Advertisement

Abstract

Together with sulphoquinovosyl diglyceride (sulpholipid) the galactosyl diglycerides (galactolipids) are the glycolipids occurring in the photosynthetic tissue of algae and higher plants. In higher algae and plants they are mainly confined to the chloroplasts (1, 76, 108) where they form a structural part of the thylakoid membranes. Apart from this structural function in chloroplasts several other functions have been attributed to the galactolipids. These vary from a function as a carbohydrate reservoir to a function in the electron transport chain in photosynthesis. This review is intended to summarize the present knowledge of the synthetic and degradative chemistry of the galactolipids and of their functions in the photosynthesis of algae and higher plants.

Keywords

Spinach Chloroplast Euglena Gracilis Glycerol Moiety Fatty Acyl Residue Fatty Acid Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, C. F., P. Good, H. F. Davis, P. Chisum, and S. D. Fowler: Methodology for the Separation of Plant Lipids and Application to Spinach Leaf and Chloroplast Lamellae. J. Am. Oil Chem. Soc. 43, 223 (1966).Google Scholar
  2. 2.
    Allen, C. F., P. Goon, H. F. Davis, and S. D. Fowler: Plant and Chloroplast Lipids. I. Separation and Composition of Major Spinach Lipids. Biochem. Biophys. Res. Comm. 15, 424 (1964).Google Scholar
  3. 3.
    Anderson, J. S., M. Matsuhaski, M. A. Haskin, and J. L. Strominger: Lipidphosphoacetylmuranyl-pentapeptide and Lipid-phosphodisaccharide-pentapeptide: Presumed Membrane Transport Intermediates in Cell Wall Synthesis. Proc. Nat. Acad. Sci. (USA) 53, 881 (1965).Google Scholar
  4. 4.
    Anderson, J. W., and K. S. Rowan: Extraction of Soluble Leaf Enzymes with Thiols and Other Reducing Agents. Phytochem. 6, 1047 (1967).Google Scholar
  5. 5.
    Appelqvist, L.-A., J. E. Boynton, P. K. Stumpf, and D. von Wettstein: Lipid Biosynthesis in Relation to Chloroplast Development in Barley. J. Lipid Res. 9, 425 (1968).Google Scholar
  6. 6.
    Appleby, R. S., R. Safford, and B. W. Nlchols: The Involvement of Lecithin and Monogalactosyl Diglyceride in Linoleate Synthesis by Green and Blue-green Algae. Biochim. Biophys. Acta 248, 205 (1971).Google Scholar
  7. 7.
    Bailey, J. L., and A. G. Whyborn: The Osmiophylic Globules of Chloroplasts. II. Globules of the Spinach-Beet Chloroplast. Biochim. Biophys. Acta 78, 163 (1963).Google Scholar
  8. 8.
    Bajwa, S. S., and P. S. Sastry: Incorporation of Fatty Acids into Monogalactosyl Diglycerides by Spinach Leaf Cell-free Preparations. Biochem. J. 128, 44P (1972).Google Scholar
  9. 9.
    Benson, A. A.: The Plant Sulfolipid. Adv. Lipid Res. 1, 387 (1963).Google Scholar
  10. 10.
    Benson, A. A., H. Daniel, and R. Wiser: A Sulfolipid in Plants. Proc. Nat. Acad. Sci. (USA) 45, 1582 (1959).Google Scholar
  11. 11.
    Benson, A. A., J. F. G. M. Wintermans, and R. Wiser: Chloroplast Lipids as Carbohydrate Reservoirs. Plant Physiol. 34, 315 (1959).Google Scholar
  12. 12.
    Benson, A. A., R. Wiser, R. A. Ferrari, and J. A. Miller: Photosynthesis of Galactolipids. J. Am. Chem. Soc. 80, 4740 (1958).Google Scholar
  13. 13.
    Bervaes, J. C. A. M., P. J. C. Kuiper, and A. Kylin: Conversion of Digalactosyl Diglyceride (Extra Long Carbon Chain Conjugates) into Monogalactosyl Diglyceride of Pine Needle Chloroplasts upon Dehardening. Physiol. Plant. 27, 231 (1972).Google Scholar
  14. 14.
    Bloch, K., G. Constantopoulos, C. Kenyon, and J. Nagai: Lipid Metabolism of Algae in the Light and in the Dark. In: T. W. Goodwin, Biochemistry of Chloroplasts, Vol. II, p. 197. London: Academic Press. 1966.Google Scholar
  15. 15.
