Being relatively simple compounds, 2,5-dioxopiperazines are amongst the most ubiquitous peptide derivatives found in nature. Hydrolysates of proteins and polypeptides often contain these anhydro-dimers of amino-acids and they are commonly isolated from cultures of yeast, lichens and fungi. Their existence as a special group of compounds was first recognized around 1900 (1). The great Emil Fischer managed to synthesize many of the simpler members of this family in the early 1900’s (2). The parent compound, 2,5-dioxopiperazine, often referred to as cyclo-gly-gly*, was made in 1888 (3).


Ergot Alkaloid Disulphide Bridge Aspergillus Terreus Cyclic Dipeptide Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischer, E., and K. Raske: Beitrag zur Stereochemie der 2,5-Diketopiperazine. Ber. 39, 3981 (1906).Google Scholar
  2. 2.
    Fischer, E.: Untersuchungen über Aminosäuren, Polypeptide und Proteine. Ber. 39, 530 (1906).Google Scholar
  3. 3.
    Curttus, T., and Goebel: J. prakt. Chem. 37, 173 (1888).Google Scholar
  4. 4.
    Abderhalden, E., and E. Komm: The Formation of Diketopiperazines from Polypeptides Under Various Conditions. Z. physiol. Chem. 139, 147 (1924).CrossRefGoogle Scholar
  5. 5.
    Abderhalden, E., and R. Haas: Further Studies on the Structure of Proteins: Studies on the Physical and Chemical Properties of 2,5-Diketopiperazines. Z. physiol. Chem. 151, 114 (1926).CrossRefGoogle Scholar
  6. 6.
    Katchalski, E., I. Grossfield, and F. M. Frankel: Synthesis of Lysine Anhydride. J. Am. Chem. Soc. 68, 879 (1946).CrossRefGoogle Scholar
  7. 7.
    Kopple, K. D., and D. H. Marr: Conformations of Cyclic Dipeptides: The Folding of Cyclic Dipeptides containing an Aromatic Side Chain. J. Am. Chem. Soc. 89, 6193 (1967).CrossRefGoogle Scholar
  8. 8.
    Greenfield, N. J., and G. D. Fasman: Optical Activity of Simple Cyclic Amides in Solution. Biopolymers 7, 595 (1969).CrossRefGoogle Scholar
  9. 9.
    Balasubramanian, D., and D. B. Wetlaufer: Optical Rotatory Properties of Diketopiperazines. J. Am. Chem. Soc. 88, 3449 (1966).CrossRefGoogle Scholar
  10. 10.
    Schellman, J. A., and B. E. Nielson: In “Conformations of Biopolymers”, ed. G. N. Ramachandran, vol. 1, p. 109. New York: Academic Press. 1967.Google Scholar
  11. 11.
    Edelhoch, H., R. E. Lippoldt, and M. Wilcheck: The Circular Dichroism of Tyrosyl and Tryptophanyl Diketopiperazines. J. Biol. Chem. 243, 4799 (1968).Google Scholar
  12. 12.
    Bellamy, L. J.: The Infrared Spectra of Complex Molecules. Chapter 12. London: Methuen and Co. Ltd. 1957.Google Scholar
  13. 13.
    Blaha, K., J. Smolfxova, and A. Vitek: Aminoacids and Peptides, LXIV. Infrared Spectra of Substituted 2,5-Piperazinediones and the Detection of cis-Peptide Bonds in Diastereoisomeric Cyclohexapeptides. Coll. Czech. Chem. Commun. 31, 4296 (1966).CrossRefGoogle Scholar
  14. 14.
    Jankowsky, K., and L. Varfalvy: Mass Spectroscopy of 2,5-Dioxopiperazines. II. A Study of cyclo-Ala-ala. Bull. Acad. Pol. Sci. Ser. Sci. Chim. 20, 493 (1966).Google Scholar
  15. 15.
    Svec, H. J., and G. A. June: The Mass Spectra of Dipeptides. J. Am. Chem. Soc. 86, 2278 (1964).CrossRefGoogle Scholar
  16. 16.
    Nagarajan, R., J. L. Occolowitz, N. Neuss, and S. M. Nash: Mass Spectra of Diketopiperazines from Aranotin and Related Metabolites. Chem. Commun. 1969, 359.Google Scholar
  17. 17a.
    Romanet, R., A. Chemizard, S. Duhoux, and S. David: Etudes par resonance magnetique nucleaire de l’echinuline, de certains derives et de modeles indoliques. Bull. soc. Chim. France 1048 (1963).Google Scholar
  18. 17b.
    Chemizard, A., and S. David: Remarques sur les dioxo-2,5-piperazines. Bull. soc. Chim. France 1966, 184.Google Scholar
  19. 18.
    Kopple, K. D., and M. Ohnishi: Conformations of Cyclic Peptides II: Side-chain Conformation and Ring Shape in Cyclic Dipeptides. J. Am. Chem. Soc. 91, 962 (1969).CrossRefGoogle Scholar
  20. 19.
    Young, P. E., V. Madison, and E. R. Blout: Cyclic Peptides VI. Europium Assisted N. M. R. Study of the Solution Conformation of cyclo (L-pro-L-pro) and cyclo (L-proD-pro). J. Am. Chem. Soc. 95, 6142 (1973).CrossRefGoogle Scholar
  21. 20.
    Krezcarek, G. E., B. W. Dominy, and R. G. Lawton: The Interaction of Reactive Functional Groups along Peptide Chains: A Model for Alkaloid Biosynthesis. Chem. Commun. 1968, 1450.Google Scholar
  22. 21.
    Fischer, E.: Syntheses von Polypeptiden, XV. Ber. 39, 2893 (1906).Google Scholar
  23. 22.
    Blaha, K.: Amino-acids and Peptides, XCV. Synthesis of Some Diastereoisomeric 2,5-Piperazine-diones. Coll. Czech. Chem. Commun. 34, 4000 (1969).CrossRefGoogle Scholar
  24. 23.
    Nitecki, D. E., B. Halpern, and J. W. Westley: A Simple Route to Sterically Pure Diketopiperazines. J. Org. Chem. 33, 864 (1968).CrossRefGoogle Scholar
  25. 24.
    Schott, H. F., J. B. Larkin, L. B. Rockland, and M. S. Dunn: The Synthesis of 1 (−) Leucylglycylglycine. J. Org. Chem. 12, 490 (1947).CrossRefGoogle Scholar
  26. 25.
    Rosenmund, P., and K. Kains: Diketopiperazines from Leuchs’ Anhydrides. Angew. Chem. Internat. Edn. 9, 162 (1970).CrossRefGoogle Scholar
  27. 26.
    Kopple, K. D., and H. G. Ghazarian: A Convenient Synthesis of 2,5-Dioxopiperazines. J. Org. Chem. 33, 862 (1968).CrossRefGoogle Scholar
  28. 27.
    Lichtenstein, N.: The Behaviour of Dipeptides when Heated in 13-Naphthol. J. Am. Chem. Soc. 60, 560 (1938).CrossRefGoogle Scholar
  29. 28.
    Zahn, H., and D. Brandenburg: Synthese einer geschützten Heptapeptidsequenz aus dem Tyrocidin B. Annalen 692, 220 (1966).Google Scholar
  30. 29.
    Grahl-Nielson, O.: Acid Hydrolysis of Diastereoisomeric Dioxopiperazines. Tetrahedron Letters 1969, 2827.Google Scholar
  31. 30.
    Slater, G. P.: Synthesis of Piperazine-2,5-diones. Chem. & Ind. (London) 1969, 1092.Google Scholar
  32. 31.
    Goodman, M., and K. C. Steuben: Peptide Synthesis via Aminoacid Esters, II. Some Abnormal Reactions during Peptide Synthesis. J. Am. Chem. Soc. 84, 1279 (1962).CrossRefGoogle Scholar
  33. 32.
