Advertisement

Abstract

Historically, petroleum and bitumen in sediments were the stepchildren of natural product chemistry. One of the reasons for this phenomenon is the stigma that petroleum is a product of industry and not of nature. This concept was changed drastically by Treibs’ (1) discovery of porphyrins in petroleum in the 1930’s which signaled its biological origin and represented the birth of modern organic geochemistry. Hundreds of papers have subsequently appeared documenting the biological fossil nature of petroleum.

Keywords

Carboxylic Acid Phytanic Acid Organic Geochemistry High Resolution Mass Spectrometry Carbon Preference Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. 1.
    Treibs, A.: Chlorophyll und Häminderivate in Organischen Mineralstoffen. Angew. Chem. 49, 682 (1936).Google Scholar
  2. 2.
    Hell, C., und E. Medinger: Über das Vorkommen und die Zusammensetzung von Säuren im Rohpetroleum. Ber. dtsch. Chem. Ges. 7, 1216 (1874).CrossRefGoogle Scholar
  3. 3.
    Lochte, H. L., and E. R. Littmann: The Petroleum Acids and Bases. New York: Chemical Publishing Company, Inc. 1955.Google Scholar
  4. 4.
    Seifert, W. K., and W. G. Howells: Interfacially Active Acids in a California Crude Oil. Isolation of Carboxylic Acids and Phenols. Analyt. Chem. 41, 554 (1969).Google Scholar
  5. 5.
    Costantinides, G., and G. Arich: Nonhydrocarbon Compounds in Petroleum: Fundamental Aspects of Petroleum Geochemistry. Ed. by B. Nagy and U. Colombo, pp. 143–151. New York: Elsevier. 1957.Google Scholar
  6. 6.
    De Boer, T. J., and H. J. Backer: A New Method for the Preparation of Diazomethane. Rec. Tray. Chim. 73, 229 (1954).CrossRefGoogle Scholar
  7. 7.
    White, E. H., A. A. Baum, and D. E. Eitel: 1-Methyl-3-p-tolyltriazene. Org. Syn. 48, 102 (1968).Google Scholar
  8. 8.
    Teeter, R. M.: Fluoroalcohol Esters as Derivatives for Mass Spectrometry. Analyt. Chem. 39, 1742 (1967).CrossRefGoogle Scholar
  9. 9.
    Seifert, W. K., and R. M. Teeter: Preparative Thin-Layer Chromatography and High Resolution Mass Spectrometry of Crude Oil Carboxylic Acids. Analyt. Chem. 41, 786 (1969).CrossRefGoogle Scholar
  10. 10.
    Pierce, A. E.: Silylation of Organic Compounds; a Technique for Gas Phase Analysis. Pierce Chemical Co., Rockford, Ill., U.S.A. (1968).Google Scholar
  11. 11.
    Teeter, R. M., and W. K. Seifert: Observation of Derivatives of Petroleum Acids by Mass Spectrometry. ACS Meeting, Los Angeles, April 1971, Petroleum Division Preprints A7 (1971).Google Scholar
  12. 12.
    Vetter, W., W. Walther und M. Vecchi: Pyrrolidide als Derivate für die Strukturaufklärung aliphatischer und alicyclischer Carbonsäuren mittels Massenspektrometrie. Helv. Chim. Acta 54, 1599 (1971).CrossRefGoogle Scholar
  13. 13.
    Cooper, J. E., and E. E. Bray: A Postulated Role of Fatty Acids in Petroleum Formation. Geochimica et Cosmochimica Acta 27, 1113 (1963).CrossRefGoogle Scholar
  14. 14.
    Mcauliffe, C. D.: Oil-in-Water Emulsions Improve Fluid Flow in Porous Media. J. Petroleum Technology, p. 729 (June 1973).Google Scholar
  15. 15.
    Seifert, W. K.: Steroid Acids in Petroleum. Animal Contribution to the Origin of Petroleum. Pure and Appl. Chem. 34, 633 (1973).CrossRefGoogle Scholar
  16. 16.
