with Ribonuclease T1. Coll. Czech. Chem. Comm. 33, 286 (1968).CrossRefGoogle Scholar
  120. 120.
    Gupta, N. K., E. Ohtsuka, H. Weber, S. H. Chang, and H. G. Khorana: Studies on Polynucleotides. LXXXVII. The Joining of Short Deoxyribopolynucleotides by DNA Joining Enzymes. Proc. Natl. Acad. Sci. US 60, 285 (1968).CrossRefGoogle Scholar
  121. 121.
    Gupta, N. K., E. Ohtsuka, V. Sgaramella, H. Büchi, A. Kumar, H. Weber, and H. G. Khorana: Studies on Polynucleotides. LXXXVIII. Enzymatic Joining of Chemically Synthesized Segments Corresponding to the Gene for Alanine Transfer RNA. Proc. Natl. Acad. Sci. US 60, 1338 (1968).CrossRefGoogle Scholar
  122. 122.
    Haeffner, E. W.: Studies on the thermic phosphorylation of activated nucleoside by phosphate anion and nucleotide anion. Biochim. Biophys. Acta 212, 182 (1970).CrossRefGoogle Scholar
  123. 123.
    Hachmann, J., and H. G. Khorana: Studies on polynucleotides. XCIII. A further study of the synthesis of deoxyribopolynucleotides using preformed oligonucleotide blocks. J. Amer. Chem. Soc. 91, 2749 (1969).CrossRefGoogle Scholar
  124. 124.
    Haga, K., M. Kainosho, and M. Yoshikawa: Phosphorylation. V. Synthesis of inosine-5’-thiophosphates. Bull. Chem. Soc. Jap. 44, 460 (1973).CrossRefGoogle Scholar
  125. 125.
    Hagenberg, L., H. G. Gassen, and H. Matthaei: Synthesis and coding properties of poly(c1A), poly(c3A), poly(c7A) and poly(h6A). Biochem. Biophys. Res. Commun. 50, 1104 (1973).CrossRefGoogle Scholar
  126. 126.
    Halmann, M., R. A. Sanchez, and L. E. Orgel: Phosphorylation of D-ribose in aqueous solution. J. Org. Chemistry 34, 3702 (1969).CrossRefGoogle Scholar
  127. 127.
    Hansbury, E., V. N. Kerr, V. E. Mitchell, R. L. Ratliff, D. A. Smith, D. L. Williams, and F. N. Hayes: Synthesis of polydeoxynucleotides using chemically modified subunits. Biochim. Biophys. Acta 199, 322 (1970).CrossRefGoogle Scholar
  128. 128.
    Harvey, C. L., E. M. Clericuzio, and A. L. Nussbaum: Small-scale preparation of 5’-nucleotides and analogs by carrot phosphotransferase. Anal. Biochem. 36, 413 (1970).CrossRefGoogle Scholar
  129. 129.
    Harvey, C. L., R. Wright, A. F. Cook, D. T. Maichuk, and A. L. Nussbaum: Use of phosphate-blocking groups in ligase joining of oligodeoxyribonucleotides. Biochemistry 12, 208 (1973).CrossRefGoogle Scholar
  130. 130.
    Harvey, C. L., R. Wright, and A. L. Nussbaum: Lambda phage DNA: Joining of a chemically synthesized cohesive end. Science 179, 291 (1973).CrossRefGoogle Scholar
  131. 131.
    Harvey, C. L., A. de Czekala, A. F. Cook, M. J. Holman, T. F. Gabriel, J. E. Michalewsky, and A. L. Nussbaum: High pressure liquid chromatography applied to gene synthesis. Biochim. Biophys. Acta 324, 433 (1973).CrossRefGoogle Scholar
  132. 132.
    Hashizume, T.: Synthesis of biochemically significant organic phosphate compounds I. Bis-p-nitrophenyl-phosphorochloridate as a phosphorylating agent. Mem. Coll. Agr., Kyoto Univ., Chem. Ser. 81, 1 (1959). Chem. Abstr. 57, 14157 (1962).Google Scholar
  133. 133.
    Hata, T., and J. Azizian: 2-chloroethyl orthoformate as a reagent for protection in nucleotides synthesis. Tetrahedron Letters 4443 (1969).Google Scholar
  134. 134.
    Hata, T., Y. Mushika, and T. Mukaiyama: New phosphorylating reagent. I. Preparation of alkyl dihydrogen phosphates by means of 2-chloromethyl-4-nitrophenyl phosphorodichloridate. J. Amer. Chem. Soc. 91, 4532 (1969).CrossRefGoogle Scholar
  135. 135.
    Hata, T., Y. Mushika, and T. Mukaiyama: New phosphorylating reagent. II. Preparation of mixed diesters of phosphoric acid by the use of alkyl-2-chloromethyl-4-nitrophenyl hydrogen phosphate. Tetrahedron Letters 3505 (1970).Google Scholar
  136. 136.
    Hata, T., K. Tajima, and T. Mukatyama: Simple protecting group protection-purification “handle” for polynucleotide synthesis. I. J. Amer. Chem. Soc. 93, 4928 (1971).CrossRefGoogle Scholar
  137. 137.
    Hata, T., and K. J. Chong: p-Nitrophenyl phosphate as a phosphorylating reagent in nucleotide synthesis. Bull. Chem. Soc. Jap. 45, 654 (1972).CrossRefGoogle Scholar
  138. 138.
    Hata, T., I. Nakagawa, and N. Takebayashi: Simple protecting group protection-purification handle for polynucleotide synthesis. III. New method for the synthesis of dinucleotides. Tetrahedron Letters 2931 (1972).Google Scholar
  139. 139.
    Hayashi, H., and F. Egami: Fractionation and Properties of Guanylic acid Polymers synthesized by Ribonuclease T1. J. Biochem. (Tokyo) 53, 176 (1963).Google Scholar
  140. 140.
    Hayatsu, H., and H. G. Khorana: Deoxyribooligonucleotide synthesis on a polymer support. J. Amer. Chem. Soc. 88, 3182 (1966).CrossRefGoogle Scholar
  141. 141.
    Hayatsu, H., and H. G. Khorana: Studies on Polynucleotides. LXXII. Deoxyribooligonucleotide synthesis on a polymer support. J. Amer. Chem. Soc. 89, 3880 (1967).CrossRefGoogle Scholar
  142. 142.
    Hayes, F. N., V. E. Mitchell, R. L. Ratliff, and D. L. Williams: Limited enzymatic addition of deoxyribonucleotide units onto chemically synthesized oligodeoxyribo5’-nucleotides. Biochemistry 6, 2488 (1967).CrossRefGoogle Scholar
  143. 143.
    Hayes, F. N., E. Hansbury, V. E. Mitchell, R. L. Ratliff, and D. L. Williams: Synthesis of N-acetylated deoxyribonucleoside 5’-triphosphates and their utilization in enzymatic formation of single-stranded polydeoxyribonucleotides. Eur. J. Biochem. 6, 485 (1968).CrossRefGoogle Scholar
  144. 144.
    Hayes, F. N., and V. E. Mitchell: Gel filtration chromatography of polydeoxynucleotides using agarose columns. J. Chromatog. 39, 139 (1969).CrossRefGoogle Scholar
  145. 145.
    Heimer, E. P., M. Ahmad, and A. L. Nussbaum: Chemical synthesis of the “sticky end” of lambda phage DNA r-strand. Biochem. Biophys. Res. Commun. 48, 348 (1972).CrossRefGoogle Scholar
  146. 146.
    Heimer, E., M. Ahmad, S. Roy, A. Ramel, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. VI. Synthesis of deoxyribonucleotide oligomers. J. Amer. Chem. Soc. 94, 1707 (1972).CrossRefGoogle Scholar
  147. 147.
    Helbig, R.: Oligonucleotidsynthesen am polymeren Träger. Dissertation. Techn. Hochschule Braunschweig, 1967.Google Scholar
  148. 148.
    Hoass, J., H. Sternbach, and F. Eckstein: Poly 2’-deoxy-2’-chlorouridylic and -cytidylic acids. FEBS Letters 15, 345 (1971).CrossRefGoogle Scholar
  149. 149.
    Hoass, J., H. Sternbach, and F. Eckstein: Poly 2’-deoxy-2’-aminouridylic acid. Biochem. Biophys. Res. Commun. 46, 1509 (1972).CrossRefGoogle Scholar
  150. 150.
    Hobbs, J., H. Sternbach, M. Sprinzl, and F. Eckstein: Polynucleotides containing 2’-chloro-2’-deoxyribose. Biochemistry 11, 4336 (1972).CrossRefGoogle Scholar
  151. 151.
    Hobbs, J., H. Sternbach, M. Sprinzl, and F. Eckstein: Polynucleotides containing 2’-amino-2’-deoxyribose and 2’-azido-2’- deoxyribose. Biochemistry 12, 5138 (1973).CrossRefGoogle Scholar
  152. 152.
    Holy, A., and J. Smrt: Oligonucleotidic compounds. XV. A general approach to the stepwise synthesis of ribooligonucleotides. Synthesis of some triribonucleoside di-phosphates. Coll. Czech. Chem. Comm. 31, 3800 (1966).CrossRefGoogle Scholar
  153. 153.
    Holy, A., S. Chladek, and J. Zemlicka: Oligonucleotidic compounds. XXIX. Reactions of ribonucleoside 2’(3’)-phosphates with dimethylformamide acetals. Collect. Czech. Chem. Commun. 34, 253 (1969).CrossRefGoogle Scholar
  154. 154.
    Holy, A., and J. Zemlicka: Oligonucleotidic compounds. XXXIII. A study on hydrolysis of N-dimethylaminomethylene-cytidine, -adenosine, -guanosine and related 2’-deoxy compounds. Collect. Czech. Chem. Commun. 34, 2449 (1969).CrossRefGoogle Scholar
  155. 155.
    Holy, A., and J. Zemlicka: Oligonucleotidic compounds. XXXV. Reaction of diribonucleoside phosphates with dimethylformamide acetals. Collect. Czech. Chem. Commun. 34, 3921 (1969).CrossRefGoogle Scholar
  156. 156.
    Holy, A., and G. Kowollik: Nucleic acid components and their analogs. CXXXI. Simple enzymic synthesis of nucleoside-5’-phosphates. Coll. Czech. Chem. Comm. 35, 1013 (1970).CrossRefGoogle Scholar
  157. 157.
    Holy, A., and M. Soucek: Benzoyl cyanide — new benzoylating agent in nucleoside and nucleotide chemistry. Tetrahedron Letters 185 (1971).Google Scholar
  158. 158.
    Holy, A.: Phosphorylation of nucleosides with trichloromethylphosphonic acid derivatives. Tetrahedron Letters 157 (1972).Google Scholar
  159. 159.
    Honjo, M.,Y. Furukawa, K. Kobayashi, and R. Marumoto (Takeda Chem. Industries, Ltd.): N-Acyl-2’,3’,5’-tri-O-acyl-cytidines. Ger. Offen. 2,038,807 (Cl. C 07d), 18. Feb. 1971, Appl. 6. Aug. 1969. Chem. Abstr. 74, 100354 q (1971). Chem. Abstr. 74, 100354 d (1971).Google Scholar
  160. 160.
    Homo, M., S. Yoshikawa, K. Kobayashi, and R. Marumoto: N4,2’,3’,5’-tetraalkanoylcytidines. Japan Patent 71 37, 827 (1971). Chem. Abstr. 76, 34533 k (1972).Google Scholar
  161. 161.
    Hudson, R. F., and M. Green: Die Stereochemie von Substitutionsreaktionen am Phosphor. Angew. Chem. 75, 47 (1963).CrossRefGoogle Scholar
  162. 162.
    Ikehara, M., and K. Murao: Nucleosides and Nucleotides. XXXVII. Synthesis of 8-oxoguanosine nucleotides and uric acid-9-D-riboside-5’-phosphate. Chem. Pharm. Bull. (Tokyo) 16, 1330 (1968).CrossRefGoogle Scholar
  163. 162a.
    Ikehara, M., and S. Uesugi: Selective Tosylation of Adenosine-5’-phosphate. 1 et rahedron Letters 713 (1970).Google Scholar
  164. 162b.
    Ikehara, M., and S. Uesugi: Studies on Nucleosides and Nucleotides. LIII. Purine Cyclonucleosides. XVIII. Selective Tosylation of Adenine Nucleotides. Synthesis of 8,2’-Anhydro-8mercapto-9-β-D-arabinofuranosyl adenine and 5’- and 3’-5’-cyclic phosphate. Tetrahedron 28, 3687 (1972).CrossRefGoogle Scholar
  165. 162c.
    Ikehara, M., and S. Uesugi: Studies on Nucleosides and Nucleotides. LV. Reaction of Cyridine-5’-monophosphate with p-Toluene-sulfonylchloride. Chem. Pharm. Bull. (Tokyo) 21, 264 (1973).CrossRefGoogle Scholar
  166. 163.