    Westley, J. W., V. A. Close, D. E. Nitecki, and B. Halpern: Determination of Steric Purity and Configuration of Diketopiperazines by Gas-liquid Chromatography, Thin-layer chromatography and Nuclear Magnetic Resonance Spectrometry. Anal. Chem. 40, 1888 (1968).CrossRefGoogle Scholar
  34. 33.
    Tsusoi, M., T. Shimanouchi, and S. Miyushima: Near Infrared Spectra of Compounds with Two Peptide Bonds and the Configuration of a Polypeptide Chain, VII. On the Extended Form of Polypeptide Chains. J. Am. Chem. Soc. 81, 1406 (1959).CrossRefGoogle Scholar
  35. 34.
    Indelicato, T. M., T. T. Norvilas, and W. J. Wheeler: Intramolecular Nucleophilic Attack in 7 (α-Amino) phenylcephalosporanic Esters. J. C. S. Chem. Commun. 1972, 1162.Google Scholar
  36. 35.
    Roets, E. R., A. J. Vlietnieck, G. A. Janssen, and H. Vanderhaeghe: IntramolecUlar Nucleophilic Attack in 6-Epiampicillin. J. C. S. Chem. Commun. 484 (1973).Google Scholar
  37. 36.
    Titlestad, K.: Cleavage of Linear Tetrapeptides into Two Cyclic Dipeptides. Chem. Commun. 1971, 1527.Google Scholar
  38. 37.
    Lucente, G., and P. Frattesi: Cyclisation of Activated Tosyl-peptides. Tetrahedron Letters 1972, 4283.Google Scholar
  39. 38.
    Mauger, A. B.: Degradation of Peptides to Diketopiperazines: Applications of Pyrolysis-Gas Chromatography to Sequence Determination in Actinomycins. Chem. Commun. 1971, 39.Google Scholar
  40. 39.
    Poisel, H., and U. Schmidt: Asymmetrische Induktion bis Reaktionen von Aminosäuren und Peptiden, I. Asymmetrische Synthese Aromatische α-Aminosäuren und N-Methyl α-Aminosäuren. Synthese von L-DOPA. Über die Katalytische Hydrierung ungesättigter Cyclopeptide. Chem. Ber. 106, 3408 (1973).CrossRefGoogle Scholar
  41. 40.
    Degeilh, R., and R. E. Marsh: A Refinement of the Crystal Structure of Diketopiperazine (2,5-Piperazine-dione). Acta Crystallog. 12, 1007 (1959).CrossRefGoogle Scholar
  42. 41.
    Benedetti, E., P. Corradini, and C. Pedone: Crystal and Molecular Structure of L-cis-3,6-Dimethyl-2,5-piperazinedione (L-alanyl-L-alanine-2,5-diketopiperazine). Bio-polymers 7, 751 (1969).Google Scholar
  43. 42.
    Benedetti, E., P. Corradini, and C. Pedone: The Crystal and Molecular Structure of trans-3,6-Dimethyl-2,5-piperazinedione. J. Phys. Chem. 73, 2891 (1969).CrossRefGoogle Scholar
  44. 43.
    Sletten, E.: Conformation of Cyclic Dipeptides: The Crystal and Molecular Structures of Cyclo-D-alanyl-L-alanyl and cyclo-L-Alanyl-L-alanyl. J. Am. Chem. Soc. 92, 172 (1970).CrossRefGoogle Scholar
  45. 44.
    Benedetti, E., P. Corradini, M. Goodman, and C. Pedone: Flexibility of Supposed “Rigid” Molecules: Substituted 2,5-Piperazinediones (Diketopiperazines). Proc. Natn. Acad. Sci. USA, 62, 650 (1969).CrossRefGoogle Scholar
  46. 45.
    Groth, P.: Crystal Structure of N,N’-Dimethyldioxopiperazine. Acta Chem. Scand. 23, 3155 (1969).CrossRefGoogle Scholar
  47. 46.
    Karle, I. L.: Crystal Structure and Conformation of the Cyclic Dipeptide, cyclo-LProlyl-L-leucyl. J. Am. Chem. Soc. 94, 81 (1972).CrossRefGoogle Scholar
  48. 47.
    Siemion, I. Z.: Die Konformation des Prolin Ringes in Diketopiperazin Systemen. Annalen 748, 88 (1971).Google Scholar
  49. 48.
    Siemion, I. Z.: NMR Investigation of Proline Containing Dioxopiperazines. Org. Magn. Resonance 3, 545 (1971).Google Scholar
  50. 49.
    Blaha, K., M. Bodesinsky, I. Fric, J. Smoukona, and J. Vicar: Cyclodipeptides. Conformational Analysis and Spectroscopic Studies. Tetrahedron Letters 1972, 4437.Google Scholar
  51. 50.
    Gawne, G., G. W. Kenner, N. H. Rogers, R. C. Sheppard, and K. Titlestad: In “Peptides”, ed. E. Brlcas, p. 28. Amsterdam: North-Holland Publishing Co. 1968.Google Scholar
  52. 51.
    Ziauddin, K. D. Kopple, and C. A. Bush: Conformations of cyclo-L-His-L-Ser, cyclo-L-His-L-Asp, and cyclo-L-His-L-His. Tetrahedron Letters 1972, 483.Google Scholar
  53. 52.
    cf. Johnson, C. E., and F. A. Bovey: Calculation of Nuclear Magnetic Resonance Spectra of Aromatic Hydrocarbons. J. Chem. Phys. 29, 1012 (1958).CrossRefGoogle Scholar
  54. 53.
    Ziauddin, and K. D. Kopple: Conformations of Folded Peptides: Stabilities of Folded Conformations of para-substituted 3-Benzylpiperazine-2,5-diones. J. Org. Chem. 35, 253 (1970).CrossRefGoogle Scholar
  55. 54.
    Caillet, J., B. Pullmann, and B. Maigret: Molecular Orbital Calculations On the Folding of Cyclic Dipeptides with Aromatic and Aliphatic Side Chains. Biopolymers 10, 221 (1971).CrossRefGoogle Scholar
  56. 55.
    Kopple, K. D., R. R. Jarabak, and P. L. Muller: Reactivity of Cyclic Peptides. III. Reaction of Isomeric Histidine, Tyrosine Peptides with p-Nitrophenyl Acetate. Biochem. 2, 958 (1963).CrossRefGoogle Scholar
  57. 56.
    Zbiral, E., E. L. Menard, and J. M. Muller: über die Inhaltsstoffe von Zizyphus oenoplia Mill. II. Zur Konstitutionsmittlung des Zizyphins. Helv. Chim. Acta 48, 1608 (1965).Google Scholar
  58. 57.
    Pailer, M., E. Haslinger, and E. Zbiral: Zur Konstitution des Zizyphinins von Zizyphus oenoplia Mill. Monatsh. Chem. 100, 1608 (1968).CrossRefGoogle Scholar
  59. 58.
    Warnhoff, E. W.: Peptide Alakoids. Fortschr. Chem. Organ. Naturstoffe 28, 162 (1970).Google Scholar
  60. 59.
    Bodansky, M., G. F. Singler, and A. Bodansky: Structure of the Peptide Antibiotic Amphomycin. J. Am. Chem. Soc. 95, 2352 (1973).CrossRefGoogle Scholar
  61. 60.
    Arison, B. H., and J. L. Beck: The Structure of Compound 593 A, A New Anti-tumor Agent. Tetrahedron 29, 2743 (1973).CrossRefGoogle Scholar
  62. 61.
    Forster, M. O., and W. B. Saville: Isolation of Picroroccellin from Rocella fuciformis. J. Chem. Soc. 121, 816 (1922).CrossRefGoogle Scholar
  63. 62.
    Atkins, C. L., and J. B. Neilands: Rhodotorulic Acid. A Diketopiperazine Dihydroxamic Acid with Growth Regulatory Properties. I. Isolation and Characterization. Biochem. 7, 3734 (1968).CrossRefGoogle Scholar
  64. 63.
    Keller-Schierlein, W., V. Prelog, and H. Zahner: Siderochrome. Fortschr. Chem. Organ. Naturstoffe 22, 279 (1964).CrossRefGoogle Scholar
  65. 64.