    Bolling, H., and A. W. El Bayã: Veränderungen der Fettsäurezusammensetzung in den Galaktolipiden des Weizens während der Reife. Chem. Phys. Lipids 8, 102 (1972).Google Scholar
  16. 16.
    Boos, W., J. Lehmann, and K. Wallenfels: Asymmetrischer Galaktosyltransfer auf Glycerin mit 3-Galaktosidase aus E. coli. Carbohydrate Res. 1, 419 (1966).Google Scholar
  17. 17.
    Brundish, D. E., and J. Baddiley: Synthesis of Glucosylglycerols and Diglucosylglycerols and Their Identification in Small Amounts. Carbohydrate Res. 8, 308 (1968).Google Scholar
  18. 18.
    Branton, D., and R. B. Park: Subunits in Chloroplast Lamellae. J. Ultrastructure Res. 19, 283 (1967).Google Scholar
  19. 19.
    Carter, H. E., R. A. Hendry, and N. Z. Stanacev: Wheat Flour Lipids. III. Structure of the Mono-and Digalactosyl Glycerol Lipids. J. Lipid Res. 2, 223 (1961).Google Scholar
  20. 20.
    Carter, H. E., R. H. Mcclurer, and E. D. Slifer: Lipids of Wheat Flour. I. Characterization of Galactosyl Glycerol Components. J. Am. Chem. Soc. 78, 3735 (1956).Google Scholar
  21. 21.
    Carter, H. E., K. Ohno, S. Nojima, C. L. Tipton, and N. Z. Stanacev: Wheat Flour Lipids. II. Isolation and Characterization of Glycolipids of Wheat Flour and Other Plant Sources. J. Lipid Res. 2, 215 (1961).Google Scholar
  22. 22.
    Chang, S. B.: Sulfhydril Nature of Galactosyl Transfer Enzymes of Spinach Chloroplasts. Phytochem. 9, 1947 (1970).Google Scholar
  23. 23.
    Chang, S. B., and N. D. Kulkarni: Enzymatic Reactions for Galactolipid Synthesis with a Soluble, Sub-chloroplast Fraction from Spinacia oleracea. Phytochem. 9, 927 (1970).Google Scholar
  24. 24.
    Chang, S. B., and K. Lundin: Specificity of Galactolipids in Photochemical Reactions Coupled with Cytochrome-c. Biochem. Biophys. Res. Comm. 21, 424 (1965).Google Scholar
  25. 25.
    Constantopoulos, G., and K. Blocx: Effect of Light Intensity on the Lipid Composition of Euglena gracilis. J. Biol. Chem. 242, 3538 (1967).Google Scholar
  26. 26.
    Costes, C., R. Bazier, and D. Lechevallier: Rôle structural des lipides dans les membranes de chloroplastes de Blé. Physiol. Vég. 10, 291 (1972).Google Scholar
  27. 27.
    Douce, R., and T. Guillot-Salomon: Sur l’incorporation de la radioactivité du sn-glycerol-3-phosphate-14C dans le monogalactosyl-diglyceride des plastes isolés. FEBS 11, 121 (1970).Google Scholar
  28. 28.
    Eccleshall, T. R., and J. C. Hawke: Biosynthesis of Monogalactosyl Diglyceride by Chloroplasts from Spinacia oleracea and from Some Gramineae. Phytochem. 10, 3035 (1971).Google Scholar
  29. 29.
    Echlin, P., and I. Morris: The Relationship between Blue-Green Algae and Bacteria. Biol. Rev. 40, 143 (1965).Google Scholar
  30. 30.
    Ferrari, R. A., and A. A. Benson: The Path of Carbon in Photosynthesis of the Lipids. Arch. Biochem. Biophys. 93, 185 (1961).Google Scholar
  31. 31.
    Galliard, T.: Aspects of Lipid Metabolism in Higher Plants. I. Identification and Quantitative Determination of the Lipids in Potato Tubers. Phytochem. 7, 1907 (1968).Google Scholar
  32. 32.
    Galliard, T.: Aspects of Lipid Metabolism in Higher Plants. II. The Identification and Quantitative Analysis of Lipids from the Pulp of Pre-and Post-Climacteric Apples. Phytochem. 7, 1915 (1968).Google Scholar
  33. 33.