    Imura, N., T. Tsuruo, and T. Ukita: On the benzylation of nucleosides. I. Reaction of uridine with benzyl bromide in the presence of sodium hydride. Chem. Pharm. Bull. (Tokyo) 16, 1105 (1968).CrossRefGoogle Scholar
  167. 164.
    Irie, S.: Selective phosphorylation of thionucleosides. J. Biochem. (Tokyo) 68, 129 (1970).Google Scholar
  168. 165.
    Irie, S., T. Uchida, and F. Egami: Synthesis and ribonuclease degradation of dinucleoside monophosphates containing a thionucleoside. Biochim. Biophys. Acta 209, 289 (1970).CrossRefGoogle Scholar
  169. 166.
    Jacob, T. M., and H. G. Khorana: Studies on polynucleotides. XXX. A comparative study of reagents for the synthesis of the C3,-C5, internucleotidic linkage. J. Amer. Chem. Soc. 86, 1630 (1964).CrossRefGoogle Scholar
  170. 167.
    Janik, B., M. P. Kotick, T. H. Kreiser, L. F. Reverman, R. G. Sommer, and D. P. Wilson: Synthesis and properties of poly 2’-fluoro-2’-deoxyuridylic acid. Biochem. Biophys. Res. Commun. 46, 1153 (1972).CrossRefGoogle Scholar
  171. 168.
    Janik, B., R. G. Sommer, M. P. Kotick, D. P. Wilson, and R. K. Erickson: Synthesis and properties of poly(1,N6-ethenoadenylic acid) and poly(3,N4-ethenocytidylic acid). Physiol. Chem. Phys. 5, 27 (1973).Google Scholar
  172. 169.
    Janion, C., and D. Shugar: Mechanism of hydroxylamine mutagenesis: Complexing properties of copolymers of hydroxycytidylic acid with cytidylic or uridylic acids. Acta Biochim. Polon. 16, 219 (1969).Google Scholar
  173. 170.
    Jovin, T. M., and A. Kornberg: Oligonucleotide celluloses as solid state primers and templates for polymerases. J. Biol. Chem. 243, 250 (1968).Google Scholar
  174. 171.
    Kabachnik, M. M., I. A. Polyakova, V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: Phosphorylation of nucleosides on polymeric carriers. Dokl. Akad. Nauk SSSR 195, 1344 (1970).Google Scholar
  175. 172.
    Kabachnik, M. M., V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: Oxidative phosphorylation of nucleosides. Dokl. Akad. Nauk. SSSR 195, 1107 (1970).Google Scholar
  176. 173.
    Kabachnik, M. M., V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: A new method of synthesis of internucleotide bonds using polymeric supports. Dokl. Akad. Nauk. SSSR 201, 858 (1971).Google Scholar
  177. 174.
    Kabachnik, M. M., N. G. Timofeeva, M. V. Budanov, V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: Synthesis of oligonucleotides on a polymer carrier. Zhur. Obshch. Khim. 43, 379 (1973).Google Scholar
  178. 175.
    Kapuler, A. M., C. Monny, and A. M. Michelson: The relationship of mono-and polynucleotide conformation to catalysis by polynucleotide phosphorylase. Biochim. Biophys. Acta 217, 18 (1970).CrossRefGoogle Scholar
  179. 176.
    Katagiri, N., C. P. Bahl, K. Itakura, J. Michniewicz, and S. A. NARANG: Use Of 9-fluorenylmethanol as phosphate protecting group in the synthesis of deoxyribooligonucleotides. J. Chem. Soc. D, Chem. Comm. 803 (1973).Google Scholar
  180. 176a.
    Katagiri, N., K. Itakura, and S. A. Narang: Novel condensing reagents for polynucleotide synthesis. J. Chem. Soc. D, Chem. Comm. 325 (1974).Google Scholar
  181. 177.
    Kathawala, F., and F. Cramer: Synthese von Oligo- und Polynucleotiden. XIII. 2’,3’- (2,4-Dimethoxybenzyliden-) als Phosphatschutzgruppe. Liebigs Ann. Chem. 709, 185 (1967).CrossRefGoogle Scholar
  182. 178.
    Kathawala, F., and F. Cramer: Synthese von Oligo-und Polynucleotiden. XIV. Darstellung von Desoxyoligonucleotiden mit 2’,3’-(2,4-Dimethoxybenzyliden-)uridin als Phosphatschutzgruppe. Liebigs Ann. Chem. 712, 195 (1968).CrossRefGoogle Scholar
  183. 178a.
    Kaufmann, G., and U. Z. Littauer: Deoxyadenosine diphosphate as substrate for polynucleotide phosphorylase from Escherichia coli. FEBS Letters 2, 79 (1969).CrossRefGoogle Scholar
  184. 179.
    Kaufmann, G., M. Fridkin, A. Zutra, and U. Z. Littauer: Monofunctional substrates of polynucleotide phosphorylase. Eur. J. Biochem. 24, 4 (1971).CrossRefGoogle Scholar
  185. 180.
    Kaufmann, G., A. Zutra, and U. Z. Littauer: Synthesis of the heptanucleotide U-U-U-G-A-A-G using isovaleryl nucleoside diphosphates and sepharose bound polynucleotide phosphorylase. Israel J. Chem. 9, 44 BC (1971).Google Scholar
  186. 181.
    Kavunenko, A. P., E. N. Morozova, and N. S. Tikhomirova-Sidorova: Preparation of purine-pyrimidine dinucleotides with terminal 2’,3’-cyclophosphate and their use for the synthesis of trinucleoside diphosphates. Zh. Obshch. Khim. 41, 226 (1971).Google Scholar
  187. 182.
    Kavunenko, A. P., V. P. Sukharevich, and N. S. Tikhomirova-Sidorova: Watersoluble carbodiimide in oligoribonucleotide synthesis catalyzed by pancreatic ribonuclease. Zh. Obshch. Khim. 41, 679 (1971).Google Scholar
  188. 183.
    Kelly, R. C., W. J. Wechter, and D. T. Gish (Upjohn Co.): 5’-O-Derivatives of ara-cytidine. Ger. Offen. 2,025,624 (Cl. C 07 d), 3. Dec. 1970, US Appl. 27. May 1969–16. Feb. 1970. Chem. Abstr. 74, 54151 w (1971).Google Scholar
  189. 184.
    Khorana, H. G.: Recent developments in the chemistry of phosphate esters of biological interest. New York: John Wiley & Sons, Inc. 1961.Google Scholar
  190. 185.
    Khorana, H. G.: Synthesis in the study of nucleic acids. Proc. 7th Intern. Congr. Biochem., p. 17, Tokyo (1967).Google Scholar
  191. 186.
    Khorana, H. G.: Polynucleotide synthesis and the genetic code. The Harvey Lectures 62, 79 (1968).Google Scholar
  192. 187.
    Khorana, H. G.: Nucleinsäuresynthese als Werkzeug für das Studium des Genetischen Codes (Nobel-Vortrag). Angew. Chem. 81, 1027 (1969).CrossRefGoogle Scholar
  193. 188.
    Khorana, H. G.: Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Pure Appl. Chem. 25, 91 (1971).CrossRefGoogle Scholar
  194. 189.
    Khorana, H. G., K. L. Agarwal, H. Buchi, M. H. Caruthers, N. K. Gupta, K. Kleppe, A. Kumar, E. Ohtsuka, U. L. Raj Bhandary, J. H. van de Sande, V. Sgaramella, T. Terao, H. Weber, and T. Yamada: Studies On polynucleotides. CIII. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J. Mol. Biol, 72.209 (1972).CrossRefGoogle Scholar
  195. 190.
    Khorana, H. G., K. L. Agarwal, P. Besmer, H. Buchi, M. H. Caruthers, P. J. Cashion, M. Fridkin, E. Jay, D. G. Kleid, A. Kumar, P. C. Loewen, R. Miller, K. Minamoto, R. Rama Moorthy, A. Panet, J. H. van de Sande, T. Sekiya, and N. Sidorova: Synthesis of the gene for the precursor of E. coli tyrosine suppressor tRNA. Abstracts of the 166th Meeting of the Amer. Chem. Soc. (1973).Google Scholar
  196. 191.
    Khwaja, T. A., and C. B. Reese: Phosphorylation of nucleosides with o-phenylenephosphorochloridate and o-phenylene phosphate. Tetrahedron 27, 6189 (1971).CrossRefGoogle Scholar
  197. 192.
    Kikugawa, K., F. Sato, T. Tsuruo, N. Imura, and T. Ukita: On the benzylation of nucleosides. II. A novel synthesis of 2’-O-benzyl uridine. Chem. Pharm. Bull. (Tokyo) 16, 1110 (1968).CrossRefGoogle Scholar
  198. 193.
    Kimhi, Y., and U. Z. Littauer: Polynucleotide phosphorylase from Escherichia coli. In: Methods in enzymology XII B, 513 (L. Grossman and K. Moldave, eds.). New York-London: Academic Press. 1968.Google Scholar
  199. 194.
    Klee, C. B.:Procedures in nucleic acid research. 2, 896 (G. L. Cantoni and D. R. Davies, eds.). New York: Harper and Row. 1971.Google Scholar
  200. 195.
    Kleppe, K., J. H. van de Sande, and H. G. Khorana: Polynucleotide ligase-catalyzed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribooligonucleotides on deoxyribopolynucleotide templates. Proc. Nat. Acad. Sci. 67, 68 (1970).CrossRefGoogle Scholar
  201. 196.
    Knorre, D. G., E. F. Mishenina, T. I. Shubina: Copolymer of acrylamide and 5’-Oacrylylguanosine-2’,3’-cyclophosphate as a substrate of guanyl-RNase during the formation of the internucleotide bond. Dokl. Akad. Nauk. SSSR 198, 1089 (1970).Google Scholar
  202. 197.
    Kochetkov, N. K., and E. J. Budovskii: Organic chemistry of nucleic acids. London-New York: Plenum Press. 1971.Google Scholar
  203. 198.
    Kogan, E. M., E. N. Morozova, N. S. Tikhomirova-Sidorova, and G. E. Ustyuzhanin: Synthesis of purine-pyrimidine triribonucleotides in the presence of pancreatic ribonuclease. Zh. Obshch. Khim. 39, 2576 (1969).Google Scholar
  204. 199.
    Koike, T., T. Uchida, and F. Egami: Synthesis of guanylyl-(3’,5’)-nucleosides and oligoguanylic acids by ribonuclease N1. Biochim. Biophys. Acta 190, 257 (1969).CrossRefGoogle Scholar
  205. 200.
    Koike, T., T. Uchida, and F. Egami: Synthesis of adenylyl-(3’,5’)-nucleosides, adenylyl-(3’,5’)-guanosine 2’,3’-cyclic phosphate, and oligoadenylic acids by ribonuclease U2. J. Biochem. (Tokyo) 69, 111 (1971).Google Scholar
  206. 201.
    Koike, T., T. Uchida, and F. Egami: Synthesis of oligo-ApGp and other oligonucleotides by ribonuclease N1. J. Biochem. (Tokyo) 70, 55 (1971).Google Scholar
  207. 202.
    Kolodkina, I. I., A. S. Guseva, E. A. Ivanova, L. S. Varshavskaya, and A. M. Yurkevich: Synthesis and properties of areneboronates of nucleosides and nucleotides. Zh. Obshch. Khim. 40, 2489 (1970).Google Scholar
  208. 203.
    Kolodkina, E. E., E. A. Ivanova, and A. M. Yurkevich: Ion-exchange chromatography of arylboronic acid complexes of nucleosides and mononucleotides. Khim. Prir. Soedin. 6, 612 (1970). Chem. Abstr. 74, 112363 e (1971).Google Scholar
  209. 204.
    Kornberg, A.: Adenosine phosphokinase. In: Methods in Enzymology, Vol. II. (S. P. Colowick and N. O. Kaplan, eds.), p. 497. New York: Academic Press. 1955.CrossRefGoogle Scholar
  210. 205.
    Kössel, H., H. Buchi, and H. G. Khorana: Studies on polynucleotides. LXV. The synthesis of deoxyribopolynucleotides containing repeating tetranucleotide sequences J. Amer. Chem. Soc. 89, 2185 (1967).CrossRefGoogle Scholar
  211. 206.
    Kössel, H., A. R. Morgan, and H. G. Khorana: Studies on polynucleotides. LXXIII. Synthesis in vitro of polypeptides containing repeating tetrapeptide sequences dependent upon DNA-like polymers containing repeating tetranucleotide sequences: direction of reading of messenger RNA. J. Mol. Biol. 26, 449 (1967).CrossRefGoogle Scholar
  212. 207.
    Kössel, H., M. W. Moon, and H. G. Khorana: Studies on Polynucleotides. LX. The Use of Preformed Dinucleotide Blocks in the Stepwise Synthesis of Deoxyribopolynucleotides. J. Amer. Chem. Soc. 89, 2148 (1967).CrossRefGoogle Scholar
  213. 208.
    Kössel, H., and R. Roychoudhury: Synthetic polynucleotides. The terminal addition of riboadenylic acid to deoxyoligonucleotides by terminal deoxynucleotidyl transferase as a tool for the specific labelling of deoxyoligonucleotides at the 3’-ends. Eur. J. Biochem. 22, 271 (1971).CrossRefGoogle Scholar
  214. 208a.