    Akers, H. A., M. Llinas, and J. B. Neilands: Protonated Amino Acid Studies on Rhodotorulic Acid Biosynthesis in D2O Media. Biochem. 11, 2283 (1972).CrossRefGoogle Scholar
  66. 65.
    Isowa, Y. T., Takashima, M. Ohmori, H. Kurita, M. Sato and K. Mori, Synthesis of Rhodotorulic Acid. Bull Chem. Soc. Japan 45, 1467 (1972).CrossRefGoogle Scholar
  67. 66.
    Diekmann, H.: Metabolic Products of Microorganism. Part 81. Occurrence and Structure of Coprogen B and Dimerumic Acid. Arch. Mikrobiol. 73, 65 (1970).CrossRefGoogle Scholar
  68. 67.
    Keller-Schierlein, W., and H. Diekmann: Zur Konstitution des Coprogens. Helv. Chim. Acta 53, 2035 (1970).Google Scholar
  69. 68.
    Hedy, P. H., E. B. Hodge, V. V. Young, R. L. Harried, G. A. Brewer, W. F. Phillips, W. F. Runge, H. E. Stavely, A. Pohland, H. Boaz, and H. R. Sullivan: Structure and Reactions of Cycloserine. J. Am. Chem. Soc. 77, 2345 (1955).CrossRefGoogle Scholar
  70. 69.
    Karpeiskii, M. Yu., Yu. N. Breusov, R. M. Khomatov, E. S. Severin, and O. C. Polyanovskii: The Mechanism of Action of Cycloserine and Related Compounds with Aspartic-Glutamic Transaminase. Biokhimiya 28, 342 (1963). Chem. Abs. 59, 4219 f (1963).Google Scholar
  71. 70.
    Lassen, F. O., and C. H. Stammer: Cycloserine Dimer Hydrolysis and its Equilibration with Cycloserine. J. Org. Chem. 36, 2631 (1971).CrossRefGoogle Scholar
  72. 71.
    Miller, J. C., F. C. Neuhaus, F. O. Lassen, and C. H. Stammer: The Reactions of 3,6-Bis(aminoxymethyl)-2,5-piperazinedione with Acid and Alkali. A Kinetic Study. J. Org. Chem. 33, 3908 (1968).CrossRefGoogle Scholar
  73. 72.
    Poduska, K., G. S. Katrukha, A. B. Silaev, and J. Rudinger: Amino Acids and Peptides. LII. Intramolecular Aminolysis of Amide Bonds in Derivatives of αγ-Diaminobutyric Acid, αβ-Diaminopropionic Acid, and Ornithine. Coll. Czech. Chem. Commun. 30, 2410 (1965).Google Scholar
  74. 73.
    Mckinney, J. D., and C. H. Stammer: Role of Azomethines in the Dimerisation of Cycloserine by Aldehydes. Tetrahedron 25, 163 (1969).CrossRefGoogle Scholar
  75. 74.
    Wrinch, D.: The Cyclol Theory in the “Globular” proteins. Nature 139, 972 (1969).CrossRefGoogle Scholar
  76. 75.
    Wrinch, D.: Chemical Aspects of Polypeptide Chain Structures and the Cyclol Theory. Copenhagen: Munksgaard. 1956.Google Scholar
  77. 76.
    Shemyakin, M. M., V. K. Antonov, A. M. Shkrob, V. I. Shchelekov, and Z. E. Agadzhanyan: Activation of the Amide Group by Acylation. Tetrahedron 21, 3537 (1965).CrossRefGoogle Scholar
  78. 77.
    Shemyakin, M. M., Y. A. Ovchimichov, V. K. Antonov, A. A. Kiryashkin, V. I. Ivanov, V. I. Shchelekov, A. M. Shkrob: Total Synthesis of Serratamolide, I. Synthesis of O,O’-Diacetyl Serratamolide. Tetrahedron Letters 1964, 47.Google Scholar
  79. 78.
    Stoll, A.: Recent Investigations on Ergot Alkaloids. Fortschr. Chem. Organ. Naturstoffe 9, 114 (1952).Google Scholar
  80. 79.
    Hofmann, A., A. J. Frey, and H. Ott: Die Totalsynthese des Ergotamins. Experientia 17, 206 (1961).CrossRefGoogle Scholar
  81. 80.
    Rothe, M., and R. Steinberger: Thiocyclols and Cyclothio-depsipeptides. Angew. Chem., Internat. Edn. 7, 884 (1968).CrossRefGoogle Scholar
  82. 81.
    Rothe, M., T. Tothe, and D. Jacob: Synthesis of an Azacyclol. Angew. Chem., Internat. Edn., 10, 128 (1971).CrossRefGoogle Scholar
  83. 82.
    Stoll, A., and Hofmann: The Ergot Alkaloids in “The Alkaloids”, ed. R. F. Manske, Vol. 8, p. 725. New York: Academic Press. 1965.Google Scholar
  84. 83.
    Leonard, N. J.: Transannular Nitrogen-Carbonyl Interactions. Record Chem. Progress 17, 243 (1956).Google Scholar
  85. 84.
    Lucente, G., and A. Romeo: Synthesis of Cyclols from some small Peptides via Amide-Amide Reaction. Chem. Commun. 1971, 1605.Google Scholar
  86. 85.
    Cerrini, S., W. Fedeli, and F. Mazza: X-Ray Crystallographic Proof of a Cyclol Structure in a Tripeptide. Chem. Commun. 1971, 1607.Google Scholar
  87. 86.
    Machin, P. J., and P. G. Sammes: Unpublished work.Google Scholar
  88. 87.
    Simonson, L. A., and C. K. Mann: Anodically Induced 1,3-Cyclo addition of Acetonitrile to 3,6-Diisobutylpiperazine-2,5-dione. Tetrahedron Letters 1970, 3303.Google Scholar
  89. 88.
    Blake, K. W., and P. G. Sammes: Geometrical Isomerism and Tautomerism of 3-Arylidene-6-methylpiperazine-2,5-diones. J. Chem. Soc. (C) 1970 (980).Google Scholar
  90. 89.
    Machin, P. J., A. E. A. Porter, and P. G. Sammes: Pyrazine Chemistry. Part V. Diels-Alder Reactions of Some 2,5-Dihydroxypyrazines. J. C. S., Perkin I, 1973, 404.Google Scholar
  91. 90.
    Bergmann, M., and A. Miekeley: Neue Desmotrope Aminosäureanhydride von Piperazintypus. Zur Kenntnis des Abbau der Aminosäuren. Serine als Dehydrierungsmittel. Annalen 458, 40 (1927).Google Scholar
  92. 91.
    Chakrabartty, S. K., and R. Levine: Chemistry of Pyrazine and its Derivatives. XII. Reaction of Acetonylpyrazine with Phenyllithium in the Presence and Absence of Methyl Benzoate. J. Heterocyclic Chem. 4, 109 (1967).CrossRefGoogle Scholar
  93. 92.
    Khokrov, A. S., and G. B. Losxkin: The Structure of Albonoursin. Tetrahedron Letters 1963, 1881.Google Scholar
  94. 93.
    Shin, C., Y. Chigera, M. Masaki, and A. Ohta: Total Synthesis of Albonoursin. Tetrahedron Letters 1967, 4601.Google Scholar
  95. 94.
    Gallina, C., and A. Liberatori: A New Synthesis of 1-Acetyl-3-Arylidene (alkylidene)piperazine-2,5-diones. Tetrahedron Letters 1973, 1135.Google Scholar
  96. 95.
    Shin, C., Y. Chigera, M. Masaki, and A. Ohta: Synthesis of Albonoursin. Bull. Chem. Soc. Japan 42, 191 (1969).CrossRefGoogle Scholar
  97. 96.
    Porter, A. E. A., and P. G. Sammes: On the Synthesis of 3-Benzylidenepiperazine2,5-diones. J. Chem. Soc. C 1970, 2530.Google Scholar
  98. 97.