    Wort, D. J., J. G. Severson, JR., and D. R. Peirson: Mechanism of Plant Growth Stimulation by Naphthenic Acid. Plant Physiol. 52, 162 (1973).CrossRefGoogle Scholar
  17. 17.
    Severson, J. G., Jr., and D. J. Wort: Phosphate Uptake and Distribution in Bush Bean Plants as Affected by Foliar Application of Naphthenate. Agronomy Journal 5, 520 (1973).CrossRefGoogle Scholar
  18. 18.
    Severson, J. G., Jr.: Stimulation of [14C] Glucose Uptake and Metabolism in Bean Root Tips by Naphthenates. Phytochemistry 11, 71 (1972).CrossRefGoogle Scholar
  19. 19.
    Graham, D. W.: Ph. D. Dissertation, University of California, Berkeley; University Microfilms 65–8174, Ann Arbor, Michigan, 1965.Google Scholar
  20. 20.
    Kvenvolden, K. A.: Evidence for Transformations of Normal Fatty Acids in Sediments. Advances in Organic Geochemistry 1966 ed. by G. C. Hobson and G. C. Speers, p. 335. New York: Pergamon. 1970.Google Scholar
  21. 21.
    Kvenvolden, K. A.: Normal Fatty Acids in Sediments. J. Amer. Oil Chem. Soc. 44, 628 (1967).CrossRefGoogle Scholar
  22. 22.
    Douglas, A. G., K. Douraghi-Zadeh, G. Eglinton, J. R. Maxwell, and J. N. Ramsay: Fatty Acids in Sediments Including the Green River Shale (Eocene) and Scottish Torbanite (Carboniferous). Advances in Organic Geochemistry 1966 ed. G. D. Hobson and G. C. Speers, p. 315. Oxford: Pergamon Press. 1970.Google Scholar
  23. 23.
    Parker, P. L.: Fatty Acids and Alcohols. Organic Geochemistry ed. by G. Eglinton and M. T. J. Murphy, pp. 363–366. New York: Springer. 1969.Google Scholar
  24. 24.
    Lawlor, D. L., and W. E. Robinson: Fatty Acids in Green River Formation Oil Shale. Div. Petrol. Chem. Amer. Chem. Soc. Detroit Meeting 1965, 5.Google Scholar
  25. 25.
    Kvenvolden, K. A., and D. Weiser: A Mathematical Model of a Geochemical Process. Normal Paraffin Formation from Normal Fatty Acids. Geochimica et Cosmochimica Acta 31, 1281 (1967).CrossRefGoogle Scholar
  26. 26.
    Welte, D. H.: Distribution of Long Chain n-Paraffins and n-Fatty Acids in Sediments from the Persian Gulf. Geochimica et Cosmochimica Acta 32, 465 (1968).CrossRefGoogle Scholar
  27. 27.
    Maxwell, J. R., C. T. Pillinger, and G. Eglinton: Organic Geochemistry. Quart. Rev. (Chem. Soc. London) 25, 585 (1971).CrossRefGoogle Scholar
  28. 28.
    Abelson, D. H.: Organic Geochemistry and the Formation of Petroleum. Proc. Sixth World Petroleum Congress, Section I, 397 (1963).Google Scholar
  29. 29.
    Jurg, J. W., and E. Eisma: Petroleum Hydrocarbons: Generation From Fatty Acids. Science 144, 1451 (1964); Advances in Organic Geochemistry 1966 ed. by G. D. Hobson and G. C. Speers, p. 367. Oxford-New York: Pergamon Press. 1970.Google Scholar
  30. 30.
    Waples, D. W.: Catalytic Formation of Hydrocarbons from Fatty Acids. Nature Physical Science 237, 63 (1972).Google Scholar
  31. 31.
    Albrecht, P., and G. Ourisson: Biogenic Substances in Sediments and Fossils. Angew. Chem. Internat. Ed. 10, 218 (1971).CrossRefGoogle Scholar
  32. 32.