    Kössel, H., and R. Roychoudhury: Proofreading function of DNA polymerase I from E. coli. Nature of excision of ribonucleotides from the 3’-termini of oligodeoxynucleotide primers. J. Biol. Chem. 249, 4094 (1974).Google Scholar
  215. 209.
    Kössel, H., and S. Kühn: unpublished.Google Scholar
  216. 210.
    Köster, H.: Polymer support oligonucleotide synthesis. VI. Inorganic carriers. Tetrahedron Letters 1527 (1972).Google Scholar
  217. 211.
    Köster, H., and K. Heyns: Polymer support oligonucleotide synthesis. VII. Use of Sephadex LH 20. Tetrahedron Letters 1531 (1972).Google Scholar
  218. 212.
    Köster, H.: Polymer support oligonucleotide synthesis. VIII. Use of polyethylene glycol. Tetrahedron Letters 1535 (1972).Google Scholar
  219. 213.
    Köster, H., and F. Cramer: Synthese von Oligonucleotiden an einem Popcorn-Polystyrol als polymerem Träger. Liebigs Ann. Chem. 766, 6 (1972).CrossRefGoogle Scholar
  220. 214.
    Köster, H., and S. Geussenhainer: Ein neuer Träger für die Festphasensynthese von Oligomeren. Angew. Chem. 84, 712 (1972).CrossRefGoogle Scholar
  221. 215.
    Köster, H., and F. Cramer: Reaktionskinetische Untersuchungen an einem makroporösen unquellbaren Polystyrol: Abspaltung von Nucleosiden und Nucleotiden, die über p-Anisyldiphenylmethylätherbindung an das Polymerisat gebunden sind. Makro-mol. Chem. 167, 171 (1973).CrossRefGoogle Scholar
  222. 216.
    Köster, H., and W. Heidmann: A new approach to the synthesis of oligodeoxyribonucleotides. Angew. Chem. 85, 871(1973). Angew. Chem. Internat. Edit. 12, 859 (1973).Google Scholar
  223. 217.
    Köster, H., and F. Cramer: Synthese von Desoxyoligonucleotiden an einem makroporösen Polystyrol. Liebigs Ann. Chem. 946 (1974).Google Scholar
  224. 218.
    Köster, H., F. Pollack, and F. Cramer: Synthese der Desoxyoligonucleotide dT(pdT)7 und dTpdTpdApdCpdCpdTpdA an einem makroporösen Polystyrol. Liebigs Ann. Chem. 959 (1974).Google Scholar
  225. 218a.
    Kowollik, G., K. Gaertner, and P. Langen: 2’- and 3’-O-trityluridine. Tetrahedron Letters 3345 (1972).Google Scholar
  226. 219.
    Kumar, A., E. Ohtsuka, and H. G. Khorana: Studies on Polynucleotides. CVI. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of two nonanucleotides and a heptanucleotide corresponding to nucleotide sequences 22 to 30, 41 to 49 and 28 to 34. J. Mol. Biol. 72, 289 (1972).CrossRefGoogle Scholar
  227. 219a.
    Kumar, A., and H. G. Khorana: Studies on Polynucleotides. CVIII. Total Synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of an undecadeoxynucleotide, a decadeoxynucleotide and an octadeoxynucleotide corresponding to the nucleotide sequences 7 to 27. J. Mol. Biol. 72, 329 (1972).CrossRefGoogle Scholar
  228. 220.
    Kusama, T., and H. Hayatsu: Use of a derivatized merrifield resin for the polymer-supported synthesis of oligodeoxyribonucleotides. Chem. Pharm. Bull. (Tokyo) 18, 319 (1970).CrossRefGoogle Scholar
  229. 221.
    Lapidot, Y.: Chromatography of diribonucleoside monophosphates on a Bio-Gel P-4 column. J. Chromatog. 56, 143 (1971).CrossRefGoogle Scholar
  230. 222.
    Lapidot, Y., and I. Barzilay: The separation of 2’-5’ dinucleoside monophosphates from the corresponding 3’—5’-isomers on a DEAE-sephadex A-25 column. J. Chromatog. 71, 275 (1972).CrossRefGoogle Scholar
  231. 223.
    Lapidot, Y.,I. Barzilay, and D. Salomon: Ion-exchange thin-layer chromatography and paper ionophoresis of dinucleoside monophosphates. Anal. Biochem. 49, 301 (1972).CrossRefGoogle Scholar
  232. 224.
    Lehrach, H., and K. H. Scheit. Synthesis and properties of a new fluorescent poly-nucleotide, poly(1,N6-ethenoadenylic acid). Biochim. Biophys. Acta 308, 28 (1973).CrossRefGoogle Scholar
  233. 225.
    Lehrfeld, J.: Silicagel catalyzed detritylation of some carbohydrate derivatives. J. Org. Chemistry 32, 2544 (1967).CrossRefGoogle Scholar
  234. 226.
    Letsinger, R. L., M. J. Kornet, V. Mahadevan, and D. M. Jerina: Reactions On polymer supports. J. Amer. Chem. Soc. 86, 5163 (1964).CrossRefGoogle Scholar
  235. 227.
    Letsinger, R. L., and V. Mahadevan: Oligonucleotide synthesis on a polymer support. J. Amer. Chem. Soc. 87, 3526 (1965).CrossRefGoogle Scholar
  236. 228.
    Letsinger, R. L., and V. Mahadevan: Stepwise synthesis of oligodeoxyribonucleotides on an insoluble polymer support. J. Amer. Chem. Soc. 88, 5319 (1966).CrossRefGoogle Scholar
  237. 229.
    Letsinger, R. L., and K. K. Ogilvie: Use ofp-nitrophenyl chloroformate in blocking hydroxyl groups in nucleosides. J. Org. Chem. 32, 296 (1966).CrossRefGoogle Scholar
  238. 229a.
    Letsinger, R. L., M. H. Caruthers, and D. M. Jerina: Reactions of nucleosides On polymer supports. Synthesis of thymidylyl-thymidylyl-thymidine. Biochemistry 6, 1379 (1967).CrossRefGoogle Scholar
  239. 230.
    Letsinger, R. L., M. H. Caruthers, P. S. Miller, and K. K. Ogilvie: Oligonucleotide syntheses utilizing β-benzoylpropionyl, a blocking group with a trigger for selective cleavage. J. Amer. Chem. Soc. 89, 7146 (1967).CrossRefGoogle Scholar
  240. 231.
    Letsinger, R. L., and D. M. Jerina: Reactivity of ester groups on insoluble polymer supports. J. Polymer Science 5, 1977 (1967).Google Scholar
  241. 232.
    Letsinger, R. L., and K. K. Ogilvie: A convenient method for stepwise synthesis of oligothymidylate derivatives in large-scale quantities. J. Amer. Chem. Soc. 89, 4801 (1967).CrossRefGoogle Scholar
  242. 233.
    Letsinger, R. L., P. S. Miller, and G. W. Grams: Selective N-debenzoylation of N,O-polybenzoylnucleosides. Tetrahedron Letters 2621 (1968).Google Scholar
  243. 234.
    Letsinger, R. L., and P. S. Miller: Protecting groups for nucleosides used in synthesizing oligonucleotides. J. Amer. Chem. Soc. 91, 3356 (1969).CrossRefGoogle Scholar
  244. 235.
    Letsinger, R. L., and K. K. Ogilvie: Synthesis of oligothymidylates via phosphotriester intermediates. J. Amer. Chem. Soc. 91, 3350 (1969).CrossRefGoogle Scholar
  245. 236.
    Letsinger, R. L., K. K. Ogilvie, and P. S. Miller: Developments in syntheses of oligodeoxyribonucleotides and their organic derivatives. J. Amer. Chem. Soc. 91, 3360 (1969).CrossRefGoogle Scholar
  246. 237.
    Letsinger, R., and W. S. Mungall: Phosphoramidate analogs of oligonucleotides. J. Org. Chem. 35, 3800 (1970).CrossRefGoogle Scholar
  247. 238.
    Letsinger, R. L., and H. H. Seliger: Polymers with hydroxyl groups as supports for oligonucleotide synthesis. Macromol. Preprints. XXIIIrd Internat. Congr. of pure and applied chemistry, Boston, 1261 (1971).Google Scholar
  248. 239.
    Levina, A. S., V. K. Potapov, D. G. Knorre, Z. A. Shabarova, and T. M. Shubina: Individual stages of oligonucleotide synthesis on a highly crosslinked polymer support. Izv. Sib. Otd. Akad. Nauk. 117 (1972).Google Scholar
  249. 240.
    Lezius, A. G., and K. H. Scheit: Enzymatic synthesis of DNA with 4-thiothymidine triphosphate as substitute for dTTP. Eur. J. Biochem. 3, 85 (1967).CrossRefGoogle Scholar
  250. 241.
    Lezius, A. G.: Synthesis and characterization of a copolymer consisting of alternating deoxyadenosine- and 2-thiodeoxythymidine nucleotides. Eur. J. Biochem. 14, 154 (1970).CrossRefGoogle Scholar
  251. 242.
    Lezius, A. G., and E. M. Gottschalk: Ober eine reversible kooperative Konformationsumwandlung einer synthetischen DNA unter dem Einfluß hoher Salzkonzentrationen. Hoppe Seyler’s Zeitschr. Physiol. Chem. 351, 413 (1970).Google Scholar
  252. 243.
    Lezius, A. G., and U. Rath: Synthesis of Poly [d(A-S4T). d(A-S4T) by Bacillus Subtilis DNA Polymerase. Eur. J. Biochem. 24, 163 (1971).CrossRefGoogle Scholar
  253. 244.
    Lezius, A. G., and E. Domin: A Wobbly Double-Helix. Nature, New Biol. 254, 169 (1973).Google Scholar
  254. 245.
    Lichtenthaler, F. W.: The chemistry and properties of enol phosphates. Chem. Rev. 61, 607 (1963).CrossRefGoogle Scholar
  255. 246.
    Lloyd, G. S., C.-M. Hsu, and B. S. Cooperman: On the reactivity of phosphorylimidazole, an analog of known phosphorylated enzymes. J. Amer. Chem. Soc. 93, 4889 (1971).CrossRefGoogle Scholar
  256. 247.
    Loewen, P. C., and H. G. Khorana: Studies on Polynucleotides. CXXII. The Dodecanucleotide Sequence Adjoining the CCA-End of the Tyrosine Transfer Ribonucleic Acid Gene. J. Biol. Chem. 248, 3489 (1973).Google Scholar
  257. 248.
    Lohrmann, R., and H. G. Khorana: Studies on Polynucleotides. LII. The use of 2,4,6-triisopropylbenzenesulfonyl chloride for the synthesis of internucleotide bonds. J. Amer. Chem. Soc. 88, 829 (1966).CrossRefGoogle Scholar
  258. 249.
    Lohrmann, R.,D. Söll, H. Hayatsu, E. Ohtsuka, and H. G. Khorana: Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides. J. Amer. Chem. Soc. 88, 819 (1966).CrossRefGoogle Scholar
  259. 250.
    Lohrmann, R., and L. E. Orgel: Urea — inorganic phosphate mixtures as prebiotic phosphorylating agents. Science 171, 490 (1971).CrossRefGoogle Scholar
  260. 251.
    Lux, D. C. M., P. Bartl, and A. L. Nussbaum: Chain length characterization of oligodeoxyribonucleotides by analytical ultracentrifugation. Anal. Biochem. 52, 118 (1973).CrossRefGoogle Scholar
  261. 252.
    Mackey, J. K., and P. T. Gilham: New approach to the synthesis of polyribonucleotides of defined sequence. Nature 233, 551 (1971).CrossRefGoogle Scholar
  262. 253.
    Maurer, H. K. (Papierwerke Waldhof-Aschaffenburg A.G.): Stable antileukemic 5’-(adamantanecarbonyl)-N6-(3-methyl-2-butenyl)-adenosine. Ger. Offen. 2,112 (Cl. C 07 d), 14. Sep. 1972, Appl. P 21 12 263,3, 13. Mar. 1971. Chem. Abstr. 78, 4491 u (1973).Google Scholar
  263. 254.
    Melby, L. R., and D. R. Strobach: Oligonucleotide syntheses on isoluble polymer supports. I. Stepwise synthesis of trithymidine diphosphate. J. Amer. Chem. Soc. 89, 450 (1967).CrossRefGoogle Scholar
  264. 255.
    Melby, L. R., and D. R. Strobach: Oligonucleotide syntheses on insoluble polymer supports. II. Pentathymidine tetraphosphate. J. Org. Chem. 34, 421 (1969).CrossRefGoogle Scholar
  265. 256.
    Melby, L. R., and D. R. Strobach: Oligonucleotide syntheses on insoluble polymer supports. III. Fifteen di(deoxyribonucleoside)monophosphates and several trinucleoside diphosphates. J. Org. Chem. 34, 427 (1969).CrossRefGoogle Scholar
  266. 257.
