Advertisement

Structural Investigations of Natural Products by Newer Methods of NMR Spectroscopy

  • R. J. Highet
  • E. A. Sokoloski
Part of the Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 32)

Abstract

When the use of nuclear magnetic resonance spectroscopy in natural product studies was reviewed in an earlier volume of this series (1), the technique was already established as a primary tool of structural investigation. Straight-forward nmr techniques suitable for simple analytical instruments and mass spectroscopy remain the natural product chemist’s first tools in the examination of natural materials. Often these methods together suffice either to demonstrate the structure of a compound, or to indicate the need for prompt recourse to the most definitive tool of structural investigation, x-ray crystallography. In recent years, methods have been developed to extend nmr methods to samples not previously amenable to this technique and to extract further structural information from the spectrum.

Keywords

Nuclear Magnetic Resonance Chemical Shift Natural Product Structural Investigation Phosphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jackman, L. M.: Some Applications of Nuclear Magnetic Resonance Spectroscopy in Natural Product Chemistry. Fortschr. Chem. organ. Naturstoffe 23, 315 (1965).Google Scholar
  2. 2.
    Williams, D. H., and D. A. Wilson: Solvent Effects in Nuclear Magnetic Resonance Spectroscopy. Part V. Solvent Shifts in I1-Oxosteroids. The Geometry of a Benzene Ketone Complex. J. Chem. Soc. (B) (London) 144 (1966).Google Scholar
  3. 3.
    Fales, H. M., and K. S. Warren: The Use of Benzene in Separating Aromatic Methoxyl Bands in Nuclear Magnetic Resonance Spectroscopy. J. Organ. Chem. (USA) 32, 501 (1967).CrossRefGoogle Scholar
  4. 4.
    Quijano, L., F. Malanco, and T. Rios: The Structures and Eupatolin of Eupalin. The New Flavanol Rhamnosides Isolated from Eupatorium ligustrinum D. C. Tetrahedron 26, 2851 (1970).CrossRefGoogle Scholar
  5. 5.
    Ma, J. C. N., and E. W. Warnhoff: On the Use of Nuclear Magnetic Resonance for the Detection, Estimation and Characterization of N-Methyl Groups. Canad. J. Chem. 43, 1849 (1965).CrossRefGoogle Scholar
  6. 6.
    Highet, R. J., and P. F. Highet: The Characterization of Complex Phenols by Nuclear Magnetic Resonance Spectra. J. Organ. Chem. (USA) 30, 902 (1965).CrossRefGoogle Scholar
  7. 7.
    Pachler, K. G., R. R. Arndt, W. H. Baarschers: Nuclear Magnetic Resonance Study of Aporphine Alkaloids. II. The Structure of Rogersine. Tetrahedron 21, 2159 (1965).CrossRefGoogle Scholar
  8. 8.
    Goodlett, V. W.: Use of In Situ Reactions for Characterization of Alcohols and Glycols by Nuclear Magnetic Resonance. Anal. Chem. 37, 431 (1965).CrossRefGoogle Scholar
  9. 9.
    Kirson, I., D. Lavie, S. M. Albonico, and H. R. Juliani: The Withanolides of Acnistus australis (Griseb). Tetrahedron 26, 5062 (1970).Google Scholar
  10. 10.
    Pople, J. A., and A. A. Bothner-By: Nuclear Spin Coupling between Geminal Hydrogen Atoms. J. Chem. Phys. 42, 1339 (1965).CrossRefGoogle Scholar
  11. 11.
    Cookson, R. C., T. A. Crabb, J. J. Frankel, and J. Hudec: Geminal Coupling Constants in Methylene Groups. Tetrahedron 22, suppl. 7, 355 (1966).CrossRefGoogle Scholar
  12. 12.
    Rüedi, P., and C. H. Eugster: Struktur von Coleon E, einem neuen diterpenoiden Methylenchinon aus der Coleus barbatus-Gruppe (Labiatae). Helv. Chim. Acta 55, 1994 (1972).CrossRefGoogle Scholar
  13. 13.
    Sternhell, S.: Long-Range 1H—1H Spin-Spin Coupling in Nuclear Magnetic Resonance Spectroscopy. Rev. Pure and Appl. Chem. 14, 15 (1964).Google Scholar
  14. 14.
    Karanatsios, D., J. S. Scarpa, and C. H. Eugster: Struktur von Fuerstion. Helv. Chim. Acta 49, 1151 (1966).CrossRefGoogle Scholar
  15. 15.