    Van Hoeven, W., J. R. Maxwell, and M. Calvin: Fatty Acids and Hydrocarbons as Evidence of Life Processes in Ancient Sediments and Crude Oils. Geochimica et Cosmochimica Acta 33, 877 (1969).CrossRefGoogle Scholar
  33. 33.
    Han, J., and M. Calvin: Occurrence of Fatty Acids and Aliphatic Hydrocarbons in a 3.4 Billion Year Old Sediment. Nature 224, 576 (1969).CrossRefGoogle Scholar
  34. 34.
    Parker, P. L., and R. F. Leo: Fatty Acids in Blue-Green Algal Mat Communities. Science 148, 373 (1965).CrossRefGoogle Scholar
  35. 35.
    Haug, P., and J. R. Sever: A Study of the Mechanism of Formation of the Acids in a Marine Sediment. Acids of the Excello Shale and Surtsey Lagoonal Sediment. Advances in Organic Geochemistry 1971, p. 293. Oxford-Braunschweig: Pergamon Press. 1972.Google Scholar
  36. 36.
    Rhead, M. M., G. Eglinton, G. H. Draffan, and P. J. England: Conversion Of Oleic Acid to Saturated Fatty Acids in Severn Estuary Sediment. Nature 232, 327 (1971).CrossRefGoogle Scholar
  37. 37.
    Rhead, M. M., G. Eglinton, G. H. Draffan, and P. J. England: Products of Short-Term Diagenesis of Oleic Acid in Estuary Sediment. Advances in Organic Geochemistry 1971, p. 323. Oxford-Braunschweig: Pergamon Press. 1972.Google Scholar
  38. 38.
    Leo, R. F.: The Geochemistry of Fatty Acids in Recent Marine Sediments. M. A. Thesis, University of Texas (1966).Google Scholar
  39. 39.
    Haug, P., H. K. Schnoes, and A. L. Burlingame: Studies of the Acidic Components of a Colorado Green River Formation Oil Shale: Mass Spectrometric Identification of the Methyl Esters of Extractable Acids. Chem. Geology 7, 213 (1971).CrossRefGoogle Scholar
  40. 40.
    Ramsay, J. N.: Organic Geochemistry of Fatty Acids. M. S. Thesis, University of Glasgow (1966).Google Scholar
  41. 41.
    Leo, R. F., and P. L. Parker: Branched Chain Fatty Acids in Sediments. Science 152, 649 (1966).CrossRefGoogle Scholar
  42. 42.
    Bock, R., and K. Behrends: Untersuchung eines Gemisches von Erdölsäuren. Ein Beitrag zum Naphthensäureproblem. Z. analyt. Chem. 208, 338 (1965).CrossRefGoogle Scholar
  43. 43.
    Cason, J., and D. W. Graham: Isolation of Isoprenoid Acids from a California Petroleum. Tetrahedron 21, 471 (1965).CrossRefGoogle Scholar
  44. 44.
    Cason, J., and A. I. A. Khodair: Isolation of the C11-Carbon Acyclic Isoprenoid Acid from Petroleum. J. Organ. Chem. (U.S.A.) 32, 3430 (1967).CrossRefGoogle Scholar
  45. 45.
    Ackman, R. G., and R. P. Hansen: The Occurrence of Diastereomers of Phytanic and Pristanic Acids and Their Determination by Gas-Liquid Chromatography. Lipids 2, 357 (1967).CrossRefGoogle Scholar
  46. 46.
    Eglinton, G., A. G. Douglas, J. R. Maxwell, J. N. Ramsay, and S. Ställbergstenhagen: Occurrence of Isoprenoid Fatty Acids in Green River Shale. Science 153, 1133 (1966).CrossRefGoogle Scholar
  47. 47.
    Haug, P., H. K. Schnoes, and H. L. Burlingame: Isoprenoid and Dicarboxylic Acids Isolated from Colorado Green River Shale (Eocene). Science 158, 772 (1967).CrossRefGoogle Scholar
  48. 48.