    Merrifield, R. B.: Automated synthesis of peptides. Science 150, 178 (1968).CrossRefGoogle Scholar
  267. 258.
    Michelson, A.: The chemistry of nucleosides and nucleotides. London-New York: Academic Press. 1963.Google Scholar
  268. 259.
    Michniewicz, J. J., O. S. Bhanot, J. Goodchild, S. K. Dheer, R. H. Wightman, and S. A. Narang: Benzoylated DEAE-Sephadex. Its preparation and application. Biochim. Biophys. Acta 224, 626 (1970).CrossRefGoogle Scholar
  269. 260.
    Michniewicz, J. J., C. P. Bahl, K. Itakura, N. Katagiri, and S. A. Narang: Fractionation of synthetic deoxyribopolynucleotides on silica-gel-thin-layer plates. J. Chromatog. 85, 159 (1973).CrossRefGoogle Scholar
  270. 261.
    Miller, P. S., K. N. Fang, N. S. Kondo, and P. O. P. Ts’o: Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of di-nucleoside monophosphates. J. Amer. Chem. Soc. 93, 6657 (1971).CrossRefGoogle Scholar
  271. 262.
    Mitsumo, Y. (Takeda Chem. Industries, Ltd.): Adenosine-2’(3’),5’-diphosphate. Jap. Pat. 70 00,870 (Cl. 16 E 611,2), 12. Jan. 1970, Appl. 8. Feb. 1967. Chem. Abstr. 72, 111788 u (1970).Google Scholar
  272. 263.
    Mitsunobu, O., K. Kato, and J. Kimura: Selective phosphorylation of the 5’-hydroxy groups of thymidine and uridine. J. Amer. Chem. Soc. 91, 6510 (1969).CrossRefGoogle Scholar
  273. 264.
    Mitsunobu, O., J. Kimura, and Y. Fujisawa: Studies on nucleosides and nucleotides. II. Selective acylation of 5’-hydroxyl group of thymidine. Bull. Chem. Soc. Japan 45, 245 (1972).CrossRefGoogle Scholar
  274. 265.
    Miura, K., and T. Ueda: A convenient synthesis of diribonucleoside monophosphates by the use of unblocked nucleosides. Chem. Pharm. Bull (Tokyo) 19, 2567 (1971).CrossRefGoogle Scholar
  275. 266.
    Miura, K., M. Shiga, and T. Ueda: Nucleosides and Nucleotides. VI. Preparation of diribonucleoside monophosphates containing 4-thiouridine. J. Biochem. 73,1279 (1973).Google Scholar
  276. 267.
    Miyauchi, K., Y. Matsumoto, T. Furuya, and K. Uchida: Microbial phosphorylation of inosine and guanosine. Jap. Pat. 70 35,236 (Cl. C 12 d), 11. Nov. 1970, Appl. 31. Mar. 1966 (Yamasa Shoyu Co. Ltd.). Chem. Abstr. 74, 63175 j (1971).Google Scholar
  277. 268.
    Mizuno, Y., T. Itoh, and H. Tagawa: New acetylating agents for nucleosides N-acetyl cyclohydroxamic acids. Chem. and Ind. 1498 (1965).Google Scholar
  278. 269.
    Mizuno, Y., and T. Sasaki: The synthesis of dinucleoside phosphates of natural linkages by the anhydronucleoside method. Tetrahedron Letters 4579 (1965).Google Scholar
  279. 270.
    Mizuno, Y., T. Sasaki, T. Kauai, and H. Igarashi: Nucleotides I. The reaction of cyclouridines with benzyl hydrogen phosphoric benzoic anhydride. J. Org. Chemistry 30, 1533 (1965).CrossRefGoogle Scholar
  280. 271.
    Mizuno, Y., W. Limn, K. Tsuchida, and K. Ikeda: Novel protecting group for the synthesis of 7α-D-pentofuranosyl-hypoxanthines. J. Org. Chemistry 37, 39 (1972).CrossRefGoogle Scholar
  281. 272.
    Mohr, S. C., and R. E. Thach: Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J. Biol. Chem. 244, 6566 (1969).Google Scholar
  282. 273.
    Monparler, R. L., and G. A. Fischer: Mammalian deoxynucleoside kinases. I. Deoxycytidine kinase. Purification, properties and kinetic studies with cytosine arabinoside. J. Biol. Chem. 243, 4298 (1968).Google Scholar
  283. 274.
    Moon, M. W., and H. G. Khorana: Studies on Polynucleotides. LV. The use of mesitoylchloride in the synthesis of internucleotide bonds. J. Amer. Chem. Soc. 88, 1805 (1966).CrossRefGoogle Scholar
  284. 275.
    Moravek, J.: Formation of oligonucleotides during heating of a mixture of uridine2’,3’-phosphate and uridine. Tetrahedron Letters 1707 (1967).Google Scholar
  285. 276.
    Moravek, J., J. Kopecky, and J. Skoda: Thermal phosphorylations IV. Formation of a natural internucleotide bond in oligonucleotides formed by heating uridine-2’,3’phosphate with uridine. Coll. Czech. Chem. Comm. 33, 960 (1968).CrossRefGoogle Scholar
  286. 277.
    Moravek, J., J. Kopecky, and J. Skoda: Thermal phosphorylations V. Fractionation of products of thermal reaction of uridylic acid with uridine using gel filtration and ion exchange chromatography. Coll. Czech. Chem. Comm. 33, 4407 (1968).Google Scholar
  287. 278.
    Moravek, J., J. Kopecky, and J. Skoda: Thermal phosphorylations VI. Formation of oligonucleotides from uridine2’,3’-monophosphate. Coll. Czech. Chem. Comm. 33, 4120 (1968).CrossRefGoogle Scholar
  288. 279.
    Morgan, A. R.: Studies on polynucleotides. XCIV. Transcription of DNA’s with repeating nucleotide sequences. J. Mol. Biol. 52, 441 (1970).CrossRefGoogle Scholar
  289. 280.
    Mukaiyama, T., and M. Hashimoto: Phosphorylation of alcohols and phosphates by oxidation-reduction condensation. Bull. Chem. Soc. Jap. 44, 106 (1971).Google Scholar
  290. 281.
    Mushika, Y., T. Hata, and T. Mukaiyama: New phosphorylating reagent. III. Preparation of mixed diesters of phosphoric acid by the use of an activatable protecting group. Bull. Chem. Soc. Japan 44, 232 (1971).CrossRefGoogle Scholar
  291. 282.
    Mushika, Y., and N. Yoneda: New phosphorylating reagent. IV. Preparation of the mixed phosphoric diesters of dl-α-tocopherol and ethylene glycol analogs by means of 2-chlormethyl-4-nitrophenyl phosphorodichloridate. Chem. Pharm. Bull. (Tokyo) 19, 687 (1971).CrossRefGoogle Scholar
  292. 282a.
    Myles, A., W. Hutzenlaub, G. Reitz, and W. Pfleiderer: Nucleotide I. Synthese und Eigenschaften von Thymidylyl-(3’→3’)-, (3’→5’)- und (5’→5’)-thymidin; in preparation.Google Scholar
  293. 283.
    Nagyvary, J., and J. S. Roth: Studies on the synthesis of the natural internucleotide bond by the use of cyclonucleosides. Tetrahedron Letters 617 (1965).Google Scholar
  294. 284.
    Nakayama, K., and H. Tanaka: Production of nucleic acid related substances. XXXVIII. Production of uridine 5’-monophosphate and orotidine 5’-mono-phosphate by Brevibacterium ammoniagenes. Agr. Biol. Chem. 35, 518 (1971).CrossRefGoogle Scholar
  295. 285.
    Nara, T., T. Komuro, M. Misawa, and S. Kinoshita: Production of nucleic acid related substances by fermentative processes. XXIX. Growth responses of Brevi-bacterium ammoniagenes. Agr. Biol. Chem. 33, 1030 (1969).CrossRefGoogle Scholar
  296. 286.
    Narang, S. A., T. M. Jacob, and H. G. Khorana: Studies on polynucleotides. LXIII. Deoxyribopolynucleotides containing repeating trinucleotide sequences. The polymerization of protected deoxyribotrinucleotides. J. Amer. Chem. Soc. 89, 2167 (1967).CrossRefGoogle Scholar
  297. 287.
    Narang, S. A., S. K. Dheer, and J. J. Michniewicz: A new general method for the synthesis of deoxyribopolynucleotides bearing a 5’-phosphomonoester end group. J. Amer. Chem. Soc. 90, 2702 (1968).CrossRefGoogle Scholar
  298. 288.
    Narang, S. A., and S. K. Dheer: Chemical synthesis of three deoxyribododecanucleotide chains of defined sequence. Biochemistry 8, 3443 (1969).CrossRefGoogle Scholar
  299. 289.
    Narang, S. A., O. S. Bhanot, J. Goodchild, and R. Wightman: Use Of substituted phenol as phosphate protecting group in the synthesis of deoxyribo-oligo-nucleotides bearing 5’-phosphomonoester end group. J. Chem. Soc. D Chem. Commun. 91 (1970).Google Scholar
  300. 290.
    Narang, S. A., O. S. Bhanot, J. Goodchild, J. Michniewicz, R. A. Wightman, and S. K. Dheer: Use of new protecting groups in the synthesis of deoxyribo-oligonucleotides of defined sequence. J. Chem. Soc. D Chem. Commun. 516 (1970).Google Scholar
  301. 290a.
    Narang, S. A., O. S. Bhanot, J. Goodchild, R. H. Wightman, and S. K. Dheer: A new general method for the synthesis of phosphate-protected deoxyribo-oligonucleotides. IV. J. Amer. Chem. Soc. 94, 6183 (1972).CrossRefGoogle Scholar
  302. 291.
    Narang, S. A., K. Itakura, C. P. Bahl, and Y. Y. Wigfield: Chemical synthesis of two deoxyribopolynucleotide fragments containing the natural sequence of T4 lysozyme gene. Biochem. Biophys. Res. Commun. 49, 445 (1972).CrossRefGoogle Scholar
  303. 292.
    Narang, S. A., K. Itakura, and R. H. Wightman: A simplification in the synthesis of deoxyribooligonucleotides. Can. J. Chem. 50, 769 (1972).CrossRefGoogle Scholar
  304. 293.
    Narang, S. A., and J. J. Michniewicz: Thin-layer chromatography of synthetic polydeoxyribonucleotides. Part III. Anal. Biochem. 49, 379 (1972).CrossRefGoogle Scholar
  305. 294.
    Naylor, R., and P. T. Gilham: Studies on Some Interactions and Reactions of Oligonucleotides in Aqueous Solution. Biochem. 5, 2722 (1966).CrossRefGoogle Scholar
  306. 295.
    Nedrai, V. K., N. I. Sokolova, Z. A. Shabarova, and M. A. Prokof’ev: Chemical matrix synthesis of oligonucleotides in aqueous solutions. Dokl. Akad. Nauk SSSR 205, English translation p. 1114 (1972).Google Scholar
  307. 296.
    Neilson, T.: A novel chemical synthesis for oligoribonucleotides. Chem. Commun. 1139 (1969).Google Scholar
  308. 297.
    Neilson, T., and E. S. Werstiuk: Oligoribonucleotide synthesis. II. Preparation of 2’-0-tetrahydropyranyl derivatives of adenosine and cytidine necessary for insertion in stepwise synthesis. Can. J. Chem. 49, 493 (1971).CrossRefGoogle Scholar
  309. 298.
    Neilson, T., and E. S. Werstiuk: Oligoribonucleotide synthesis III. Synthesis of trinucleotides using a stepwise phosphotriester method. Can. J. Chem. 49, 3004 (1971).CrossRefGoogle Scholar
  310. 299.
    Neilson, T., E. V. Wastrodowski, and E. S. Werstiuk: Oligoribonucleotide synthesis. V. Preparation of 2’-O-tetrahydropyranyl derivatives of guanosine and their insertion into a general stepwise synthesis. Can. J. Chem. 51, 1068 (1973).CrossRefGoogle Scholar
  311. 300.
    Nelson, T., and E. S. Werstink: Synthesis of the anticodon loop of E. coli methionine transfer ribonucleic acid. J. Amer. Chem. Soc. 96, 2295 (1974).CrossRefGoogle Scholar
  312. 301.
    Nejedly, Z., H. Skodova, K. Hybs, and J. Skoda: New possibilities of enzyme synthesis of radioactive nucleotides. II. Phosphoribosylation of radioactive bases of nucleic acids by the catalytic effect of unpurified cell-free extract of Brevibacterium ammoniagenes. J. Label. Compounds 6, 3 (1970).CrossRefGoogle Scholar
  313. 302.
    Neuman, M. W., W. F. Neuman, and K. Lane: Possible role of crystals in the origins of life. IV. The phosphorylation of nucleotides. Curr. Mod. Biol. 3, 277 (1970).Google Scholar
  314. 303.
    Nikolenko, L. N., V. N. Nezavibat’ko, and M. N. Semenova: Selective N-benzoylation of cytidine 5’-monophosphate. Zh. Obshch. Khim. 39, 223 (1969).Google Scholar
  315. 304.