    Sheehan, J. C., D. Mania, S. Nakamura, J. A. Stock, and K. Maeda: The Structure of Telomycin. J. Am. Chem. Soc. 90, 462 (1968).CrossRefGoogle Scholar
  99. 98.
    Shin, C., M. Masaki, and A. Ohta: The Independent Isolation of a Primary Enamine and the Tautomeric Imine. Bull. Chem. Soc. Japan 44, 1657 (1971).CrossRefGoogle Scholar
  100. 99.
    Quilico, A., and L. Panizzi: Chemische Untersuchungen über Aspergillus echinulatus. I. Mitteilung. Ber. 76, 348 (1943).Google Scholar
  101. 100.
    Quiuco, A.: The Constitution of Echinulin. Res. Progr. org. biol. med. Chem. 1, 225 (1964).Google Scholar
  102. 101.
    Birch, A. J., G. E. Blance, S. David, and H. Smith: Studies in relation to Biosynthesis. Part XXIV. Some Remarks on the Structure of Echinulin. J. Chem. Soc. 1961, 3128.Google Scholar
  103. 102.
    Macdonald, J. C., and G. P. Slater: The Utilization of Tryptophan in the Biosynthesis of Echinulin. Canad. J. Microbiol.12, 455 (1966).Google Scholar
  104. 103.
    Slater, G. P., J. C. MacDonald, and R. Nakashima: Biosynthesis of Echinulin by Aspergillus amstelodami from Cyclo-L-alanyl-L-tryptophanyl-14C. Biochem. 9, 2886 (1970).CrossRefGoogle Scholar
  105. 104.
    Nakashima, R., and G. P. Slater: Configuration of Echinulin II. Optical Rotatory Dispersion of Echinulin, Hydroechinulin, and the Stereoisomeric 3-Methyl-6-(indolyl3-methyl)piperazine-2,5-diones. Canad. J. Chem. 47, 2069 (1969).CrossRefGoogle Scholar
  106. 105.
    Houghton, E., and J. E. Saxton: The Echinulins: Preliminary Synthetic Studies and the Absolute Configuration of Echinulin. Tetrahedron Letters 1968, 5475.Google Scholar
  107. 106.
    Birch, A. J., and K. R. Farrar: Studies in Relation to Biosynthesis. Part XXXIII. Incorporation of Tryptophan into Echinulin. J. Chem. Soc. 1963, 4277.Google Scholar
  108. 107.
    Jackson, A. H., and A. E. Smith: Electrophilic Substitution in Indoles I. Model Experiments Related to the Synthesis of Echinulin. Tetrahedron 21, 989 (1965).CrossRefGoogle Scholar
  109. 108.
    Casnati, G., M. Francioni, A. Guareschi, and A. Pochini: Insertion of Isoprene Units into Indole Systems. Tetrahedron Letters 1969, 2485.Google Scholar
  110. 109.
    Casnati, G., and A. Pochini: Rearrangement of 3-Alkyl-l-allylindoles; A Model Reaction for the Biogenesis of Echinulin-type Compounds. Chem. Commun. 1970, 1328.Google Scholar
  111. 110.
    Dix, D. T., J. Martin, and C. E. Moppett: Molecular Structure of the Metabolite Lanosulin. J. C. S. Chem. Commun. 1972, 1168.Google Scholar
  112. 111.
    Bycroft, B. W., and W. Landon: Thio-Claisen Rearrangements of Sulphonium Salts: Implications in Indole Alkaloid Biosynthesis. Chem. Commun. 1970, 967.Google Scholar
  113. 112.
    Plieninger, H., and H. Herzog: Synthesis of O- and C-Alkylated Indoxyl Derivatives. Preliminary work for the Synthesis of Echinulin. Monatsh. Chem. 98, 807 (1967).CrossRefGoogle Scholar
  114. 113.
    Houghton, E., and J. E. Saxton: Echinulin Series. Part II. Synthesis of ± Alanyltryptophan Anhydride and L-Alanyl-2-(1,1-dimethyl)allyltryptophan Anhydride. J. Chem. Soc. (C) 1969, 1003.Google Scholar
  115. 114.
    Takamatsu, N., S. Indue, and Y. Kishi: Synthetic Study on Echinulin and Related Compounds. Part II. A Stereoselective Total Synthesis of Optically Active Echinulin. Tetrahedron Letters 1971, 4665.Google Scholar
  116. 115.
    Takamatsu, N., S. Inoue, and Y. Kishi: Synthetic Study on Echinulin and Related Compounds. Part I. Acid-catalyzed Amino-Claisen Rearrangement of allyl-and 3,3-Dimethylallyl Aniline Derivatives. Tetrahedron Letters 1971, 4661.Google Scholar
  117. 116.
    Kishi, Y., S. Nakatsuku, T. Fukuyama, and T. Goto: A Stereoselective Decarboxylation of 1,6-Dimethyl-3(3’-indolyl)methyl-3-carboxy-2,5-piperazinedione. Tetrahedron Letters 1971, 4657.Google Scholar
  118. 117.
    Allen, C. M.: Biosynthesis of Echinulin. Isoprenylation of Cyclo-L-alanyl-Ltryptophanyl. Biochem. 11, 2154 (1972).CrossRefGoogle Scholar
  119. 118.
    Allen, C. M.: Monoisoprenylated Cyclo-L-ala-L-try as a Biosynthetic Precursor of Echinulin. J. Am. Chem. Soc. 95, 2386 (1973).CrossRefGoogle Scholar
  120. 119.
    Barbetta, M., G. Casnati, A. Pochini, and A. Silva: Neoechinulin — a New Indole Metabolite from Aspergillus echinulatus. Tetrahedron Letters 1967, 4457.Google Scholar
  121. 120.
    Casnati, G., A. Pochini, and R. Ungaro: Neoechinulin: A New Isoprenylindole Metabolite from Aspergillus amstelodami. Gazz. Chim. Ital., 103, 141 (1973).Google Scholar
  122. 121.
    Birch, A. J., and J. J. Wright: The Brevianamides: A New Class of Fungal Alkaloid. Chem. Commun. 1969, 644.Google Scholar
  123. 122.
    Birch, A. J., and J. J. Wright: Studies in Relation to Biosynthesis. Part XLII. The Structural Elucidation and some Aspects of the Biosynthesis of the Brevianamides A and E. Tetrahedron 26, 2329 (1970).CrossRefGoogle Scholar
  124. 123.
    Birch, A. J., and R. A. Russell: Studies in Relation to Biosynthesis. Part XLIV. Structural Elucidations of Brevianamides B, C, D, and F. Tetrahedron 28, 2999 (1972).CrossRefGoogle Scholar
  125. 124.
    Steyn, P. S.: Austamide: A New Toxic Metabolite from Aspergillus ustus. Tetrahedron Letters 1971, 3331.Google Scholar
  126. 125.
    Steyn, P. S.: The Structures of Five Diketopiperazines from Aspergillus ustus. Tetrahedron 29, 107 (1973).CrossRefGoogle Scholar
  127. 126.
    cf. Gilbert, B.: The Alkaloids of Aspidosperma and Related Genera, in “The Alkaloids”, ed. R. H. F. Manske, p. 335. New York: Academic Press. 1965.Google Scholar
  128. 127.
    Witkop, B., and J. B. Patrick: The Course and Kinetics of the Acid-Base Catalyzed Rearrangements of 11-Hydroxytetrahydrocarbazolenine. J. Am. Chem. Soc. 73, 2188 (1951).CrossRefGoogle Scholar
  129. 128.
    Neuss, N., R. Nagarajan, B. B. Molloy, and L. L. Huckstep: Aranotin and Related Metabolites II. Isolation, Characterization and Structure of Two New Metabolites. Tetrahedron Letters 1968, 4467.Google Scholar
  130. 129.
    Coetzer, J., and P. S. Steyn: The Crystal Structure of 5-Bromo-12S-tetrahydroaustamide. Acta Cryst. B29, 685 (1973).Google Scholar
  131. 130.
    Srinivasan, R.: Photochemistry of Cyclic Ketones. Adv. Photochem. 1, 83 (1963).CrossRefGoogle Scholar
  132. 131.