    Pople, J. A., W. G. Schneider, and H. J. Bernstein: High-Resolution Nuclear Magnetic Resonance. New York: McGraw-Hill. 1959.Google Scholar
  16. 16.
    Perold, G. W., and K. G. R. Pachler: The Structure and Chemistry of Leucodrin. J. Chem. Soc. (C) (London) 1918 (1966).Google Scholar
  17. 17.
    Janot, M. M., Q. Khuong-Huu, C. Monneret, L Kabore, J. Hildesheim, S. D. Gero, and R. Goutarel: Alcaloides Steroidiques-C. Les Holantosines A et B. Nouveaux Aminoglyco Steroides isolés des Feuilles de L’Holarrhena antidysenterica (Roxb.) Wall (Apocynacees). Tetrahedron 26, 1695 (1970).CrossRefGoogle Scholar
  18. 18.
    Perold, G. W., and G. Ourisson: Photolyse des dihydro-1,2(6β, l lα et 11β)-Santonines. Tetrahedron Letters 1969, 3871.Google Scholar
  19. 19.
    Hinckley, C. C.: Paramagnetic Shifts in Solutions of Cholesterol and the Dipyridine Adduct of Tris-Dipivalomethanato Europium III. A Shift Reagent. J. Amer. Chem. Soc. 91, 5160 (1969).CrossRefGoogle Scholar
  20. 20.
    Mayo, B. C.: Lanthanide Shift Reagents in Nuclear Magnetic Resonance Spectroscopy. Chem. Soc. Rev. (London) 2, 49 (1973).CrossRefGoogle Scholar
  21. 21.
    Sievers, R. E.: Nuclear Magnetic Resonance Shift Reagents. New York: Academic Press. 1973.Google Scholar
  22. 22.
    Galbraith, M. N., and D. H. S. Horn: Structures of the Natural Products Blumenols A, B and C. Chem. Communs. (London) 1972, 113.Google Scholar
  23. 23.
    Muntwyler, R., and W. Keller-Schierlein: Stoffwechsel-Produkte von Mikroorganismen. Zur Stereochemie des Lankamycins. Helv. Chim. Acta 55, 460 (1972).CrossRefGoogle Scholar
  24. 24.
    McConnell, H. M., and R. E. Robertson: Isotropic Nuclear Resonance Shifts. J. Chem. Phys. 29, 1361 (1958).CrossRefGoogle Scholar
  25. 25.
    Apsimon, J. W., and H. Beierbeck: Lanthanide Shift Reagents. A Novel Method for Fitting the Pseudocontact Shielding Equation to Experimental Induced Shifts. Tetrahedron Letters 1973, 581.Google Scholar
  26. 26.
    Angerman, N. S., S. S. Danyluk, and T. A. Victor: A Direct Determination of the Spatial Geometry of Molecules in Solution. I. Conformation of Chloroquine, an Antimalarial. J. Amer. Chem. Soc. 94, 7137 (1972).CrossRefGoogle Scholar
  27. 27.
    Bothner-By, A. A., and S. M. Castellano: LAOCN3. In Computer Programs for Chemistry, Vol. I. Edit. D. F. Detar, p. 10. New York: W. A. Benjamin, Inc. 1968.Google Scholar
  28. 28.
    Swalen, J. D.: NMRIT and NMREN. In Computer Programs for Chemistry, Vol. 1. Edit. D. F. Detar, p. 54. New York: W. A. Benjamin, Inc. 1968.Google Scholar
  29. 29.
    Johannesen, R. B., J. A. Ferretti, and R. K. Harris: UEAITR: A New Computer Program for Analysis of NMR Spectra. Analysis of the Proton Spectrum of Triisopropylphosphine. J. Magn. Reson. (London) 3, 84 (1970).Google Scholar
  30. 30.
    Gordon, M., A. Stoessl, and J. B. Stothers: Stereochemistry of some Altersolanol B Derivatives and their Correlation with Bostrycin. Canad. J. Chem. 50, 122 (1972).CrossRefGoogle Scholar
  31. 31.
    Findlay, J. A., and L. Radics: Flavipucine (3’-Isovaleryl-6-Methyl Pyridine-3-spiro2’-oxiran-2(1H)-4(3H)-dione), an Antibiotic from Aspergillus flavipes. J. Chem. Soc. (London). Perkin I 1972, 2071.Google Scholar
  32. 32.
    Burton, R., L. D. Hall, and P. R. Steiner: Studies of Carbohydrate Derivatives by Nuclear Magnetic Double Resonance. Part V. Some 1H—[1H] INDOR Experiments. Canad. J. Chem. 48, 2679 (1970).CrossRefGoogle Scholar
  33. 33.