    Ogilvie, K. K., and R. L. Letsinger: Use of isobutyloxycarbonyl as a blocking group in preparation of 3’-O p-monomethoxytritylthymidine. J. Org. Chemistry 32, 2365 (1967).CrossRefGoogle Scholar
  316. 305.
    Ogilvie, K. K., and D. Iwacha: Nucleotide syntheses using O2, 2’-anhydrouridine. Can. J. Chem. 48, 862 (1970).CrossRefGoogle Scholar
  317. 306.
    Ogilvie, K. K., and K. Kroeker: Synthesis of oligothymidylates on an insoluble polymer support. Can. J. Chem. 50, 1211 (1972).CrossRefGoogle Scholar
  318. 307.
    Ogilvie, K. K.: The tert.-butyldimethylsilyl group as a protecting group in deoxynucleosides. Can. J. Chem. 51, 3799 (1973).CrossRefGoogle Scholar
  319. 308.
    Ohtsuka, E., M. W. Moon, and H. G. Khorana: The synthesis of deoxyribopolynucleotides containing repeating dinucleotide sequences. J. Amer. Chem. Soc. 87, 2954 (1965).CrossRefGoogle Scholar
  320. 309.
    Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: A new method for the synthesis of protected ribooligonucleotides with 3’-phosphate end groups. J. Amer. Chem. Soc. 91, 1537 (1969).CrossRefGoogle Scholar
  321. 310.
    Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. I. Synthesis of ribooligonucleotides using aromatic phosphoramidates as a protecting group. J. Amer. Chem. Soc. 92, 3441 (1970).CrossRefGoogle Scholar
  322. 311.
    Ohtsuka, E., M. Ubasawa, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. II. A method for synthesis of protected ribooligonucleotides using a ribonuclease. J. Amer. Chem. Soc. 92, 3445 (1970).CrossRefGoogle Scholar
  323. 312.
    Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: Polynucleotides. VIII. A new method for the synthesis of protected deoxy- ribooligonucleotides with 5’-phosphate. J. Amer. Chem. Soc. 92, 5507 (1970).CrossRefGoogle Scholar
  324. 313.
    Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. III. Synthesis of hexanucleotide having the sequence of the yeast alanine transfer ribonucleic acid 3’ end. J. Amer. Chem. Soc. 93, 2296 (1971).CrossRefGoogle Scholar
  325. 314.
    Ohtsuka, E., H. Tagawa, and M. Ikehara: Studies on t-RNA’s and related compounds. IV. A simple method for the synthesis of ribotrinucleotides. Chem. Pharm. Bull. 19, 139 (1971).CrossRefGoogle Scholar
  326. 315.
    Ohtsuka, E., A. Kumar, and H. G. Khorana: Studies on Polynucleotides. CVII. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of a dodecadeoxynucleotide and a hexadeoxynucleotide corresponding to the nucleotide sequences 1 to 12. J. Mol. Biol. 72, 309 (1972).CrossRefGoogle Scholar
  327. 316.
    Ohtsuka, E., S. Morioka, and M. Ikehara: Formation of phosphodiester linkages by oxidation of a phosphoramidate. Tetrahedron Letters 2553 (1972).Google Scholar
  328. 317.
    Ohtsuka, E., S. Morioka, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. V. Synthesis of ribonucleotides with phosphomonoester end groups on a polymer support. J. Amer. Chem. Soc. 94, 3229 (1972).CrossRefGoogle Scholar
  329. 318.
    Ohtsuka, E., M. Ubasawa, S. Morioka, and M. Ikehara: Studies On Transfer Ribonucleic Acids and Related Compounds. VI. Synthesis of Yeast Alanine Transfer Ribonucleic Acid 3’-terminal Nonanucleotides and 5’-terminal Hexanucleotides. J. Amer. Chem. Soc. 95, 4725 (1973).CrossRefGoogle Scholar
  330. 319.
    Ohtsuka, E.: Chemical synthesis of oligo-and poly-nucleotides. In: Methoden der Organischen Chemie (Houben-Weyl, ed.). In press.Google Scholar
  331. 320.
    Okazaki, R., and A. Kornberg: Deoxythymidine kinase of E. coli I. Purification and some properties of the enzyme. J. Biol. Chem. 239, 269 (1964).Google Scholar
  332. 321.
    Okazaki, R., and A. Kornberg: Deoxythymidine kinase of E. coli II. Kinetics and feedback control. J. Biol. Chem. 239, 275 (1964).Google Scholar
  333. 322.
    McOmie, J. F. W.: Protective groups. Advances Org. Chemistry 3, 191 (1963).Google Scholar
  334. 323.
    Osterberg, R., L. E. Orgel, and R. Lohrmann: Further studies of urea-catalyzed phosphorylation reactions. J. Mol. Evol. 2, 231 (1973).CrossRefGoogle Scholar
  335. 324.
    Ott, D. G., V. N. Kerr, E. Hansbury, and F. N. Hayes: Chemical synthesis of nucleoside triphosphates. Anal. Biochem. 21, 469 (1967).CrossRefGoogle Scholar
  336. 325.
    Ouchi, S., T. Sowa, K. Tsunoda, and S. Senoo(Asahi Chem. Industry Co., Ltd.): Direct phosphorylation of nucleosides. Jap. Pat. 7016,708 (Cl. 16 E 461), 10. Jun. 1970, Appl. 14. Jul. 1966. Chem. Abstr. 73, 66866 a (1970).Google Scholar
  337. 326.
    Ouchi, S., T. Sowa, S. Kato, T. Osawa, and S. Senoh (Asahi Chem. Industry Co., Ltd.): 5’Phosphorylation of unprotected nucleosides. Jap. Pat. 7108,854 (Cl. C 07 d), 5. Mar. 1971, Appl. 20. Jan. 1967. Chem. Abstr. 75, 36571 z (1971).Google Scholar
  338. 327.
    Pace, N. R., D. H. L. Bishop, and S. Spiegelman: The Immediate Precursor of Viral RNA in the Qβ-Replicase Reaction. Proc. Natl. Acad. Sci. US 59, 139 (1968).CrossRefGoogle Scholar
  339. 328.
    Paetkau, V. H., and H. G. Khorana: Preparation of a circular bihelical deoxyribonucleic acid containing repeating dinucleotide sequences. Biochemistry 10, 1511 (1971).CrossRefGoogle Scholar
  340. 329.
    Paivinen, E., and N. S. Tikhomirova-Sidorova: Selective 4-N-acetylation of 2’-deoxycytidine 5’-phosphate. Zh. Obshch. Khim. 41, 2076 (1971).Google Scholar
  341. 330.
    Paivinen, E., E. N. Morozova, and N. S. Tikhomirova-Sidorova: Acetylation of dinucleotides and synthesis of trinucleotides. Zh. Obshch. Khim. 41, 219 (1971).Google Scholar
  342. 331.
    Parks, R. E., Jr., and R. P. Agarwal: Nucleotide kinases. In: The Enzymes. VI. (P. D. Boyer, ed.), 3rd edition. New York-London: Academic Press. 1972.Google Scholar
  343. 332.
    Philipp, M., and H. Seliger: Formylated deoxynucleotidyl triphosphates as potential substrates of deoxynucleotide polymerizing enzymes. Abstracts. 164th ACS-meeting, New York. CARB 5 (1972).Google Scholar
  344. 333.
    Philipp, M., and H. Seliger: Unpublished results.Google Scholar
  345. 334.
    Pochon, F., M. Leng, and A. M. Michelson: Photochimie des polynucléotides. III. Étude de la luminescence de poly-nucléotides à température ordinaire. Biochim. Biophys. Acta 169, 350 (1968).CrossRefGoogle Scholar
  346. 335.
    Pochon, F., and A. M. Michelson: Polynucleotide analogues. XIV. Poly N2-dimethylguanylate. Biochim. Biophys. Acta 182, 17 (1969).CrossRefGoogle Scholar
  347. 336.
    Podder, S. K., and I. Tinoco Jr.: Enzymatic synthesis of oligoguanylic acids containing 2’-5’ phosphodiester linkages. Biochem. Biophys. Res. Commun. 34, 569 (1969).CrossRefGoogle Scholar
  348. 337.
    Podder, S. K.: Synthetic action of ribonuclease T1. Biochim. Biophys. Acta 209, 455 (1970).CrossRefGoogle Scholar
  349. 338.
    Podder, S. K.: On self-interacting oligoribonucleotides. I. absorption and optical rotatory dispersion of 2’-5’- and 3’-5’-oligoguanylic acids. Biochemistry 10, 2415 (1971).CrossRefGoogle Scholar
  350. 339.
    Pongs, O., and P. O. P. Ts’o: Polymerization of 5’-deoxyribonucleotides with 13imidazolyl-4(5)-propanoic acid. Biochem. Biophys. Res. Comm. 36, 475 (1969).CrossRefGoogle Scholar
  351. 340.
    Pongs, O., and P. O. P. Ts’o: Polymerization of unprotected 2’-deoxyribonucleoside-5’-phosphates at elevated temperature. J. Amer. Chem. Soc. 93, 5241 (1971).CrossRefGoogle Scholar
  352. 341.
    Poonian, M. S., E. F. Nowoswiat, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. VII. A fragment from the nonsense strand of a modified S-peptide “gene”. J. Amer. Chem. Soc. 94, 3992 (1972).CrossRefGoogle Scholar
  353. 342.
    Potapov, V. K., O. G. Chekhmakhcheva, Z. A. Shabarova, and M. A. Prokof’ev: Synthesis of oligonucleotides on polymer carriers. Synthesis of deoxy-[thimidylyl(3’→5’)-adenylyl-(3’→5’)-adenylyl-(3’→5’)-adenosine]. Dokl. Akad. Nauk SSSR 196, 360 (1971).Google Scholar
  354. 343.
    Potapov, V. K., S. I. Turkin, and Z. A. Shabarova: Application of Sephadex LH-20 in the synthesis of oligonucleotides on polymeric carriers. Zh. Obshch. Khim. 42, 2349 (1972).Google Scholar
  355. 344.
    Rabinowitz, J.: 265. Recherche sur la formation et la transformation des esters. LXXXIII. (1). Reaction de condensation et/ou de phosphorylation, en solution aqueuse, de divers composes organiques a fonction —OH, —COOH, —NH2 ou autre a l’aide de polyphosphates lineares ou cycliques. Helv. Chim. Acta 52, 2663 (1969).CrossRefGoogle Scholar
  356. 345.
    Rabinowitz, J., S. Chang, and C. Ponnamperuma: Phosphorylation by way of inorganic phosphate as a potential prebiotic process. Nature 218, 442 (1968).CrossRefGoogle Scholar
  357. 346.
    Rajabalee, F. J. M.: A convenient synthesis of 2’,3’,5’-tri-O-acetyladenosine and -uridine. Angew. Chem. 10, 75 (1971).Google Scholar
  358. 347.
    Ramel, A., E. Heimer, S Roy, and A. L. Nussbaum: Gel filtration of acylated oligonucleotides. Anal. Biochem. 41, 323 (1971).CrossRefGoogle Scholar
  359. 348.
    Randerath, K., and E. Randerath: Thin-layer Separation Methods for Nucleic Acid Derivatives. In: S. P. Colowicx and N. O. Kaplan, Methods in Enzymology, Vol. XII (L. Grossmann and K. Moldave, eds.), p. 323. New York-London: Academic Press. 1967.Google Scholar
  360. 349.
    Ratliff, R. L., and F. N. Hayes: Enzymatic synthesis of a three-section block copolymer of thymidylate, deoxyguanylate and deoxyadenylate. Biochim. Biophys. Acta 134, 203 (1967).CrossRefGoogle Scholar
  361. 350.
    Reese, C. B., and R. Saffhill: Oligonucleotide synthesis via phosphotriester intermediates: The phenyl protecting group. J. Chem. Soc. D, Chem. Comm. 767 (1968).Google Scholar
  362. 351.
    Reese, C. B., and J. C. M. Stewart: Methoxyacetyl as a protecting group in ribonucleoside chemistry. Tetrahedron Letters 4273 (1968).Google Scholar
  363. 352.
    Reese, C. B.: A systematic approach to oligoribonucleotide synthesis. Chim. Organ. du Phosphore (Colloqu. Intern. du centre national de la recherche scientifique, eds.) 182, 319 (1969).Google Scholar
  364. 353.
    Reese, C. B., J. H. van Boom, G. R. Owen, J. Preston, and T. Ravindranathan: Synthesis of oligoribonucleotides. IX. Preparation of ribonucleotide 2’-acetal 5’-esters. J. Chem. Soc. C 3230 (1971).Google Scholar
  365. 354.
    Regel, W., E. Stengele, and H. Seliger: Kinetik der Schutzgruppenabspaltung an Nucleosiden mittels’H-NMR-Spektroskopie. Chem. Ber. 107, 611 (1974).CrossRefGoogle Scholar
  366. 355.
    Renz, M., R. Lohrmann, and L. E. Orgel: Catalysts for the polymerization of adenosine cyclic 2’,3’-phosphate on a poly (U) template. Biochim. Biophys. Acta 240,463 (1971).CrossRefGoogle Scholar
  367. 356.