    Galliard, T.: The Isolation and Characterization of Tetragalactosyl Diglyceride from Potato Tubers. Biochem. J. 115, 335 (1969).Google Scholar
  34. 34.
    Galliard, T.: The Enzymic Breakdown of Lipids in Potato Tuber by Phospholipid-and Galactolipid-Acyl Hydrolase Activities and by Lipoxygenase. Phytochem. 9, 1725 (1970).Google Scholar
  35. 35.
    Galliard, T.: The Enzymic Deacylation of Phospholipids and Galactolipids in Plants. Purification and Properties of a Lipolytic Acyl-hydrolase from Potato Tubers. Biochem. J. 121, 379 (1971).Google Scholar
  36. 36.
    Galliard, T.: Hydrolytic and Oxidative Breakdown of Acyllipids in Plants. 15th Int. Conf. Biochem. Lipids: Enzymes in Lipid Biochemistry. p. 62. 1972.Google Scholar
  37. 37.
    Gardner, H. W.: Preparative Isolation of Mono- and Digalactosyl Diglyceride by Thin-layer Chromatography. J. Lipid Res. 9, 139 (1968).Google Scholar
  38. 38.
    Gurr, M. I.: The Biosynthesis of Polyunsaturated Fatty Acids in Plants. Lipids 6, 266 (1971).Google Scholar
  39. 39.
    Gurr, M. I., P. P. M. Bonsen, J. A. F. Op den Kamp, and L. L. M. van Deenen: The Chemical Synthesis of Glucosaminyl-phosphatidylglycerol. Comparison with a New Phospholipid Isolated from Bacillus megaterium. Biochem. J: 108, 211 (1968).Google Scholar
  40. 40.
    de Haas, G. H., and L. L. M. van Deenen: Structural Identification of Isomeric Lysolecithins. Biochim. Biophys. Acta 106, 315 (1965).Google Scholar
  41. 41.
    Heise, K.-P.: Die Freisetzung von Lipiden aus Thylakoiden isolierter Chloroplasts von Spinacia oleracea. Ein Beitrag zur Kenntnis der Lokalisation und der funktionellen Beteiligung von Lipiden in Thylakoidmembranen. Thesis. Göttingen. 1972.Google Scholar
  42. 42.
    Heinz, E.: Acylgalaktosyldiglycerid aus Blatthomogenaten. Biochim. Biophys. Acta 144, 321 (1967).Google Scholar
  43. 43.
    Heinz, E.: Semisynthetic Galactolipids of Plant Origin. Biochim. Biophys. Acta 231, 537 (1971).Google Scholar
  44. 44.
    Heinz, E.: Some Properties of the Acyl Galactosyl Diglyceride-forming Enzyme from Leaves. Z. Pflanzenphysiol. 69, 359 (1973).Google Scholar
  45. 45.
    Helmsing, P. J.: Isolation and Separation of Mono-and Digalactosyl Diglycerides from Spinach Leaves with Sephadex LH-20. J. Chromatogr. 28, 131 (1967).Google Scholar
  46. 46.
    Helmsing, P. J.: Hydrolysis of Galactolipids by Enzymes in Spinach Leaves. Biochim. Biophys. Acta 144, 470 (1967).Google Scholar
  47. 47.
    Helmsing, P. J.: Purification and Properties of Galactolipids. Biochim. Biophys. Acta 178, 519 (1969).Google Scholar
  48. 48.
    James, A. T., and B. W. Nlcxols: Lipids of Photosynthetic Systems. Nature 210, 372 (1966).Google Scholar
  49. 49.
    Kalra, S. K., and J. L. Brooks: Lipids of Ripening Tomato Fruit and its Mitochondria) Fraction. Phytochem. 12, 487 (1973).Google Scholar
  50. 50.
    Kates, M.: Chromatographic and Radioisotopic Investigations of the Lipid Components of Runner Bean Leaves. Biochim. Biophys. Acta 41, 315 (1960).Google Scholar
  51. 51.
    Kates, M., and B. E. Volcani: Lipid Components of Diatoms. Biochim. Biophys. Acta 116, 264 (1965).Google Scholar
  52. 52.
    Klenk, E., W. Knipprath, D. Eberhagen, and H. P. Koof: Über die ungesdttigten Fettsäuren der Fettstoffe von Süßwasser-und Meeresalgen. Hoppe-Seyler’s Z. Physiol. Chem. 334, 44 (1963).Google Scholar
  53. 53.