    Anet, F. A. L., and A. J. R. Bourn: Nuclear Magnetic Resonance Spectral Assignments from Nuclear Overhauser Effects. J. Amer. Chem. Soc. 87, 5250 (1965).CrossRefGoogle Scholar
  34. 34.
    Bell, R. A., and J. K. Saunders: Some Chemical Applications of the Nuclear Overhauser Effect. Topics in Stereochem. 7, 1 (1973).CrossRefGoogle Scholar
  35. 35.
    Noggle, J. H., and R. E. Schirmer: The Nuclear Overhauser Effect. New York: Academic Press. 1971.Google Scholar
  36. 36.
    Bell, R. A., and J. K. Saunders: Correlation of the Intramolecular Nuclear Overhauser Effect with Internuclear Distance. Canad. J. Chem. 48, 1114 (1970).CrossRefGoogle Scholar
  37. 37.
    Mccorkindale, N. J., A. Mcritchie, and S. A. Hutchinson: Lamellicolic Anhydride — A Heptaketide Naphthalic Anhydride. Chem. Communs. (London) 1973, 108.Google Scholar
  38. 38.
    Buckley, D. G., E. Ritchie, W. C. Taylor, and L. M. Young: Madagascarin, A New Pigment from the Leaves of Harungana madagascariensis. Austral. J. Chem. 25, 843 (1972).CrossRefGoogle Scholar
  39. 39.
    Murray, R. D. H., and M. M. Ballantyne: Constituents of Sneezewood, Ptaeroxylon obliquum. II. Coumarins. The Structure of Nieshoutol. Tetrahedron 26, 4473 (1970).CrossRefGoogle Scholar
  40. 40.
    Ernst, R. R., and W. A. Anderson: Application of Fourier Transform Spectroscopy to Magnetic Resonance. Rev. Sci. Instr. 37, 93 (1966).CrossRefGoogle Scholar
  41. 41.
    Farrar, T. C., and E. D. Becker: Pulse and Fourier Transform NMR. New York: Academic Press. 1971.Google Scholar
  42. 42.
    Johnson, L. F., and W. C. Jankowski: Carbon-13 NMR Spectra. New York: WileyInterscience. 1972.Google Scholar
  43. 43.
    Jesson, J. P., P. Meakin, and G. Kneissel: Homonuclear Decoupling and Peak Elimination in Fourier Transform Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 95, 618 (1973).CrossRefGoogle Scholar
  44. 44.
    Stothers, J. B.: Carbon-13 NMR Spectroscopy. New York: Academic Press. 1972.Google Scholar
  45. 45.
    Glombitza, K. W., and E. Sattler: Trifuhalol, Ein neuer Triphenyldiäther aus Halidrys siliquosa. Tetrahedron Letters 1973, 4277.Google Scholar
  46. 46.
    Pregosin, P. S., E. W. Randall, and A. I. White: Natural Abundance Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy — Amino Acid Derivatives. Chem. Communs. (London) 1971, 1602.Google Scholar
  47. 47.
    Crutchfield, M. M., C. H. Dungan, J. H. Letcher, V. Mark, and J. R. van Wazer: Topics in Phosphorus Chemistry, vol. 5. P-31 Nuclear Magnetic Resonance. New York: Wiley-Interscience. 1967.Google Scholar
  48. 48.
    Moon, R. B., and J. H. Richards: Determination of Intracellular pH by 31P Magnetic Resonance. J. Biol. Chem. 248, 7276 (1973).Google Scholar
  49. 49.
    Lee, G. C. Y., and S. I. Chan: A 31P NMR Study of the Association of Uridine-3’-Monophosphate to Ribonuclease A. Biochem. Biophys. Res. Commun. 43, 142 (1971).CrossRefGoogle Scholar
  50. 50.
    Henderson, T. O., T. Glonek, R. L. Hildebrand, and T. C. Myers: Phosphorus-31 Nuclear Magnetic Resonance Studies of the Phosphonate and Phosphate Composition of the Sea Anemone, Bunadosoma sp. Archiv. Biochem. Biophys. 149, 484 (1972).CrossRefGoogle Scholar
  51. 51.
    Korn, E. D., D. G. Dearborn, H. M. Fales, and E. A. Sokoloski: Phosphonoglycan — A Major Polysaccharide Constituent of the Amoeba Plasma Membrane Contains 2-Aminoethyl Phosphonic Acid and 1-Hydroxy-2-Aminoethyl Phosphonic acid. J. Biol. Chem. 248, 2257 (1973).Google Scholar
  52. 52.