    Richards, G. M., D. J. Tutas, W. J. Wechter, and M. Laskowskisr: Hydrolysis of dinucleoside monophosphates containing arabinose in various internucleotide linkages by exonuclease from the venom of crotalus adamanteus. Biochemistry 6, 2908 (1967).CrossRefGoogle Scholar
  368. 357.
    Richardson, C. C.: Phosphorylation of nucleic acid by an enzyme from T4-bacteriophage infected Escherischia coli. Proc. Natl. Acad. Sci. US 54, 158 (1965).CrossRefGoogle Scholar
  369. 358.
    Rokos, H., W. Hutzenlaub, A. Myles, and W. Pflederer: Nucleotide, II: Isomerisierung der Internucleotidbindung bei der Abspaltung der Phosphor-Schutzgruppe von Phosphorsäuretriestern. In preparation.Google Scholar
  370. 359.
    Rössner, E.: Synthese von Oligodesoxyribonucleotiden mit 3’-terminalem Ribonucleotid durch Cooligokondensation. Diplomarbeit, Univ. Freiburg, 1972.Google Scholar
  371. 360.
    Roychoudhury, R., and H. Kössel: Synthetic polynucleotides. Enzymic synthesis of ribonucleotide terminated oligodeoxynucleotides and their use as primers for the enzymic synthesis of polydeoxynucleotides. Eur. J. Biochem. 22, 310 (1971).CrossRefGoogle Scholar
  372. 361.
    Roychoudhury, R.: Enzymic Synthesis of Polynucleotides. Oligodeoxynucleotides with one 3’-terminal Ribonucleotide as Primers for Polydeoxynucleotide Synthesis. J. Biol. Chem. 247, 3910 (1972).Google Scholar
  373. 361a.
    Roychudhury, R., S. Kühn, H. Schott, and H. Kössel: Enzymic polynucleotide synthesis primed by polyvinylalcohol linked oligothymidylate. FEBS Letters 50, 140 (1975).CrossRefGoogle Scholar
  374. 362.
    Rubinstein, M., and A. Patchornik: Polymers as chemical reagents. Use of poly-3,5diethylstyrene sulfonyl chloride for the synthesis of internucleotide bonds. Tetrahedron Letters 2281 (1972).Google Scholar
  375. 363.
    Sachdev, H. S., and N. A. Starkovsky: Enzymatic removal of acyl protecting groups. The use of dihydrocinnamoyl group in oligonucleotide synthesis and its cleavage by α-chymotrypsin. Tetrahedron Letters 733 (1969).Google Scholar
  376. 364.
    Saffhill, R.: Selective phosphorylation of the cis-2’,3’-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chemistry 35, 2881 (1970).CrossRefGoogle Scholar
  377. 365.
    Saito, M., Y. Furuichi, K. Takeishi, M. Yoshida, M. Yamasaki, K. Arima, H. Hayatsu, and T. Ukita: Synthesis of diribonucleoside monophosphates by use of a nonspecific ribonuclease from Bacillus subtilis. Biochim. Biophys. Acta 195, 299 (1969).CrossRefGoogle Scholar
  378. 366.
    Sanger, F., J. E. Donelson, A. R. Coulson, H. Kössel, and D. Fischer: Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage f 1 DNA. Proc. Nat. Acad. Sci. US 70, 1209 (1973).CrossRefGoogle Scholar
  379. 367.
    Sanno, Y., and A. Nohara: Phosphorylation of 2’,3’-isopropylideneinosine by heating or ultraviolet irradiation in the presence of phosphoric acid and nitriles. Chem. Pharm. Bull. (Tokyo) 16, 2056 (1968).CrossRefGoogle Scholar
  380. 367a.
    Sano, H., and G. Feix: Ribonucleic acid ligase activity of DNA ligase from T4-infected E. coli. Biochemistry 13, 5110 (1974).CrossRefGoogle Scholar
  381. 367b.
    Scheffler, I. E., and C. C. Richardson: Chemical and enzymatic studies of DNA covalently linked to ficoll. J. Biol. Chem. 247, 5736 (1972).Google Scholar
  382. 368.
    Scheit, K. H.: Untersuchungen an poly-5-Hydroxymethyluridylsäure und poly-5Methyluridylsäure. Biochim. Biophys. Acta 134, 17 (1967).CrossRefGoogle Scholar
  383. 369.
    Scheit, K. H.: Die Benzylester von Desoxydinucleosidphosphaten und 5’-O-(13,ß,13,-trichloräthylphosphoryl-) thymidylyl-3’-5’-thymidylyl-3’-5’-thymidin. Tetrahedron Letters 3243 (1967).Google Scholar
  384. 370.
    Scheit, K. H.: Über die Synthese und Eigenschaften von 4-Thiouridylyl-(3’-5’)-4-thiouridin, 4-Thiouridylyl-(3’-5’)-uridin und Uridylyl-(3’-5’)-4-thiouridin. Biochim. Biophys. Acta 166, 285 (1968).CrossRefGoogle Scholar
  385. 371.
    Scheit, K. H., und E. Gaertner: Die Polymerisation von 4-Thiouridin-5’-diphosphat und 4-Thiothymidin-5’-diphosphat durch Polynucleotidphosphorylase aus Micro-coccus Lysodeikticus. Biochim. Biophys. Acta 182, 1 (1969).CrossRefGoogle Scholar
  386. 372.
    Scheit, K. H.: Enzymatic polymerization of 5-methyl-4-thiouridine-5’-diphosphate by polynucleotide phosphorylase from Escherichia coli. Biochim. Biophys. Acta 209, 445 (1970).CrossRefGoogle Scholar
  387. 373.
    Scheit, K.-H., and P. Faerber: Synthesis and properties of poly(s2C), a new Poly(c) analog. Eur. J. Biochem. 24, 385 (1971).CrossRefGoogle Scholar
  388. 374.
    Schetters, H., H. G. Gassen, and H. Matthaei: Codon-anticodon interaction studied with oligonucleotides containing 3-deazauridine, 4-deoxyuridine or 3-deaza-4deoxyuridine. I. Synthesis by primer-dependent polynucleotide phosphorylase of oligonucleotidescontainingmodifiednucleosides. Biochim. Biophys. Acta 272, 549 (1972).CrossRefGoogle Scholar
  389. 375.
    Schneider-Bernloehr, H., R. Lohrmann, J. Sulston, B. J. Weimann, L. E. Orgel, and H. Todd Miles: Non-enzymic synthesis of deoxyadenylate oligonucleotides on a polyuridylate template. J. Mol. Biol. 37, 151 (1968).CrossRefGoogle Scholar
  390. 376.
    Schneider-Bernloehr, H., R. Lohrmann, J. Sulston, L. E. Orgel, and H. Todd Miles: Specificity of template-directed synthesis with adenine nucleosides. J. Mol. Biol. 47, 257 (1970).CrossRefGoogle Scholar
  391. 377.
    Schott, H.: New dihydroxyboryl-substituted polymers for column-chromatographic separation of ribonucleoside-deoxyribonucleoside mixtures. Angew. Chem. 11, 824 (1972).CrossRefGoogle Scholar
  392. 378.
    Schott, H.: Polyvinyl alcohol substituted by nucleotides as carrier for liquid phase oligonucleotide synthesis. Angew. Chem. 12, 246 (1973).CrossRefGoogle Scholar
  393. 379.
    Schott, H., D. Fischer, and H. Kössel: Synthesis of four undecanucleotides complementary to a region of the coat protein cistron of phage fd. Biochemistry 12, 3447 (1973).CrossRefGoogle Scholar
  394. 380.
    Schott, H., and H. Kössel: Synthesis of phage specific deoxyribonucleic acid fragments. I. Synthesis of four undecanucleotides complementary to a mutated region of the coat protein cistron of fd phage deoxyribonucleic acid. J. Amer. Chem. Soc. 95, 3778 (1973).CrossRefGoogle Scholar
  395. 381.
    Schott, H., E. Rudloff, P. Schmidt, R. Roychoudhury, and H. Kössel: A dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry 12, 932 (1973).CrossRefGoogle Scholar
  396. 382.
    Schott, H., F. Brandstetter, and E. Bayer: Liquid-Phase Synthese von Oligothymidylphosphaten. Makromol. Chem. 173, 247 (1974).CrossRefGoogle Scholar
  397. 383.
    Schott, H.: Chemische Synthese eines phagenspezifischen DNA-Fragments. Makrom. Chem. 175, 1683 (1974).CrossRefGoogle Scholar
  398. 384.
    Schwartz, A. W., and F. N. Hayes: Synthesis of a polydeoxyribonucleotide containing an internal pyrophosphate linkage. Biochim. Biophys. Acta 138, 604 (1967).CrossRefGoogle Scholar
  399. 385.
    Schwartz, A. W.: Specific phosphorylation of the 2’- and 3’-position in ribonucleosides. J. Chem. Soc. D, Chem. Comm. 1393 (1969).Google Scholar
  400. 386.
    Schwartz, A., and C. Ponnamperuma: Phosphorylation of adenosine with linear polyphosphate salts in aqueous solution. Nature 218, 449 (1968).CrossRefGoogle Scholar
  401. 386a.
    Sedel’nikova, E. A., and S. M. Zhenodarova: Stepwise synthesis of oligonucleotides. I. 5-O-(α-alkoxyalkyl) derivatives of uridine 3’-phosphate. Zh. Obshch. Khim. 38, 2234 (1968).Google Scholar
  402. 387.
    Sedel’nikova, E. A., O. A. Smolyaninova, and S. M. Zhenodarova: Stepwise synthesis of oligonucleotides. III. Structural analysis of α-alkoxyalkyl groups in O-(α-alkoxylkyl) derivatives of nucleosides and nucleotides. Zh. Obshch. Khim. 38, 2245 (1968).Google Scholar
  403. 388.
    Sekiya, T., Y. Furuichi, M. Yoshida, and T. Ukita: Ribonuclease-T1 catalyzed Synthesis of Triribonucleoside Diphosphates having a Guanosine Residue at the 5’-End. J. Biochem. (Tokyo) 63, 514 (1968).Google Scholar
  404. 389.
    Seliger, H.: Versuche zur Einführung und Reaktivierung von Enolgruppen als Schutzgruppen an Phosphorsäuren. Diplom thesis. Technische Hochschule Darmstadt, 1963.Google Scholar
  405. 390.
    Seliger, H., and F. Cramer: Nucleophile Substitutionen mit Pyrimidinnucleosid-N3natriumsalzen. Angew. Chem. 81,577 (1969). Angew. Chem. Internat. Edit. 8, 609 (1969).Google Scholar
  406. 391.
    Seliger, H.: Chlorameisensäureester von Nucleosiden — neue Zwischenprodukte für Synthesen mit Nucleinsäurebausteinen. Tetrahedron Letters 4043 (1972).Google Scholar
  407. 392.
    Seliger, H., and G. Aumann: Oligonucleotide synthesis on a polymer support soluble in water and pyridine. Tetrahedron Letters 2911 (1973).Google Scholar
  408. 393.
    Seliger, H.: Ein neuer Weg zur Synthese von Polystyrol und Styrol-Copolymeren mit primären aromatischen Aminogruppen. Makromol. Chem. 169, 83 (1973).CrossRefGoogle Scholar
  409. 394.
    Seliger, H.,G. Aumann, V. Genrich, M. Philipp, and E. Rössner: Improvements in the development of rational methods for oligonucleotide synthesis. Abstracts. XXIV th Internat. Congr. of pure and applied chemistry, Hamburg, p. 136 (1973).Google Scholar
  410. 395.
    Seliger, H., G. Aumann, and R. L. Letsinger: Progress in the synthesis of oligonucleotides on polymer supports. Contributed Papers, Internat. Symposium on Macromolecules, Rio de Janeiro, 221 (1974).Google Scholar
  411. 396.
    Seliger, H., G. Aumann, V. Genrich, M. Philipp, E. Rössner, and H. Schütz: Sequence-specific cooligocondensation of nucleic acid constituents — a new approach to polynucleotide synthesis. Contributed Papers, Internat. Symposium on Macromolecules, Rio de Janeiro, 222 (1974).Google Scholar
  412. 396a.
    Seliger, H., and G. Aumann: Oligonukleotidsynthese an unvernetzten Copolymeren des Vinylalkohols und N-Vinylpyrrolidons. Makromol. Chem., in press.Google Scholar
  413. 397.
    Seliger, H.: Polymers in aid of polynucleotide chemistry. Current topics in chemistry, manuscript in preparation.Google Scholar
  414. 397a.
    Seliger, H.: Handelsübliche Polymere als Träger in der Oligonukleotidsynthese. I. Synthese eines Pentanucleosidtetraphosphats an Merckogel OR 1 000 000R. Makromol. Chem., in press.Google Scholar
  415. 398.
    Seliger, H., H. Schütz, E. Saur, and M. Philipp: Oligonucleotide synthesis with nucleotide-3’-formyl esters. J. Carbohydr., Nucleosides, Nucleotides, in press.Google Scholar
  416. 398a.