    Koenig, F.: Konzentration einiger Lipide in den Chloroplasten von Zea mays und Antirrhinum majus. Z. Naturforsch. 26, 1180 (1971).Google Scholar
  54. 54.
    Lepage, M.: Isolation and Characterization of an Esterified Form of Steryl Glucoside. J. Lipid Res. 5, 587 (1964).Google Scholar
  55. 55.
    Lepage, M.: Identification and Composition of Turnip Root Lipids. Lipids 2, 244 (1967).Google Scholar
  56. 56.
    Lepage, M.: The Lipid Components of White Potato Tubers (Solanum tuberosum). Lipids 3, 477 (1968).Google Scholar
  57. 57.
    Lichtenthaler, H. K., and R. B. Park: Chemical Composition of Chloroplast Lamellae from Spinach. Nature 198, 1070 (1963).Google Scholar
  58. 58.
    Lin, M. F., and S. B. Chang: Biosynthesis of Galactolipids in Photoautotrophic Euglena gracilis Chloroplasts. Phytochem. 10, 1543 (1971).Google Scholar
  59. 59.
    Loomis, W. D., and J. Battaile: Plant Phenolic Compounds and the Isolation of Plant Enzymes. Phytochem. 5, 423 (1966).Google Scholar
  60. 60.
    Mackender, R. O., and R. M. Leech: The Isolation and Characterization of Plastid Envelope Membranes. Proc. II. Intern. Congr. Photosynth. Res. Vol. 2, p. 1431. Stresa. 1971.Google Scholar
  61. 61.
    Matson, R. S., M. Fei, and S. B. Chang: Comparative Studies of Biosynthesis of Galactolipids in Euglena gracilis strain Z. Plant Physiol. 45, 531 (1970).Google Scholar
  62. 62.
    Mccarty, R. E., and A. T. Jagendorf: Chloroplast Damage due to Enzymatic Hydrolysis of Endogenous Lipids. Plant Physiol. 40, 725 (1965).Google Scholar
  63. 63.
    Mudd, J. B., T. T. McManus, A. Ongun, and T. E. McCullogh: Inhibition of Glycolipid Biosynthesis in Chloroplasts by Ozone and Sulfhydryl Reagens. Plant Physiol. 48, 335 (1971).Google Scholar
  64. 64.
    Mudd, J. B., H. H. D. M. van Vliet, and L. L. M. van Deenen: Biosynthesis of Galactolipids by Enzyme Preparations from Spinach Leaves. J. Lipid Res. 10, 623 (1969).Google Scholar
  65. 65.
    Myrhe, D. V.: Glycolipids of Soft Wheat Flour. I. Isolation and Characterization of 1-O-(6-O-acyl-β-D-galactopyranosyl)-2,3-di-O-acyl-D-glyceritols and Phytosteryl 6-O-acyl-β-D-glucopyranosides. Can. J. Chem. 46, 3071 (1968).Google Scholar
  66. 66.
    Neufeld, E. F., and C. W. Hall: Formation of Galactolipids by Chloroplasts. Biochem. Biophys. Res. Comm. 14, 503 (1964).Google Scholar
  67. 67.
    Nichols, B. W.: Separation of Plant Phospholipids and Glycolipids. In: A. T. James and L. J. Morris, New Biochemical Separations, p. 321. London: Van Nostrand. 1964.Google Scholar
  68. 68.
    Nichols, B. W.: Light Induced Changes in the Lipids of Chlorella vulgaris. Biochim. Biophys. Acta 106, 274 (1965).Google Scholar
  69. 69.
    Nichols, B. W.: Fatty Acid Metabolism in the Chloroplast Lipids of Green and Blue-Green Algae. Lipids 3, 354 (1968).Google Scholar
  70. 70.
    NicxoLs, B. W., R. V. Harris, and A. T. James: The Lipid Metabolism of Blue-Green Algae. Biochem. Biophys. Res. Comm. 20, 256 (1965).Google Scholar
  71. 71.
    Nichols, B. W., and A. T. James: The Lipids of Plant-Storage Tissues. Fette, Seifen, Anstrichmittel 66, 1003 (1964).Google Scholar
  72. 72.