    Porter, A. E. A., and P. G. Sammes: A Diels-Alder Reaction of Possible Biosynthetic Importance. Chem. Commun. 1970, 1103.Google Scholar
  133. 132.
    Yamazaki, A. S. Suzuki, and K. Mizaki: Tremorgenic Toxins from Aspergillus fumigatus Fres. Chem. Pharm. Bull. (Japan) 19, 1739 (1971).CrossRefGoogle Scholar
  134. 133.
    The author thanks Professor A. Yamazaki, Institute of Food Microbiology, Chiba University, Japan, for this information. Details of the revised structure for lanosulin were revealed at the IUPAC Congress, Hamburg, September, 1973.Google Scholar
  135. 134.
    The Author is indebted to Professor J. Clardy, Ames Laboratory, Iowa State University, U.S.A., for the details of the X-ray analysis of verruculogen before its publication.Google Scholar
  136. 135.
    Clarke, H. J., J. R. Johnson, and R. Robinson: The Chemistry of Penicillin, Princeton University Press, 1949.Google Scholar
  137. 136.
    White, E. C.: Bactericidal Filtrates from a Mould Culture. Science 92, 127 (1940).CrossRefGoogle Scholar
  138. 137.
    White, E. C., and J. H. Hill: Studies on Antibacterial Products Formed from Moulds. I. Aspergillic Acid. A Product of a Strain of Aspergillus flavus. J. Bacteriol. 45, 433 (1943).Google Scholar
  139. 138.
    Newbold, G. T., W. Sharp, and F. S. Spring: Aspergillic Acid. Part III. The Synthesis of Racemic Deoxyaspergillic Acid. J. Chem. Soc. 1951, 2679.Google Scholar
  140. 139.
    Dunn, G., G. T. Newbold, and F. S. Spring: Synthesis of Flavacol, a Metabolic Product of Aspergillic flavus. J. Chem. Soc. 1949, 2586.Google Scholar
  141. 140.
    Nakamura, S.: Structure of Muta-aspergillic Acid. Agr. Biol. Chem. (Tokyo) 25, 74 (1961).Google Scholar
  142. 141.
    Masaki, M., Y. Chigura, and M. Ohta: Total Synthesis of Racemic Aspergillic Acid and Neoaspergillic Acid. J. Org. Chem. 31, 4143 (1966).CrossRefGoogle Scholar
  143. 142.
    Masaki, M., and M. Ohta: Synthesis of a Homologue of Aspergillic Acid. J. Org. Chem. 29, 3165 (1964).CrossRefGoogle Scholar
  144. 143.
    Sugiyama, M., Masaki, and M. Ohta: Synthesis of 1-Hydroxy-6-(1-hydroxy-lmethylethyl)-2-pyraxinone and the Structure of Muta-aspergillic Acid. Tetrahedron Letters 1967, 845.Google Scholar
  145. 144.
    Ohta, A., and S. Futii: Synthesis of DL-Aspergillic Acid and DL-Deoxyaspergillic Acid. Chem. Pharm. Bull. (Japan) 17, 851 (1969).Google Scholar
  146. 145.
    Ohta, A.: Synthesis of Neoaspergillic Acid. Chem. Pharm. Bull. (Japan) 16, 1160 (1968).CrossRefGoogle Scholar
  147. 146.
    Macdonald, J. C.: in: The Antibiotics, Vol. II. Biosynthesis, ed. D. Gottlieband P. D. Shaw, p. 43. New York: Springer. 1967.Google Scholar
  148. 147.
    Micetich, R. G., and J. C. Macdonald: Metabolities from Aspergillus sclerotiorum Huber. J. Chem. Soc. 1964, 1507.Google Scholar
  149. 148.
    Macdonald, J. C.: Biosynthesis of Aspergillic Acid. J. Biol. Chem. 236, 512 (1961).Google Scholar
  150. 149.
    Macdonald, J. C.: Biosynthesis of Hydroxyaspergillic Acid. J. Biol. Chem. 237, 1977 (1962).Google Scholar
  151. 150.
    Cook, A. H., and C. A. Slater: The Structure of Pulcherrimin. J. Chem. Soc. 1956, 4133.Google Scholar
  152. 151.
    Kluyver, A. J., J. P. Ven Der Walt, and A. J. Can Triet: Pulcherrimin, the Pìzment of Candida pulcherrimin. Proc. Natl. Acad. Sci. U.S. 39, 583 (1953).CrossRefGoogle Scholar
  153. 152.
    Macdonald, J. C.: The Biosynthesis of Pulcherriminic Acid. Biochem. J. 96, 533 (1965).Google Scholar
  154. 153.
    Macdonald, J. C.: The Structure of Pulcherriminic Acid. Canad. J. Chem. 41, 165 (1963).CrossRefGoogle Scholar
  155. 154.
    Dutcher, J. D.: Aspergillic Acid. An Antibiotic Substance from Aspergillus flavus. J. Biol. Chem. 171, 321 (1947).Google Scholar
  156. 155.
    Bates, R. B., J. H. Schauble, and M. Soucek: The C10H17 Side Chain in Mycelianamide. The Stereochemistry of Bergamottin and Umbelliprenin. Tetrahedron Letters 1963, 1683.Google Scholar
  157. 156.
    Ohta, A.: Synthesis of Pulcherrimin and Pulcherriminic Acid. Chem. Pharm. Bull. (Japan) 12, 125 (1964).CrossRefGoogle Scholar
  158. 157.
    Oxford, A. E., and H. Raistrick: Studies on the Biochemistry of Microorganisms. Part 76. Mycelianamide. Biochem. J. 43, 323 (1948).Google Scholar
  159. 158.
    Birch, A. J., L. A. Massey-Westropp, and R. W. Rickards: Studies Related to Biosynthesis. Part VIII. The Structure of Mycelianamide. J. Chem. Soc. 1956, 3717.Google Scholar
  160. 159.
    Gallina, C., A. Romeo, V. Tortorella, and G. D’Agnelo: Synthesis of Racemic Deoxymycelianamide. Chem. & Ind. (London) 1966, 1300.Google Scholar
  161. 160.
    Bapat, J. B., D. St. C. Black, and R. F. C. Brown: Cyclic Hydroxamic Acids. Adv. Heterocyclic Chem. 10, 199 (1969).Google Scholar
  162. 161.
    Brown, R. F. C., and G. C. Meehan: Synthetic Approaches to Mycelianamide. Austral. J. Chem. 21, 1581 (1968).Google Scholar
  163. 162.
    Teranishi, R.: Odor and Molecular Structure, in “Gustation and Olfaction”, ed. G. Ohloffand A. F. Thomas, p. 165. New York: Academic Press. 1971.Google Scholar
  164. 163.
    Seifert, R. M., R. G. Buttery, D. G. Guadagin, D. R. Black, and J. G. Harris: Synthesis of some 2-Methoxy-3-alkylpyrazines with strong Bell-pepper like Odours. J. Agr. Food Chem. 18, 246 (1970).CrossRefGoogle Scholar
  165. 164.
    Murray, K. E., J. Shipton, and F. B. Whitfield: 2-Methoxypyrazines and the Flavour of Green Peas (Pisum sativum). Chem. & Ind. (London) 1970, 897.Google Scholar
  166. 165.
    Weindling, R., and O. Emerson: Isolation of a Toxic Substance from the Culture Filtrate of Trichoderma. Phytopath. 26, 1068 (1936).Google Scholar
  167. 166.
    Johnson, J. R., F. W. Bruce, and J. D. Dutcher: Gliotoxin, the Antibiotic Principle of Gliocladium fimbriatin. J. Am. Chem. Soc. 65, 2005 (1943).CrossRefGoogle Scholar
  168. 167.
    Crowfoot, D., and B. W. Rogers-Low: X-Ray Crystallography of Gliotoxin. Nature 153, 651 (1944).CrossRefGoogle Scholar
  169. 168.