    Seliger, H., E. Rössner, G. Aumann, V. Genrich, M. Holupirek, T. Knable, and M. Philipp: Sequenzspezifische Cooligokondensation von Nukleinsäurebausteinen mit Affinitätsschutzgruppen. I. Desoxyoligonucleotide mit Ribouridin-Terminus. Makro-mol. Chem., in press.Google Scholar
  417. 398b.
    Seliger, H., H. Schütz, and M. Philipp: Sequenzspezifische Cooligokondensation von Nukleinsäurebausteinen mit Affinitätsschutzgruppen. II. Cooligomere von 5’-O-(p-Methoxytrityl-)thymidin und Desoxynucleotiden. Makromol. Chem., in press.Google Scholar
  418. 399.
    Sgaramella, V., J. H. van de Sande, and H. G. Khorana: Studies on polynucleotides. C. A novel joining reaction catalyzed by the T4-polynucleotide ligase. Proc. Nat. Acad. Sci. US 67, 1468 (1970).CrossRefGoogle Scholar
  419. 400.
    Sgaramella, V., and H. G. Khorana: Studies on Polynucleotides. CXII. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized polydeoxynucleotides to form the DNA duplex representing nucleotide sequence 1 to 20. J. Mol. Biol. 72, 427 (1972).CrossRefGoogle Scholar
  420. 401.
    Sgaramella, V., and H. G. Khorana: Studies on polynucleotides. CXVI. A further study of the T4 ligase-catalyzed joining of DNA at base-paired ends. J. Mol. Biol. 72, 493 (1972).CrossRefGoogle Scholar
  421. 402.
    Sgaramella, V., K. Kleppe, T. Terao, N. K. Gupta, and H. G. Khorana: Studies on Polynucleotides. CXIII. Toral synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized segments to form the DNA duplex corresponding to nucleotide sequence 17 to 50. J. Mol. Biol. 72, 445 (1972).CrossRefGoogle Scholar
  422. 403.
    Shabarova, Z. A., and M. A. Prokofiev: A model of enzymatic synthesis of the inter-nucleotide bond between oligodeoxynucleotides. FEBS Letters 11, 237 (1970).CrossRefGoogle Scholar
  423. 404.
    Shemyakin, M. M., Yu. A. Ovchinnikov, A. A. Kiryushkin, and I. V. Kozhevnikova: Synthesis of peptides in solution on a polymeric support. I. Synthesis of glycylglycyl-L leucyl-glycin. Tetrahedron Letters 2323 (1965).Google Scholar
  424. 405.
    Shen, T.-Y., and K. H. Boswell (Merck and Co., Inc.): 5’-Adamantoyl-2’-deoxy-5(methylamino)-uridine. US Pat. 3,676,422 (Cl. 260/211.5R; C 07d), 11. Jul. 1972, Appl. 73,206, 17. Sep. 1970. Chem. Abstr. 77, 114817 s (1972).Google Scholar
  425. 406.
    Shimtzu, B., M. Asai, and T. Nishimura: Synthetic nucleotides. I. A convenient synthesis of ribonucleotides. Chem. Pharm. Bull. (Tokyo) 15, 1847 (1967). 7CrossRefGoogle Scholar
  426. 407.
    Shimidzu, T., and R. L. Letsinger: Synthesis of deoxyguanylyldeoxyguanosine on an insoluble polymer support. J. Org. Chem. 33, 708 (1968).CrossRefGoogle Scholar
  427. 408.
    Shimidzu, T., and R. L. Letsinger: Hydrolysis of p-nitrophenyl(deoxyguanyl-deoxyguanosine succinate) by deoxyguanyldeoxyguanosine N-acetylhistidate on polycytidylic acid. Bull. Chem. Soc. Japan 44, 584 (1971).CrossRefGoogle Scholar
  428. 409.
    Shimidzu, T., and R. L. Letsinger: The preparation of deoxyguanosine oligomers on an insoluble polymer support. Bull. Chem. Soc. Japan 44, 1673 (1971).CrossRefGoogle Scholar
  429. 410.
    Shimidzu, T., and R. L. Letsinger: Hydrolyses of p-Nitrophenyl(oligodeoxyribonucleotide succinate)s by oligodeoxyribonucleotide N-acetylhistidates on polycytidylic acid. Bull. Chem. Soc. Japan 46, 3270 (1973).CrossRefGoogle Scholar
  430. 411.
    Shinskii, N. G., N. N. Preobrashenskaya, M. G. Ivanovskaya, Z. A. Shabarova, and M. A. Prokof’ev: Phosphorylation of nucleosides by pyrophosphoryl chloride. Dokl. Akad. Nauk SSSR 184, 622 (1969).Google Scholar
  431. 412.
    Simuth, J., K. H. Scheit, and E. M. Gottschalk: The enzymatic synthesis of poly 4-thiouridylic acid by polynucleotide phosphorylase from Escherichia coli. Biochim. Biophys. Acta 204, 371 (1970).CrossRefGoogle Scholar
  432. 413.
    Simuth, J., P. Strehlke, U. Niedballa, H. Vorbrüggen, and K. H. Scheit: 2’-Omethylcytidine 5’-diphosphate as substrate for polynucleotide phosphorylase from Escherichia coli. Biochim. Biophys. Acta 228, 654 (1971).CrossRefGoogle Scholar
  433. 414.
    Smirnov, V. D., M. G. Ivanovskaya, E. V. Il’ina, Z. A. Shabarova, and M. A. Prokof’ev: Synthesis of the phenylalanine amide of a pentadeoxynucleotide. Dokl. Akad. Nauk SSSR 206, English translation p. 1133 (1972).Google Scholar
  434. 415.
    Smrt, J., and J. Catlin: Abnormal course of phosphorylation with methyl phosphate. Tetrahedron Letters 5081 (1970).Google Scholar
  435. 416.
    Smrt, J., and F. Cramer: Oligonucleotidic compounds. XXXVI. Synthesis of uridylyl(5’-3’)-uridylyl-(5’-5’)-uridylyl-(3’-5’)-uridine and its priming activity for polynucleotide phosphorylase. Collect. Czech. Chem. Commun. 35, 1456 (1970).CrossRefGoogle Scholar
  436. 417.
    Smrt, J.: Protection of the internucleotidic bond after its synthesis. An approach to the synthesis of oligonucleotidic chains. Tetrahedron Letters 3437 (1972).Google Scholar
  437. 418.
    Smrt, J.: Oligonucleotidic compounds. XXXIX. Triester synthesis of oligonucleotides in the ribo series. Collect. Czech. Chem. Commun. 37, 846 (1972).CrossRefGoogle Scholar
  438. 419.
    Smrt, J.: Oligonucleotidic compounds. XL. Aspects of the triester synthesis in the ribo series. Collect. Czech. Chem. Commun. 37, 1870 (1972).CrossRefGoogle Scholar
  439. 420.
    Smrt, J.: Oligonucleotidic compounds. XLI. On the reaction of ribonucleoside 2’(3’)-phosphates with dimethylformamide dimethylacetal. Collect. Czech. Chem. Commun. 37, 4088 (1972).CrossRefGoogle Scholar
  440. 421.
    Smrt, J.: A remark on the preparation of protected guanosine-3’-phosphate by means of a mixture of ribonucleases T1 and T2. Collect. Czech. Chem. Commun. 39, 969 (1974).CrossRefGoogle Scholar
  441. 422.
    Smrt, J.: Combined synthesis of oligonucleotides in the deoxy series. Collect. Czech. Chem. Commun. 39, 972 (1974).CrossRefGoogle Scholar
  442. 423.
    Sommer, H., and F. Cramer: Synthese von Oligodesoxynucleotiden mit 5’-terminaler Phosphatgruppe. Angew. Chem. 84, 710 (1972).CrossRefGoogle Scholar
  443. 424.
    Sowa, T., S. Ouchi, and T. Osawa (Asahi Chem. Industry Co., Ltd.): 5’-Nucleotides by a direct phosphorylation. Jap. Pat. 7102,025 (Cl. C 07 d), 19. Jan. 1971, Appl. 16. Dec. 1966. Chem. Abstr. 74, 112405 v (1971).Google Scholar
  444. 425.
    Sowa, T., K. Sato, S. Ouchi, T. Osawa, and S. Seo (Asahi Chem. Industry Co., Ltd.): Selective phosphorizing to give nucleotides. Jap. Pat. 71 04,986 (Cl. C 07 d), 6. Feb. 1971, Appl. 7. Jan. 1967. Chem. Abstr. 75, 36578 g (1971).Google Scholar
  445. 426.
    Sporn, M. B., D. M. Berkowitz, R. P. Glinski, A. B. Ash, and C. L. Stevens: Irreversible inhibition of nuclear exoribonuclease by thymidine-3’-fluorophosphate and p-haloacetamidophenyl nucleotides. Science 164, 1408 (1969).CrossRefGoogle Scholar
  446. 427.
    Srivastava, P. C., and M. M. Dhar: The use of a purine cyclonucleoside for the synthesis of a dinucleoside phosphate. Tetrahedron Letters 47 (1968).Google Scholar
  447. 428.
    Srivastava, P. C., K. L. Nagpal, and M. M. Dhar: The synthesis of a natural di-nucleoside phosphate derivative with the aid of a purine cyclonucleoside. Experientia 24, 657 (1968).CrossRefGoogle Scholar
  448. 429.
    Srivastava, P. C., K. L. Nagpal, and M. M. Dhar: Synthesis of dinucleoside phosphates by reaction of 5’-chloro-5’-deoxy- nucleosides with nucleotide anions. Experientia 25, 356 (1969).CrossRefGoogle Scholar
  449. 429a.
    Stuart, A., and H. G. Khorana: Studies on polynucleotides. XXXIII. The labelling of end groups in polynucleotide chains: The selective acetylation of terminal hydroxyl groups in deoxyribopolynucleotides. J. Biol. Chem. 239, 3885 (1964).Google Scholar
  450. 430.
    Sulston, J., R. Lohrmann, L. E. Orgel, and H. Todd Miles: Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template. Proc. Nat. Acad. Sci. (U.S.) 59, 726 (1968).CrossRefGoogle Scholar
  451. 431.
    Sulston, J., R. Lohrmann, L. E. Orgel, and H. Todd Miles: Specificity of oligonucleotide synthesis directed by polyuridylic acid. Proc. Nat. Acad. Sci. (U.S.) 60, 409 (1968).CrossRefGoogle Scholar
  452. 432.
    Sulston, J., R. Lohrmann, L. E. Orgel, H. Schneider-Bernloehr, B. J. Weimann, and H. Todd Miles: Non-enzymic oligonucleotide synthesis on a polycytidylate template. J. Mol. Biol. 40, 227 (1969).CrossRefGoogle Scholar
  453. 433.
    Sussman, J. L., I. Barzilay, M. Keren-Zur, and Y. Lapidot: Correlation of the differences in conformation between 2’-5’ and 3’-5’ dinucleoside monophosphates with their behaviour on a Sephadex LH-20 column. Biochim. Biophys. Acta 308, 189 (1973).CrossRefGoogle Scholar
  454. 434.
    Swierkowski, M., and D. Shugar: Poly 5-ethyluridylic acid, a polyuridylic acid analogue. J. Mol. Biol. 47, 57 (1970).CrossRefGoogle Scholar
  455. 435.
    Tajima, K., and T. Hata: Simple protecting group protection-purification handle for polynucleotide synthesis. II. Bull. Chem. Soc. Japan 45, 2608 (1972).CrossRefGoogle Scholar
  456. 436.
    Taunton-Rigby, A., Y.-H. Kim, C. J. Crosscup, and N. A. Starkovsky: Oligonucleotide synthesis. II. The use of substituted trityl groups. J. Org. Chem. 37, 956 (1972).CrossRefGoogle Scholar
  457. 437.
    Taunton-Rigby, A.: Oligonucleotide synthesis. III. Enzymatically removable acyl protecting groups. J. Org. Chem. 38, 977 (1973).CrossRefGoogle Scholar
  458. 438.
    Tazawa, I., S. Tazawa, L. M. Stempel, and P. O. P. Ts’o: L-adenylyl-(3’-5’)-Ladenosine and L-adenylyl-(2’-5’)-L-adenosine. Biochemistry 9, 3499 (1970).CrossRefGoogle Scholar
  459. 439.
    Thang, M. N., and M. Grunberg-Manago: Enzymatic synthesis of polyguanylic acid and copolymers containing guanylic acid. In: Methods in enzymology, XII B, 522 (L. Grossman and K. Moldave, eds.). New York-London: Academic Press. 1968.Google Scholar
  460. 440.
    Tigerstrom, R. V., and M. Smith: Oligodeoxyribonucleotides: Chemical synthesis in anhydrous base. Science 167, 1266 (1970).CrossRefGoogle Scholar
  461. 441.
    Tikhomirova-Sidorova, N. S., E. M. Kogan, V. A. Sysoev, and G. E. Ustyuzhanin: Alcoholysis of pyrimidine nucleoside 2’,3’-cyclophosphates with purine nucleosides in frozen solutions in presence of pancreatic ribonuclease. Zh. Obshch. Khim. 41, 2570 (1971).Google Scholar
  462. 442.