    Levy, G. C., and G. L. Nelson: Carbon-13 Nuclear Magnetic Resonance for Organic Chemists. New York: Wiley-Interscience. 1972.Google Scholar
  53. 53.
    Gray, G. A.: Applications of 13C NMR in Biochemistry. A Collection of Titled References. Palo Alto: Varian Associates (USA). 1973.Google Scholar
  54. 54.
    Doddrell, D.,and A. Allerhand: Assignments in the Carbon-13 Nuclear Magnetic Resonance Spectra of Vitamin B12, Coenzyme B12 and other Corrinoids. Application of Partially-Relaxed Fourier Transform Spectroscopy. Proc. Nat. Acad. Sci. (USA) 68, 1083 (1971).CrossRefGoogle Scholar
  55. 55.
    Nakanishi, K., V. P. Gullo, I. Miura, T. R. Govindachari, and N. Viswanathan: Structure of Two Triterpenes. Application of Partially Relaxed Fourier Transform 13C Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 95, 6473 (1973).CrossRefGoogle Scholar
  56. 56.
    Leibfritz, D., and J. D. Roberts: Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Spectra of Cholic Acids and Hydrocarbons included in Sodium Desoxycholate Solutions. J. Amer. Chem. Soc. 95, 4996 (1973).CrossRefGoogle Scholar
  57. 57.
    Apsimon, J. W., H. Beierbeck, and J. K. Saunders: Lanthanide Shift Reagents in 13C Nuclear Magnetic Resonance: Quantitative Determination of Pseudocontact Shifts and Assignment of 13C Chemical Shifts of Steroids. Canad. J. Chem. 51, 3874 (1973).CrossRefGoogle Scholar
  58. 58.
    Briggs, J., F. A. Hart, G. P. Moss, and E. W. Randall: A Ready Method of Assignment for 13C Nuclear Magnetic Resonance Spectra: The Complete Assignment of the 13C Spectrum of Borneol. Chem. Communs. (London) 1971, 364.Google Scholar
  59. 59.
    Prinzbach, H., V. Freudenberger, and U. Scheidegger: Cyclische, gekreurt-konjugierte Bindungssysteme. XIII. NMR-Untersuchungen am Phenafulven-System. Hely. Chim. Acta 50, 1087 (1967).CrossRefGoogle Scholar
  60. 60.
    Becker, E. D., J. A. Ferretti, and T. C. Farrar: Driven Equilibrium Fourier Transform Spectroscopy. A New Method for Nuclear Magnetic Resonance Signal Enhancement. J. Amer. Chem. Soc. 91, 7784 (1969).CrossRefGoogle Scholar
  61. 61.
    Ernst, R. R.: Sensitivity Enhancement in Magnetic Resonance. Advances in Magn. Reson. 2, 1 (1966).Google Scholar
  62. 62.
    Waugh, J. S.: Sensitivity in Fourier Transform NMR Spectroscopy of Slowly Relaxing Systems. J. Molec. Spectr. 35, 298 (1970).CrossRefGoogle Scholar
  63. 63.
    Jones, D. E., and H. Sternlicht: Fourier Transform Nuclear Magnetic Resonance I. Repetitive Pulses. J. Magn. Res. 6, 167 (1972).Google Scholar
  64. 64.
    Plattner, R. D., G. F. Spencer, D. Weisleder, and R. Kleiman: Chromanone Acids in Calophyllum brasiliense Seed Oil. Phytochemistry (in press).Google Scholar
  65. 65.
    Lindeman, L. P., and J. Q. Adams: Carbon-13 Nuclear Magnetic Resonance Spectrometry. Chemical Shifts for the Paraffins through C9. Anal. Chem. 43, 1245 ((1971).CrossRefGoogle Scholar
  66. 66.
    Yates, P., F. N. Maclachlan, I. D. Rae, M. Rosenberger, A. G. Szabo, C. R. Willis, M. P. Cava, M. Behforouz, M. V. Lakshmikantham, and W. Zeiger: Haplophytine. A Novel Type of Indole Alkaloid. J. Amer. Chem. Soc. 95, 7842 (1973).CrossRefGoogle Scholar
  67. 67.
    Dalling, D. K., and D. M. Grant: Carbon-13 Magnetic Resonance IX. The Methyl Cyclohexanes. J. Amer. Chem. Soc. 89, 6612 (1967).CrossRefGoogle Scholar
  68. 68.