    Johnson, J. R., A. R. Kidwa, and J. S. Warner: Gliotoxin XI. A Related Antibiotic from Penicillium terlikowskii. Gliotoxin Monoacetate. J. Am. Chem. Soc. 75, 2110 (1953).CrossRefGoogle Scholar
  170. 169.
    Richtsel, W. A., H. G. Schneider, B. J. Sloan, P. R. Grof, F. A. Miller, Q. R. Bartz, J. Ehrlich, and G. J. Dixon: Antiviral Activity of Gliotoxin. Nature 204, 1333 (1964).CrossRefGoogle Scholar
  171. 170.
    Taylor, A.: In Biochemistry of Some Foodborne Microbial Toxins, ed. R. I. Mateles and G. N. Wogan, p. 69. Cambridge, Massachusetts: The M. I. T. Press. 1967.Google Scholar
  172. 171.
    Bell, M. R., J. R. Johnson, B. S. Wildi, and R. B. Woodward: The Structure of Gliotoxin. J. Am. Chem. Soc. 80, 1001 (1958).CrossRefGoogle Scholar
  173. 172.
    Beecham, A. F., J. Fridrichsons, and A. Mc. L. Mathieson: The Structure and Absolute Configuration of Gliotoxin and the Absolute Configuration of Sporidesmin. Tetrahedron Letters 1956, 3131.Google Scholar
  174. 173.
    Lowe, G., A. Taylor, and L. C. Vining: Sporidesmins. VI. Isolation and Structure of Dehydrogliotoxin, a Metabolite of Penicillium terlikowskii. J. Chem. Soc. (C) 1966, 1799.Google Scholar
  175. 174.
    Safe, S., and A. Taylor: Sporidesmins. XI. The Reaction of Triphenylphosphine with Epipolythiodioxopiperazines. J. Chem. Soc. (C) 1971, 1189.Google Scholar
  176. 175.
    Fridrichsons, J., and A. Mc. L. Mathieson: The Structure of the Methylene Dibromide Adduct of Sporidesmin at — 150°. Acta Cryst. 18, 1043 (1965).CrossRefGoogle Scholar
  177. 176.
    Weber, H. P.: Molecular Structure and Absolute Configuration of Chaetocin. Acta Cryst. B28, 2945 (1972).Google Scholar
  178. 177.
    Davis, B. R., and I. Bernal: The Crystal Structure of 2,5-Piperazinediones Having Epipolysulphide Bridges Between C3 and C6: The Structure of N,N’Dimethyl-3,6-epitetrathio-2,5-piperazinedione. Proc. Nat. Acad. Sci. 70, 279 (1973).CrossRefGoogle Scholar
  179. 178.
    Leonard, N. J., T. W. Milligan, and T. L. Brown: Transannular Interactions between Sulphide and Ketone Groups. J. Am. Chem. Soc. 82, 4075 (1960).CrossRefGoogle Scholar
  180. 179.
    Trown, P. W.: Antiviral Activity of N,N’-Dimethyl-3,6-epidithio piperazine-2,5dione. A Synthetic Compound Related to the Gliotoxins, LLS 88 α and β-Chetomin, and the Sporidesmins. Biochem. Biophys. Res. Commun. 33, 402 (1968).CrossRefGoogle Scholar
  181. 180.
    Murdock, K. C., and R. B. Angier: Acetylaranotin: Displacement Reactions at the Disulphide Linkage. Chem. Commun. 1970, 55.Google Scholar
  182. 181.
    Schoberl, A., and E. Ludwig: Die Aufspaltung der Disulfidbindung mit Natriumsulfit und Kaliumcyanid und über die Colorimetrische Bestimmung von Sulfhydrylverbindungen und Disulfiden. Ber. 70B, 1422 (1937).Google Scholar
  183. 182.
    Beecham, A. F., and A. Mc. L. Mathieson: The Circular Dichroism of Gliotoxin. Tetrahedron Letters 1966, 3139.Google Scholar
  184. 183.
    Ziffer, H., U. Weiss, and E. Charney: Optical Activity of Non-planar Conjugated Dienes. IV. Interacting Chromophores in Gliotoxin. Tetrahedron 23, 3881 (1967).CrossRefGoogle Scholar
  185. 184.
    Moscowitz, A., E. Charney, U. Weiss, and H. Ziffer: Optical Activity in Skewed Dienes. J. Am. Chem. Soc. 83, 4661 (1961).CrossRefGoogle Scholar
  186. 185.
    Ali, M. S., J. S. Shannon, and A. Taylor: Isolation and Structures of 1,2,3,4Tetrahydro-1,4-dioxopyrazino[1,2-a]indoles from Cultures of Penicillium terlikowskii. J. Chem. Soc. 1968, 2044.Google Scholar
  187. 186.
    Nagarajan, N., L. L. Huckstep, D. H. Lively, D. L. Delong, M. M. Marsh, and N. Neuss: Aranotin and Related Metabolites from Arachniotus aureus. I. Determination of Structure. J. Am. Chem. Soc. 90, 2980 (1968).CrossRefGoogle Scholar
  188. 187.
    Cosulich, D. B., N. R. Nelson, and J. H. Van Den Hende: Crystal and Molecular Structure of LLS 88 a, an Antiviral Epidithiapiperazinedione Derivative from Aspergillus terreus. J. Am. Chem. Soc. 90, 6519 (1968).CrossRefGoogle Scholar
  189. 188.
    Moncrief, J. W.: Molecular Structure of Bisdethiodi(thiomethyl)acetylaranotin including Absolute Configuration. J. Am. Chem. Soc. 90, 6516 (1968).CrossRefGoogle Scholar
  190. 189.
    Nagarajan, N., N. Neuss, and M. M. Marsh: Aranotin and Related Metabolites. III. Configuration and Conformation of Acetylaranotin. J. Am. Chem. Soc. 90, 6518 (1968).CrossRefGoogle Scholar
  191. 190.
    Suhadolnik, R. J, and R. E. Chenoweth: Biosynthesis of Gliotoxin. I. Incorporation of Phenylalanine-l-and 2-C14. J. Am. Chem. Soc. 80, 4391 (1958).CrossRefGoogle Scholar
  192. 191.
    Winstead, J. A., and R. J. Suhadolnik: Biosynthesis of Gliotoxin. II. Further Studies on the Incorporation of Carbon-14 and Tritium Labelled Precursors. J. Am. Chem. Soc. 82, 1644 (1960).CrossRefGoogle Scholar
  193. 192.
    Johns, N., and G. W. Kirby: The Biosynthesis of Gliotoxin. Possible Involvement of a Phenylalanine Epoxide. Chem. Commun. 1971, 163.Google Scholar
  194. 193.
    Bu’Lock, J. D., and A. P. Ryles: The Biosynthesis of the Fungal Toxin, Gliotoxin. Chem. Commun. 1970, 1404.Google Scholar
  195. 194.
    Brannon, D. R., J. A. Mage, B. B. Molloy, and W. A. Day: Biosynthesis of Dithiadiketopiperazine Antibiotics. Comparison of Possible Aromatic Amino Acid Precursors. Biochem. Biophys. Res. Commun. 43, 588 (1971).Google Scholar
  196. 195.
    Bose, A. K., K. G. Das, P. T. Funke, I. Kugajersky, O. P. Shukla, K. S. Khandanchani, and R. J. Suhadolnik: Biosynthetic Studies on Gliotoxin Using Stable Isotopes and Mass Spectral Methods. J. Am. Chem. Soc. 90, 1038 (1968).CrossRefGoogle Scholar
  197. 196.
    Jerina, D. M., J. W. Daly, B. Witkop, P. Zalzman-Nirenberg, and S. Udenfriend: The Role of Areneoxide-Oxepin Systems in the Metabolism of Aromatic Substrates. III. Formation of 1,2-Naphthalene Oxide from Naphthalene by Liver Microsomes. J. Am. Chem. Soc. 90, 6525 (1968).CrossRefGoogle Scholar
  198. 197.