    NicxoLs, B. W., A. T. James, and J. Breuer: Interrelationships between Fatty Acid Biosynthesis and Acyl-Lipid Synthesis in Chlorella vulgaris. Biochem. J. 104, 486 (1967).Google Scholar
  73. 73.
    Nicxols, B. W., J. M. Stubbs, and A. T. James: The Lipid Composition and Ultra-structure of Normal Developing and Degenerating Chloroplasts. In: T. W. Goodwin, Biochemistry of Chloroplasts, Vol. II, p. 677. London: Academic Press. 1967.Google Scholar
  74. 74.
    O’Brien, J. S.: Cell Membranes: Composition-Structure-Function. J. Theoret. Biol. 15, 307 (1967).Google Scholar
  75. 75.
    Ongun, A., and J. B. Mudd: Biosynthesis of Galactolipids in Plants. J. Biol. Chem. 243, 1558 (1968).Google Scholar
  76. 76.
    Ongun, A., W. W. Thomson, and J. B. Mudd: Lipid Composition of Chloroplasts Isolated by Aqeous and Nonaqeous Techniques. J. Lipid Res. 9, 409 (1968).Google Scholar
  77. 77.
    Patton, S., G. Fuller, A. R. Loeblich, and A. A. Benson: Fatty Acids of the “Red Tide” Organism, Gonyaulax polyedra. Biochim. Biophys. Acta 116, 577 (1966).Google Scholar
  78. 78.
    Pohl, P.: Some Evidence for Light Induced Transfers of Fatty Acids in Euglena gracilis. 15th Int. Conf. Biochem. Lipids: Enzymes in Lipid Biochemistry, p. 96. 1972.Google Scholar
  79. 79.
    Pohl, P., H. Glasl, and H. Wagner: Zur Analytik pflanzlicher Glyko- und Phospholipoide und ihrer Fettsäuren. I. Eine neue Dünnschicht-chromatographische Methode zur Trennung pflanzlicher Lipoide und quantitativen Bestimmung ihrer Fettsäure-Zusammensetzung. J. Chromatogr. 49, 488 (1970).Google Scholar
  80. 80.
    Poincelot, P. R.: Differences in Lipid Composition between Intact and Membrane-stripped Spinach Chloroplasts. Biochim. Biophys. Acta 239, 57 (1971).Google Scholar
  81. 81.
    Radunz, A.: Localisation with Specific Antisera of the Thylakoid Membrane Lipids MG, SL and PG. 15th Int. Conf. Biochem. Lipids: Enzymes in Lipid Biochemistry, p. 98. 1972.Google Scholar
  82. 82.
    Renkonen, O., and K. Bloch: Biosynthesis of Monogalactosyl Diglycerides in Photoautotrophic Euglena gracilis. J. Biol. Chem. 244, 4899 (1969).Google Scholar
  83. 83.
    Rosenberg, A.: Galactosyl Diglycerides: Their Possible Function in Euglena Chloroplasts. Science 157, 1191 (1967).Google Scholar
  84. 84.
    Rosenberg, A., and J. Gouax: Monogalactosyl and Digalactosyl Diglycerides from Heterotrophic, Hetero-autotrophic, and Photobiotic Euglena gracilis. J. Lipid Res. 7, 733 (1966).Google Scholar
  85. 85.
    Rosenberg, A., and J. Gouax: Quantitative and Compositional Changes in Mono-and Digalactosyl Diglyceride during Light-induced Formation of Chloroplasts in Euglena gracilis. J. Lipid Res. 8, 80 (1967).Google Scholar
  86. 86.
    Roughan, P. G.: Turnover of the Glycerolipids of Pumpkin Leaves. The Importance of Phosphatidyl choline. Biochem. J. 117, 1 (1970).Google Scholar
  87. 87.
    Safford, R., and B. W. Nichols: Positional Distribution of Fatty Acids in Monogalactosyl Diglyceride Fractions from Leaves and Algae. Biochim. Biophys. Acta 210, 57 (1970).Google Scholar
  88. 88.
    Sastry, P. S., and M. Kates: Lipid Components of Leaves. V. Galactolipids, Cerebrosides and Lecithin of Runner-bean Leaves. Biochem. 3, 1271 (1964).Google Scholar
  89. 89.
    Sastry, P. S., and M. Kates: Hydrolysis of Monogalactosyl and Digalactosyl Diglycerides by Specific Enzymes in Runner-bean Leaves. Biochem. 3, 1280 (1964).Google Scholar
  90. 90.