    Gough, J. L., J. P. Guthrie, and J. B. Stothers: Stereochemical Assignments in Steroids by 13C Nuclear Magnetic Resonance Spectroscopy: Configuration of the A/B Ring Junction. Chem. Communs. (London) 1972, 979.Google Scholar
  69. 69.
    Wenkert, E., D. W. Cochran, E. W. Hagaman, F. M. Schell, N. Neuss, A. S. Katner, P. Potier, C. Kan, M. Plat, M. Koch, H. Mehri, J. Poisson, N. Kunesch, and Y. Rolland: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurrings Substances. XIX. Aspidosperma Alkaloids. J. Amer. Chem. Soc. 95, 4990 (1973).CrossRefGoogle Scholar
  70. 70.
    Cochran, D. W.: 13C Nuclear Magnetic Resonance Spectroscopy. Indole Alkaloids. Ph. D. Thesis. Indiana Univ. 1971.Google Scholar
  71. 71.
    Jennings, H. J., and I. C. P. Smith: Determination of the Composition and Sequence of a Glucan Containing Mixed Linkages by Carbon-13 Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 95, 606 (1973).CrossRefGoogle Scholar
  72. 72.
    Neuss, N., C. H. Nash, J. E. Baldwin, P. A. Lemke, and J. B. Grutzner: Incorporation of (2RS, 3S)-[4—13C] Valine into Cephalosporin C. J. Amer. Chem. Soc. 95, 3797 (1973).CrossRefGoogle Scholar
  73. 73.
    Milavetz, B., K. Kakinuma, K. L. Rinehart, J. P. Rolls, and W. J. Haak: Carbon-13 Magnetic Resonance Spectroscopy and the Biosynthesis of Streptovaricin. J. Amer. Chem. Soc. 95, 5793 (1973).CrossRefGoogle Scholar
  74. 74.
    Wasserman, H. H., R. J. Sykes, P. Peverada, C. K. Shaw, R. J. Cushley, and S. R. Lipsky: Biosynthesis of Prodigiosin Incorporation Patterns of 13C Labeled Alanine, Proline, Glycine, and Serine Elucidated by Fourier Transform Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 95, 6874 (1973).CrossRefGoogle Scholar
  75. 75.
    Baldwin, J. E., J. Loliger, W. Rastetter, N. Neuss, L. L. Huckstep, and N. de la Higuera: Use of Chiral Isopropyl Groups in Biosynthesis. Synthesis of (2RS)-3S-[4—13 C] Valine. J. Amer. Chem. Soc. 95, 3796 (1973).CrossRefGoogle Scholar
  76. 76.
    Seto, H., T. Sato, and H. Yonehara: Utilization of Carbon-13-Carbon-13 Coupling in Structural and Biosynthetic Studies. An Alternate Double Labeling Method. J. Amer. Chem. Soc. 95, 8461 (1973).CrossRefGoogle Scholar
  77. 77.
    Levy, G. C.: Carbon-13 Spin-Lattice Relaxation Studies and their Application to Organic Chemical Problems. Accts. Chem. Res. 6, 161 (1973).CrossRefGoogle Scholar
  78. 78.
    Levy, G. C., J. D. Cargioli, and F. A. L. Anet: Carbon-13 Spin-Lattice Relaxation in Benzene and Substituted Aromatic Compounds. J. Amer. Chem. Soc. 95, 1527 (1973).CrossRefGoogle Scholar
  79. 79.
    Levy, G. C.: On Segmental Motion in Short Aliphatic Chains. J. Amer. Chem. Soc. 95, 6117 (1973).CrossRefGoogle Scholar
  80. 80.
    Doddrell, D., and A. Allerhand: Segmental Motion in Liquid 1-Decanol. Application of Natural-Abundance Carbon-13 Partially-Relaxed Fourier Transform Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 93, 1558 (1971).CrossRefGoogle Scholar
  81. 81.
    Goodman, R. A., E. Oldfield, and A. Allerhand: Assignments in the Natural-Abundance Carbon-13 Nuclear Magnetic Resonance Spectrum of Chlorophyll and a Study of Segmental Motion in Neat Phytol. J. Amer. Chem. Soc. 95, 7553 (1973).CrossRefGoogle Scholar
  82. 82.
    Bates, R. B., and D. J. Eckert: Nicandrenone, an Insecticidal Plant Steroid Derivative with Ring D Aromatic. J. Amer. Chem. Soc. 94, 8258 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • R. J. Highet
    • 1
  • E. A. Sokoloski
    • 1
  1. 1.Department of Health, Education, and Welfare, Public Health ServiceNational Institutes of Health, National Heart and Lung InstituteBethesdaUSA

Personalised recommendations