    Miller, P. A., P. W. Trown, W. Fulmar, G. O. Morton, and J. Karliner: An Epidithiapiperazinedione Antiviral Agent from Aspergillus terreus. Biochem. Biophys. Chem. Commun. 33, 219 (1968).Google Scholar
  199. 198.
    Machin, P. J., and P. G. Sammes: Addition of Sulphur Nucleophiles Across Dehydrocyclodipeptides. J. C. S. Perkin 1 1974, 698.CrossRefGoogle Scholar
  200. 199.
    Pojer, P. M., and I. D. Rae: Synthesis of 2-Benzamido-2-mercaptopropionic Acid. Tetrahedron Letters 1971, 3077.Google Scholar
  201. 200.
    Steglich, W., H. Tanner, and R. Hurnaus: 2-Dichlormethylenpseudooxazolon-(5). Chem. Ber. 100, 1824 (1967).CrossRefGoogle Scholar
  202. 201.
    Kaneda, A., and R. Sudo: The Preparation of α-Amino-α-benzylmercaptopropionic Acid Derivatives. Bull. Chem. Soc. (Japan) 43, 2159 (1970).CrossRefGoogle Scholar
  203. 202.
    Patel, S. M., J. O. Currie, and R. K. Olsen: The Synthesis of N-Acyl-α-mercaptoalanine Derivatives. J. Org. Chem. 38, 126 (1973).CrossRefGoogle Scholar
  204. 203.
    Wohl, A., and C. Oesterlin: Überführung der Weinsäure in Oxalessigsäure durch Wasserspaltung bei niederer Temperatur. Ber. 34, 1139 (1901).Google Scholar
  205. 204.
    Yoshimura, J., and Y. Sugiyama: An Attempted Synthesis of 3,6-Epidithio-2,5piperazinediones by Cyclization of N,N’-dialkyl-2,2’-dithiocinnamamides. Bull. Chem. Soc. (Japan) 45, 1554 (1972).CrossRefGoogle Scholar
  206. 205.
    Ottenheym, H. C. J., T. F. Spande, and B. Witkop: Approaches to Analogs of Anhydrogliotoxin. J. Am. Chem. Soc. 95, 1989 (1973).CrossRefGoogle Scholar
  207. 206.
    Poisel, H.. and U. Schmidt: Über die elektrophile Einführung von Alkylgruppen und Schwefelfunktionen in den 2,5-Dioxopiperazin-Kern. Chem. Ber. 105, 625 (1972).CrossRefGoogle Scholar
  208. 207.
    Ohler, E., H. Poisel, F. Tataruch, and U. Schmidt: Synthese des Epidithio-Lprolyl-L-prolin Anhydrids. Chem. Ber. 105, 635 (1972).CrossRefGoogle Scholar
  209. 208.
    Hind, T., and T. Sako: Synthesis of 3,6-Diethoxycarbonyl-3,6-epipolythio-2,5piperazinediones. Tetrahedron Letters 1971, 3127.Google Scholar
  210. 209.
    Ohler, E., F. Tataruch, and U. Schmidt: Über die Einführung von Säurestoffunktionen in Prolyl-prolinanhydrid mit Bleitetraacetat: Ein neuer Weg zum Epidisulfid des Prolyl-prolin-anhydrid. Chem. Ber. 106, 396 (1973).CrossRefGoogle Scholar
  211. 210.
    Ohler, E., F. Tataruch, and U. Schmidt: Nucleophile Einführung von Schwefelfunktionen über Sulfon und Hydroxyderivate Cyclisches Dipeptide (Dioxopiperazine). Chem. Ber. 106, 165 (1973).CrossRefGoogle Scholar
  212. 211.
    Kishi, Y., T. Fukuyama, and S. Nakatsuka: A New Method for the Synthesis of Epidithiodiketopiperazines. J. Am. Chem. Soc. 95, 6490 (1973).CrossRefGoogle Scholar
  213. 212.
    Kishi, Y., T. Fukuyama, and S. Nakatsuka: A Total Synthesis of Dehydrogliotoxin. J. Am. Chem. Soc. 95, 6492 (1973).CrossRefGoogle Scholar
  214. 213.
    Kishi, Y., S. Nakatsuka, T. Fukuyama, and M. Havel: A Total Synthesis of Sporidesmin A. J. Am. Chem. Soc. 95, 6493 (1973).CrossRefGoogle Scholar
  215. 214.
    Ronaldson, J. W., A. Taylor, E. P. White, and R. J. Abraham: Sporidesmins. Part I. Isolation and Characterisation of Sporidesmin and Sporidesmin B. J. Chem. Soc. 1963, 3172.Google Scholar
  216. 215.
    Hodges, R., J. W. Ronaldson, A. Taylor, and E. P. White: Sporidesmin and Sporidesmin B. Chem. & Ind. (London) 1963, 42.Google Scholar
  217. 216.
    Jamieson, W. D., R. Rahman, and A. Taylor: Sporidesmins. Part VIII. Isolation and Structure of Sporidesmin D and Sporidesmin F. J. Chem. Soc. (C) 1969, 1564.Google Scholar
  218. 217.
    Przybylska, M., E. M. Gopalkrishna, A. Taylor, and S. Safe: X-ray Crystallographic Determination of the Stereochemistry of the Tetrathio-bridge in Sporidesmin G. J. C. S. Chem. Commun. 1973, 554.Google Scholar
  219. 218.
    Francis, E., R. Rahman, S. Safe, and A. Taylor: Sporidesmins. Part XII. Isolation and Structure of Sporidesmin G, a Naturally Occurring 3,6-Epitetrathiopiperazine2,5-dione. J. C. S. Perkin I 1972, 470.Google Scholar
  220. 219.
    Safe, S., and A. Taylor: Sporidesmins. Part X. Synthesis of Polysulphides by Reaction of Dihydrogen Disulphide with Disulphides and Thiols. J. Chem. Soc. (C) 1970, 432.Google Scholar
  221. 220.
    Rahman, R., S. Safe, and A. Taylor: The Stereochemistry of Polysulphides. Quart. Rev. 24, 233 (1970).Google Scholar
  222. 221.
    Hodges, R., and J. S. Shannon: The Isolation and Structure of Sporidesmin C. Austral. J. Chem. 19, 1059 (1966).CrossRefGoogle Scholar
  223. 222.
    Horn, M. J., D. B. Jones, and S. J. Ringel: Isolation of a New Sulphur-containing Amino Acid (Lanthionine) from Sodium Carbonate Treated Wool. J. Biol. Chem. 138, 141 (1941).Google Scholar
  224. 223.
    Nakagawa, M., T. Kaneko, and H. Yamaguchi: Photoinduced Oxidation of Tryptamine Derivatives. Formation of Pyrrolo[2,3-b]indole and Nb-(4-Cyanobutadienyl)tryptamine. J. C. S. Chem. Commun. 1972, 603.Google Scholar
  225. 224.
    Ohno, M., T. F. Spande, and B. Witkop: Cyclisation of Tryptophan and Tryptamine Derivatives to 2,3-Dihydropyrrolo[2,3-b]indoles. J. Am. Chem. Soc. 92, 343 (1970).CrossRefGoogle Scholar
  226. 225.
    Foote, C. S., S. Mazur, P. A. Burns, and D. Lerdal: Chemistry of Singlet Oxygen. XVII. 1,4-Addition Products from Styrene Derivatives. J. Am. Chem. Soc. 95, 586 (1973).CrossRefGoogle Scholar
  227. 226.
    Amit, R. G., F. W. Eastwood, and I. D. Rae: Addition of a Highly Oxygenated Side Chain to an Indole Derivative. Chem. Commun. 1971, 1614.Google Scholar
  228. 227.
    Minato, H., M. Matsumoto, and T. Katayama: Verticillin A, a New Antibiotic from Verticillium sp. Chem. Commun. 1971, 44.Google Scholar
  229. 228.
    Minato, H., M. Matsumoto, and T. Katayama: Studies on the Metabolites of Verticillium sp. Structures of Verticillin A, B, and C. J. C. S. Perkin I 1973, 1819.Google Scholar
  230. 229.