    Burlingame, A. L., and B. R. Simonert: High Resolution Mass Spectral Analysis of the Mineral Entrapped Fatty Acids Isolated from the Green River Formation (Eocene). Nature 218, 252 (1968).CrossRefGoogle Scholar
  49. 49.
    Blumer, M., and W. J. Cooper: Isoprenoid Acids in Recent Sediments. Science 158, 1463 (1967).CrossRefGoogle Scholar
  50. 50.
    Douglas, A. G., M. Blumer, G. Eglinton, and K. Douraghi-Zadeh: Mass Chromatographic-Mass Spectrometric Characterization of Naturally Occurring Acyclic Isoprenoid Carboxylic Acids. Tetrahedron 27, 1071 (1971).CrossRefGoogle Scholar
  51. 51.
    Douglas, A. G., K. Douraghi-Zadeh, G. Eglinton, J. R. Maxwell, and J. N. Ramsay: Fatty Acids in Sediments Including Green River Shale (Eocene) and Scottish Torbanite (Carboniferous). Advances in Organic Geochemistry 1966, ed. G. D. Hobson and G. C. Speers, p. 315. Oxford: Pergamon Press. 1970.Google Scholar
  52. 52.
    Maclean, I., G. Eglinton, K. Douraghi-Zadeh, R. J. Ackman, and S. N. Hooper: Correlation of Stereoisomerism in Present-Day and Geologically Ancient Isoprenoid Fatty Acids. Nature 218, 1019 (1968).CrossRefGoogle Scholar
  53. 53.
    Cox, R. E., J. R. Maxwell, G. Eglinton, and C. T. Pillinger: The Geological Fate of Chlorophyll: The Absolute Stereochemistries of a Series of Acyclic Isoprenoid Acids in a 50 Million-Year-Old Lacustrine Sediment. Chem. Commun. 1970, 1639.Google Scholar
  54. 54.
    Ackman, R. G., R. E. Cox, G. Eglinton, S. N. Hooper, and J. R. Maxwell: Stereochemical Studies of Acyclic Isoprenoid Components I - Gas Chromatographic Analysis of Stereoisomers of a Series of Standard Acyclic Isoprenoid Acids. J. Chromat. Science 10, 392 (1972).Google Scholar
  55. 55.
    Maxwell, J. R., C. T. Pillinger, and G. Eglinton: Organic Geochemistry. Quart. Rev. (Chem. Soc. London) 25, 593 (1971).CrossRefGoogle Scholar
  56. 56.
    Maxwell, J. R., R. E. Cox, G. Eglinton, and C. T. Pillinger: Stereochemical Studies of Acyclic Isoprenoid Components II — The Role of Chlorophyll in the Derivation of Isoprenoid-Type Acids in a Lacustrine Sediment. Geochimica et Cosmochimica Acta 37, 297 (1973).CrossRefGoogle Scholar
  57. 57.
    Murphy, R. C., M. V. Djuricic, S. P. Markley, and K. Bieman: Acidic Components of Green River Shale Identified by a Gas Chromatographic Mass Spectrometry-Computer System. Science 165, 695 (1969).CrossRefGoogle Scholar
  58. 58.
    Cason, J., and K.-L. Liauw: Characterization and Synthesis of a Monocyclic Eleven-Carbon Acid Isolated from a California Petroleum. J. Organ. Chem. 30, 1763 (1965).CrossRefGoogle Scholar
  59. 59.
    Cason, J., and A. I. A. Khodair: Separation from a California Petroleum and Characterization of Geometric Isomers of 3-Ethyl-4-Methylcyclopentylacetic Acid. J. Organ. Chem. 31, 3618 (1966).CrossRefGoogle Scholar
  60. 60.
    Gilpin, J. A., and F. W. Mclafferty: Mass Spectrometric Analysis, Aliphatic Aldehydes. Analyt. Chem. 29, 990 (1957).CrossRefGoogle Scholar
  61. 61.