    Sastry, P. S., and M. Kates: Monogalactosyl and Digalactosyl Diglyceride Acyl Hydrolase. In: S. P. Colowrck and N. O. Kaplan, Methods in Enzymology, Vol. XIV, p. 204. London: Academic Press. 1969.Google Scholar
  91. 91.
    Shibuya, I., and B. Maruo: Surfactant Lipids of Plant Quantasomes. Nature 207, 1096 (1965).Google Scholar
  92. 92.
    Shvets, V. I., A. I. Bashkatova, and R. P. Evstigneeva: Synthesis of Glycosyl Diglycerides. Chem. Phys. Lipids 10, 267 (1973).Google Scholar
  93. 93.
    Singh, H., and O. S. Privett: Incorporation of 33P in Soybean Phosphatides. Biochim. Biophys. Acta 202, 200 (1970).Google Scholar
  94. 94.
    Smith, C. R., and J. A. Wolff: Glycolipids of Briza spicata Seed. Lipids 1, 123 (1966).Google Scholar
  95. 95.
    Steim, J. M.: Monogalactosyl Diglyceride: a New Neurolipid. Biochim. Biophys. Acta 144, 118 (1967).Google Scholar
  96. 96.
    Tevini, M.: Die Phospho-und Glykolipid-Änderungen während des Ergrünens etiolierter Hordeum-Keimlinge. Z. Pflanzenphysiol. 65, 266 (1971).Google Scholar
  97. 97.
    Thompson, A. C., R. D. Henson, J. P. Minyard, and P. A. Hedrin: Fatty Acid Composition of Polar Lipids of Cotton Buds. Lipids 3, 373 (1968).Google Scholar
  98. 98.
    Udel’Nova, T. M., and E. A. Boichenko: Manganese in Combination with Galactolipids of Leaves. Biokhimiya 32, 644 (1967).Google Scholar
  99. 99.
    Verhey, H. M., P. F. Smith, P. P. M. Bonsen, and L. L. M. van Deenen: The Chemical Synthesis of a Phosphatidylglucose. Biochim. Biophys. Acta 218, 97 (1970).Google Scholar
  100. 100.
    Webster, D. E., and S. B. Chang: Polygalactolipids in Spinach Chloroplasts. Plant Physiol. 44, 1523 (1969).Google Scholar
  101. 101.
    Weier, T. S., and A. A. Benson: The Molecular Organization of Chloroplast Membranes. Amer. J. Bot. 54, 389 (1967).Google Scholar
  102. 102.
    Wehrli, H. P., and Y. Pomeranz: Synthesis of Galactosyl Glycerides and Related Lipids. Chem. Phys. Lipids 3, 357 (1969).Google Scholar
  103. 103.
    Wessels, J. S. C.: Isolation and Properties of two Digitonin-soluble Pigment-Protein Complexes from Spinach. Biochim. Biophys. Acta 153, 497 (1968).Google Scholar
  104. 104.
    Wheeldon, L. W.: Composition of Cabbage Leaf Phospholipids. J. Lipid Res. 1, 439 (1960).Google Scholar
  105. 105.
    Wickberg, B.: Structure of a Glyceritol Glycoside from Polysiphonia fastigiata and Corallina officinalis. Acta Chem. Scand. 12, 1183 (1958).Google Scholar
  106. 106.
    Wickberg, B.: Synthesis of 1-Glycerital-D-Galactopyranosides. Acta Chem. Scand. 12, 1187 (1958).Google Scholar
  107. 107.
    Wintermans, J. F. G. M.: Concentrations of Phosphatides and Glycolipids in Leaves and Chloroplasts. Biochim. Biophys. Acta 44, 49 (1960).Google Scholar
  108. 108.
    Wintermans, J. F. G. M.: On the Galactolipid Composition of Subchloroplast Fragments. Biochim. Biophys. Acta 248, 530 (1971).Google Scholar
  109. 109.
    Wright, A., M. Dankert, and P. W. Robbins: Evidence for an Intermediate Stage in the Biosynthesis of the Salmonella O-Antigen. Proc. Nat. Acad. Sci. (USA) 54, 235 (1965).Google Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • H. C. van Hummel
    • 1
  1. 1.Botanisch Laboratorium, Faculteit der Wiskunde en NatuurwetenschappenKatholieke UniversiteitNijmegenNetherlands

Personalised recommendations