    Hauser, D., H. P. Weber, and H. P. Sigg: Isolierung und Strukturaufklärung von Chaetocin. Helv. chim. Acta 53, 1061 (1970).CrossRefGoogle Scholar
  231. 230.
    Hauser, D., H. R. Loosli, and P. Niklaus: Isolierung von 11 α,11 α’-Dihydroxychaetoxin am Verticillium tenerum. Helv. chim. Acta 55, 2182 (1972).CrossRefGoogle Scholar
  232. 231.
    Waksman, S. A., and E. Bugie: Chaetomin, a New Antibiotic Substance produced by Chaetomium cochliodes. J. Bacteriol. 48, 527 (1944).Google Scholar
  233. 232.
    Safe, S., and A. Taylor: The Characterisation of Chetomin, a Toxic Metabolite of Chaetomium cochliodes and Chaetomium globosum. J. C. S. Perkin I 1972, 472.Google Scholar
  234. 233.
    Kato, A., T. Saeki, S. Suzuki, K. Ando, G. Tamura, and K. Arima: Oryzachloride, a New Antiviral Disulphide Dioxopiperazine Derivative. J. Antibiot. (Tokyo) 22, 322 (1969).CrossRefGoogle Scholar
  235. 234.
    Argoudelis, A. D.: Melinacidins II, III, and IV. New 3,6-Epidithiadiketopiperazine Antibiotics. J. Antibiot. (Tokyo) 25, 171 (1972).CrossRefGoogle Scholar
  236. 235.
    Kamiya, T., S. Maeno, M. Hashimoto, and Y. Mini: Bicyclomycin, a New Antibiotic. II. Structure Elucidation and Acyl Derivatives. J. Antibiot. (Tokyo) 25, 576 (1972).CrossRefGoogle Scholar
  237. 236.
    Miyoshi, T., N. Miyawa, H. Aobi, M. Kohsaka, H. Sakai, and H. Imanaka: Bicyclomycin, a New Antibiotic. II. Taxonomy, Isolation, and Characterization. J. Antibiot. (Tokyo) 25, 569 (1972).CrossRefGoogle Scholar
  238. 237.
    Nishida, M., Y. Mini, and T. Matsubara: Bicyclomycin, a New Antibiotic. III. In vitro and in vivo Antimicrobial Activity. J. Antibiot. (Tokyo) 25, 582 (1972).CrossRefGoogle Scholar
  239. 238.
    Sharma, G. M., and P. R. Burkholder: Structure of Dibromophakellin, a New Bromine-containing Alkaloid from the Marine Sponge, Phakellia flabellata. Chem. Commun. 1971, 151.Google Scholar
  240. 239.
    Chen, Y.-S.: Studies on the Metabolic Products of Roselinia necatrix. I. Isolation and Characterization of Several Physiologically Active, Neutral Substances. Bull. Agric. Chem. Soc. Japan 24, 372 (1960).CrossRefGoogle Scholar
  241. 240.
    Johnson, J. L., W. G. Jackson, and T. E. Eble: Isolation of L-leucyl-L-proline Anhydride from Microbiological Formulations. J. Am. Chem. Soc. 73, 2947 (1951).CrossRefGoogle Scholar
  242. 241.
    Kodaira, Y.: Toxic Substances to Insects Produced by Aspergillus achraceus and Oospora destructor. Agr. Biol. Chem. (Tokyo) 25 261 (1961).Google Scholar
  243. 242.
    Birkenshaw, J. H., and Y. S. Mohammed: Studies in the Biosynthesis of Microorganisms. 111. The Production of L-Phenylalanine Anhydride (cis-L-3,6-dibenzyl2,5-dioxopiperazine) by Penicillium nigricans (Bainier) Thom. Biochem. J. 85, 523 (1962).Google Scholar
  244. 243.
    Brown, R., C. Kelly, and S. E. Wibberley: The Production of 3-Benzylidene-6isobutylidene-2,5-dioxopiperazine, 3,6-Dibenzylidene-2,5-dioxopiperazine, and 3,6Dibenzyl-2,5-dioxopiperazine by a Variant of Streptomyces noursei. J. Org. Chem. 30, 277 (1965).CrossRefGoogle Scholar
  245. 244.
    Caesar, F., K. Janssen, and E. Mutschler: Nigragillin, a New Alkaloid from the Aspergillus niger Group. 1. Isolation and Structure Elucidation of Nigragillin and a Dioxopiperazine. Pharm. Acta Hely. 44, 676 (1969).Google Scholar
  246. 245.
    Jensen, N. P., C. O. Gitterman, T. Y. Chen, B. H. Arison, and J. L. Beck: Isolation of a New Antitumour Antibiotic from Streptomyces griseoluteus. Chem. and Eng. News April 14-th, 1973, p. 24.Google Scholar
  247. 246.
    Gerber, N. N.: Phenazines, Phenoxazinones, and Dioxopiperazines from Streptomyces thioluteus. J. Org. Chem. 32, 4055 (1967).CrossRefGoogle Scholar
  248. 247.
    Heinemann, B., M. A. Kaplan, R. U. Muir, and I. R. Hooper: Amphomycin, a New Antibiotic. Antibiot. and Chemother. 3, 1239 (1953).Google Scholar
  249. 248.
    Casnati, G., A. Quilico, and A. Ricca: Aspergillus glaucus Group. XVIII. Echinulin. 12. Gazz. Chim. Ital. 92, 129 (1962).Google Scholar
  250. 249.
    Dutcher, J. D.: Aspergillic Acid, an Antibiotic Substance produced by Aspergillus flavus. III. The Structure of Hydroxyaspergillic Acid. J. Biol. Chem. 232, 785 (1958).Google Scholar
  251. 250.
    Yokotsuka, T., M. Sasaki, T. Kikuchi, Y. Asao, and A. Nobuhara: Compounds Produced by Moulds. I. Fluorescent Compounds Produced by Japanese Industrial Moulds. Bull. Agric. Chem. Soc. Japan 41, 32 (1967).Google Scholar
  252. 251.
    Yokotsuka, T., T. Kikuchi, M. Sasaki, and K. Oshita: Aflatoxin G — like Compounds with Green Fluorescence Produced by Japanese Industrial Moulds. Bull. Agric. Chem. Soc. Japan 42, 581 (1968).Google Scholar
  253. 252.
    Terao, M., K. Karasawa, N. Tanaka, H. Yonehara, and H. Umezawa: A New Antibiotic, Emimycin. J. Antibiot. Ser. A 13, 401 (1960).Google Scholar
  254. 253.
    Terao, M.: Emimycin, a New Antibiotic. II. The Structure of Emimycin. J. Antibiot. Ser. A 16, 182 (1963).Google Scholar
  255. 254.
    Yamazaki, M.: Deoxyneo- 3-hydroxyaspergillic Acid. Chem. Pharm. Bull. (Japan) 20, 2274 (1972).CrossRefGoogle Scholar
  256. 255.
    Rahman, R., S. Safe, and A. Taylor: Sporidesmins. Part IX. Isolation and Structure of Sporidesmin E. J. Chem. Soc. (C) 1969, 1665.Google Scholar
  257. 256.
    Taylor, A.: The Toxicology of Sporidesmins and Other Epipolythiodioxopiperazines, in “Microbial Toxins”, ed. S. Kadis, A. Ciegler, and S. J. Ajl, Vol. VII, chapter 10. New York: Academic Press. 1971.Google Scholar
  258. 257.
    Cheeseman, G. W. H., and E. S. G. Werstuik: Recent Advances in Pyrazine Chemistry. Adv. Heterocyclic Chem. 14, 99 (1972).CrossRefGoogle Scholar
  259. 258.
    Tamura, S., A. Susuki, Y. Aoka, and N. Otaki: Isolation of Several Dioxopiperazines from Peptone. Agr. Biol. Chem. (Japan) 28, 650 (1964)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • P. G. Sammes
    • 1
  1. 1.Department of ChemistryImperial College of Science and TechnologyLondonUK

Personalised recommendations