    Tikhomirova-Sidorova, N. S., G. E. Ustyuzhanin, T. N. Kalacheva, and V. I. Kalugina: Hydrolytic and synthetic activity of guanylic ribonuclease of actinomycetes in frozen solutions. Zh. Obshch. Khim. 41, 2108 (1971).Google Scholar
  463. 442a.
    Torrence, P. F., J. A. Waters, and B. Witkop: Unexpected conformational stability of poly(2’-azido-2’-deoxyuridylic acid). J. Amer. Chem. Soc. 94, 3638 (1972).CrossRefGoogle Scholar
  464. 443.
    Torrence, P. F., and B. Witkop: Enzymatic synthesis of polynucleotides containing 5,6-methylene-and 5,6-dihydropyrimidines. Biochemistry 11, 1737 (1972).CrossRefGoogle Scholar
  465. 444.
    Torrence, P. F., A. M. Bopst, J. A. Waters, and B. Witkop: Synthesis and characterization of potential interferon inducers. Poly(2’-azido-2’-deoxyuridylic acid). Biochemistry 12, 3962 (1973).CrossRefGoogle Scholar
  466. 445.
    Torrence, P. F., J. A. Waters, C. E. Buckler, and B. Witkop: Effect of pyrimidine and ribose modifications on the antiviral activity of synthetic polynucleotides. Biochem. Biophys. Res. Commun. 52, 890 (1973).CrossRefGoogle Scholar
  467. 446.
    Tsiapalis, C. M., and S. A. Narang: On the fidelity of phage T4-induced polynucleotide ligase in the joining of chemically synthesized deoxyribooligonucleotides. Biochem. Biophys. Res. Commun. 39, 631 (1970).CrossRefGoogle Scholar
  468. 447.
    Tsou, K. C., and K. F. Yip: Synthesis of deoxyoligonucleotides on an isotactic polymer support. J. Macromol. Sci. Chem. A7 (5), 1097 (1973).Google Scholar
  469. 448.
    Uchic, J. T., M. Uchic, and A. D. Broom: Studies on polyribonucleotides. Synthesis of a polyinosinic: 6-thioinosinic acid copolymer. Biochem. Biophys. Res. Commun. 51, 494 (1973).CrossRefGoogle Scholar
  470. 449.
    Uchic, J. T., M. Uchic, and A. D. Broom: Studies on polyribonucleotides. Polymerization of 6-chloropurine riboside5’-diphosphate; personal communication.Google Scholar
  471. 450.
    Uchida, T., T. Arima, and F. Egami: Specificity of RNase U2. J. Biochem. (Tokyo) 67, 91 (1970).Google Scholar
  472. 451.
    Ueda, T., and J. J. Fox: Mononucleotides. Advan. Carbohyd. Chem. Biochem. 22, 307 (1967).Google Scholar
  473. 452.
    Ueda, T.,and I. Kawai: A convenient synthesis of ribonucleoside 2’,3’-cyclic phosphates from ribonucleosides and ribonucleotides. Chem. Pharm. Bull. (Tokyo) 18, 2303 (1970).CrossRefGoogle Scholar
  474. 453.
    Uesugi, S., M. Yasumoto, M. Ikehara, K. N. Fang, and P. O. P. Ts’o: Synthesis and properties of the dinucleoside monophosphate of adenine 8-thiocyclonucleoside. J. Amer. Chem. Soc. 94, 5480 (1972).CrossRefGoogle Scholar
  475. 454.
    van de Sande, J. H., M. H. Caruthers, V. Sgaramella, T. Yamada, and H. G. Khorana: Studies on Polynucleotides. CXIV. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized segments to form the DNA duplex corresponding to nucleotide sequence 46 to 77. J. Mol. Biol. 72, 457 (1972).CrossRefGoogle Scholar
  476. 455.
    Verlander, M. S., R. Lohrmann, and L. E. Orgel: Catalysts for the selfpolymerization of adenosine cyclic 2’,3’-phosphate. J. Mol. Evol. 2, 303 (1973).CrossRefGoogle Scholar
  477. 456.
    Verlander, M. S., and L. E. Orgel: Analysis of high molecular weight material from the polymerization of adenosine cyclic 2’,3’-phosphate. J. Mol. Evol. 3, 115 (1974).CrossRefGoogle Scholar
  478. 457.
    Weber, H., and H. G. Khorana: Studies on Polynucleotides. CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J. Mol. Biol. 72, 219 (1972).CrossRefGoogle Scholar
  479. 458.
    Weimann, G., and H. G. Khorana: Studies on Polynucleotides. XVII. On the mechanism of internucleotide bond synthesis by the carbodiimide method. J. Amer. Chem. Soc. 84, 4329 (1962).CrossRefGoogle Scholar
  480. 459.
    Weimann, B. J., R. Lohrmann, L. E. Orgel, H. Schneider-Bernloehr, and J. E. Sulston: Template-directed synthesis with adenosine-5’-phosphorimidazolide. Science 161, 387 (1968).CrossRefGoogle Scholar
  481. 460.
    Weith, H. L., J. L. Wiebers, and P. T. Gilham: Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochem. 9, 4396 (1970).CrossRefGoogle Scholar
  482. 461.
    Wells, R. D., and R. M. Wartell: Review of synthesis of specific DNA polymers. Biochem. Mol. Biol. (ed. K. Burton). Butterworth and Medical and Technical Publishing Co. (1973).Google Scholar
  483. 462.
    Werstiuk, E. S., and T. Neilson: Oligoribonucleotide Synthesis. IV. Approach to block synthesis. Can. J. Chem. 50, 1283 (1972).CrossRefGoogle Scholar
  484. 463.
    Werstiuk, E. S., and T. Neilson: Oligoribonucleotide synthesis. VI. Selective de-blocking of the 5’-O-triphenylmethoxyacetyl grouping in protected dinucleotides. Can. J. Chem. 51, 1889 (1973).CrossRefGoogle Scholar
  485. 464.
    Westheimer, F. H., C. Clapp, and J. Wiseman: Monomeric metaphosphates and metaphosphorimidates. XXIV th IUPAC Congress of Pure and Applied Chemistry, Hamburg,1973, Abstracts of Papers, p. 410.Google Scholar
  486. 465.
    Wightman, R. H., S. A. Narang, and K. Itakura: A novel phosphate protecting group for oligonucleotide synthesis. Can. J. Chem. 50, 456 (1972).CrossRefGoogle Scholar
  487. 466.
    Windholz, T. B., and D. B. R. Johnston: Trichloroethoxycarbonyl: a generally applicable protecting group. Tetrahedron Letters 2555 (1967).Google Scholar
  488. 467.
    Wu, R., C.-P. D. Tu, and R. Padmanabhan: Nucleotide sequence analysis of DNA. XII. The chemical synthesis and sequence analysis of a dodecadeoxynucleotide which binds to the endolysin gene of bacteriophage lambda. Biochem. Biophys. Res. Commun. 55, 1092 (1973).CrossRefGoogle Scholar
  489. 467a.
    Wu, R.: personal communication.Google Scholar
  490. 468.
    Wünsch, E.: Synthese von Peptidnaturstoffen. Problematik des heutigen Forschungsstandes. Angew. Chem. 83, 773 (1971).CrossRefGoogle Scholar
  491. 469.
    Yamashita, T., and T. Kato(Ajinomoto Co, Inc.): 2’,3’-O-Substituted nucleoside 5’-phosphates. Jap. Pat. 69 27,979 (Cl. 16E 611.2), 19. Nov. 1969, Appl. 3. Dec. 1966. Chem. Abstr. 72, 21913 b (1970).Google Scholar
  492. 470.
    Yip, K. F., and K. C. Tsou: A new polymer-support method for the synthesis of ribooligonucleotide. J. Amer. Chem. Soc. 93, 3272 (1971).CrossRefGoogle Scholar
  493. 471.
    Yonei, S., A. Kuninaka, and H. Yoshino (Yamasa Shoyu Co., Ltd.): Jap. Pat. 71 31,865 (Cl. C 07 d), 17. Sep. 1971, Appl. 7. Feb. 1969. Chem. Abstr. 75, 152051 d (1971).Google Scholar
  494. 472.
    Yoshikawa, M., T. Kato, and T. Takenishi: Selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jap. 42, 3505 (1969).CrossRefGoogle Scholar
  495. 473.
    Yoshikawa, M., M. Sakuraba, and K. Kusashio: Phosphorylation. IV. Phosphorylation of nucleosides with phosphorus trihalide. Bull. Chem. Soc. Jap. 43, 456 (1970).CrossRefGoogle Scholar
  496. 474.
    Yurkevich, A. M., L. S. Varshavskaya, and I. I. Kolodkina: Reaction of nucleosides with diphenylboric acid esters. Zh. Obshch. Khim. 38, 2115 (1968).Google Scholar
  497. 475.
    Yurkevich, A. M., I. I. Kolodkina, L. S. Varshavskaya, V. I. Borodulina-Shvetz, I. P. Rudakova, and N. A. Preobrazhenski: The reaction of phenylboronic acid with nucleosides and mononucleosides. Tetrahedron 25, 477 (1969).CrossRefGoogle Scholar
  498. 476.
    Zarytova, V. F., V. K. Potapov, Z. A. Shabarova, and D. G. Knorre: Synthesis of oligonucleotides on polymer supports. Synthesis of oligodeoxynucleotides containing deoxyguanylic acid. Dokl. Akad. Nauk SSSR 199, 1072 (1970).Google Scholar
  499. 477.
    Zemlicka, J., J. Beranek, and J. Smrt: Preparation and methanolysis of uridine, 6-azauridine and 6-aza-cytidine-O-formyl derivatives. Coll. Czech. Chem. Comm. 27, 2784 (1962).Google Scholar
  500. 478.
    Zemlicka, J., and J. Smrt: The reaction of O2,5’-cyclouridine and O2,5’-cyclocytidine derivatives with nucleotides — A new approach to the synthesis of the 3’-5’-internucleotidic bond. Tetrahedron Letters 2081 (1964).Google Scholar
  501. 479.
    Zemlicka, J.: 2’,3’-O-(ethoxymethylene)uridine. Synthetic procedures in nucleic acid chemistry. 1, 422. New York: Wiley. 1968.Google Scholar
  502. 480.
    Zemlicka, J., and S. Chladek: New method of dephosphorylation of ribonucleoside2’(3’)-phosphates. Tetrahedron Letters 715 (1969).Google Scholar
  503. 481.
    Zemlicka, J.: Nucleic acid components and their analogues. CXXXII. Alkylation of some nucleic acid components and their analogues with dimethylformamide acetals. Collect. Czech. Chem. Commun. 35, 3572 (1970).CrossRefGoogle Scholar
  504. 482.
    Zemlicka, J.: Acetalation and acetylation of pyrimidine nucleosides in dioxane-acetonitrilehydrogen chloride. J. Org. Chem. 36, 2383 (1971).CrossRefGoogle Scholar
  505. 483.
    Zemlicka, J.,and S. Chladek: Synthesis of 2’(3’)-O-glycyl derivatives ofcytidylyl-(3’-5’)inosine and 2’-deoxycytidylyl-(3’-5’)-adenosine. Biochemistry 10, 1521 (1971).CrossRefGoogle Scholar
  506. 484.
    Zemlicka, J., and J. P. Horwitz: Nucleosides. XIII. The concurrent introduction of two different blocking groups into some ribonucleosides. J. Org. Chem. 36, 2809 (1971).CrossRefGoogle Scholar
  507. 485.
    Zhenodarova, S. M., and M. I. Habarova: The enzymic synthesis of adenylyl-(3’-5’)cytidine. Biochim. Biophys. Acta 169, 559 (1968).CrossRefGoogle Scholar
  508. 486.
    Zmudzka, B., and D. Shugar: Role of the 2’-hydroxyl in polynucleotide conformation: poly 2’-O-methyluridylic acid. Acta Biochim. Polon. 18, 321 (1971).Google Scholar
  509. 487.
    Zmudzka, B., M. Tichy, and D. Shugar: The structure of poly 2’-O-methylcytidylic acid and its complexes with polyinosinic acid. Acta Biochim. Polon. 19, 149 (1972).Google Scholar
  510. 488.
    Zwierzak, A., and R. Gramze: Organophosphorus esters II. Novel approach to the synthesis of S-alkyl phosphorothioates. Z. Naturforsch. 26b, 386 (1971).Google Scholar
  511. 489.
    Zwierzak, A., and M. Kluba: Organophosphorus esters — I. t-butyl as protecting group in phosphorylation via nucleophilic displacement. Tetrahedron Letters 3163 (1971).Google Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • H. Kössel
    • 1
  • H. Seliger
    • 2
  1. 1.Institut für Biologie IIIUniversität Freiburg i. Br.Federal Republic of Germany
  2. 2.Institut für Makromolekulare ChemieUniversität Freiburg i. Br.Federal Republic of Germany

Personalised recommendations