    Gallegos, E. J., J. W. Green, L. P. Lindeman, R. L. Letourneau, and R. M. Teeter: Petroleum Group-Type Analysis by High Resolution Mass Spectrometry. Analyt. Chem. 39, 1833 (1967).CrossRefGoogle Scholar
  62. 62.
    Seifert, W. K., E. J. Gallegos, and R. M. Teeter: First Identification of a Steroid Carboxylic Acid in Petroleum. Angew. Chem. Internat. Ed. 10, 747 (1971).CrossRefGoogle Scholar
  63. 63.
    Seifert, W. K., E. J. Gallegos, and R. M. Teeter: F Proof of Structure of Steroid Carboxylic Acids in a California Petroleum by Deuterium Labeling, Synthesis, and Mass Spectrometry. J. Am. Chem. Soc. 94, 5880 (1972).CrossRefGoogle Scholar
  64. 64.
    Seifert, W. K., R. M. Teeter, W. G. Howells, and M. J. R. Cantow: Analysis of Crude Oil Carboxylic Acids After Conversion to their Corresponding Hydrocarbons. Analyt. Chem. 41, 1639 (1969).Google Scholar
  65. 65.
    Budzikiewicz, H., J. M. Wilson, and C. Djerassi: Mass Spectrometry in Structural and Stereochemical Problems XXXII. Pentacyclic Triterpenes. J. Am. Chem. Soc. 85, 3688 (1963).CrossRefGoogle Scholar
  66. 66.
    Hills, I. R., and E. V. Whitehead: Triterpanes in Optically Active Petroleum Distillates. Nature 209, 977 (1966).CrossRefGoogle Scholar
  67. 67.
    Whitehead, E. V.: The Structure of Petroleum Pentacyclanes. Sixth International Meeting on Organic Geochemistry, Paris, France, September 18–21, 1973, in press.Google Scholar
  68. 68.
    Tokes, L., G. Jones, and C. Djerassi: Mass Spectrometry in Structural and Stereochemical Problems CLXI: Elucidation of the Course of Characteristic Ring D Fragmentation of Steroids. J. Am. Chem. Soc. 90, 5465 (1968).CrossRefGoogle Scholar
  69. 69.
    Ensminger, A., A. Van Dorsselaer, Ch. Spyckerelle, P. Albrecht, and G. Ourisson: Pentacyclic Triterpenes of the Hopane Type as Ubiquitous Geochemical Markers: Origin and Significance. Sixth International Meeting of Organic Geochemistry, Paris, France, September 18–21, 1973, in press.Google Scholar
  70. 70.
    Ensminger, A., P. Albrecht, G. Ourisson, P. J. Kimble, J. R. Maxwell, and G. Eglinton: Homohopane in Messel Oil Shale: First Identification of a C31 Pentacyclic Triterpane in Nature. Bacterial Origin of Some Triterpanes in Ancient Sediments? Tetrahedron Letters 1972, 3861.Google Scholar
  71. 71.
    Bird, C. W., J. M. Lynch, F. J. Piri, and W. W. Reid: Steroids and Squalene in Methylococcus Capsulatus Grown on Methane. Nature 230, 473 (1971).CrossRefGoogle Scholar
  72. 72.
    De Rosa, M., A. Cambacorta, L. Minale, and J. D. Bu’Lock: Bacterial Triter-penes. Chem. Commun. 1971, 620.Google Scholar
  73. 73.
    Knoterus, J.: The Chemical Constitution of the Higher “Naphthenic Acids”. J. Inst. Petroleum 43, 307 (1957).Google Scholar
  74. 74.
    Caro, J. H.: High Molecular Weight Acid Compounds in Petroleum. Erdöl Zeitschrift für Bohr-and Fördertechnik 78, 435 (1962).Google Scholar
  75. 75.
    Haug, P., H. K. Schnoes, and A. L. Burlingame: Aromatic Carboxylic Acids Isolated from the Colorado Green River Formation (Eocene). Geochimica et Cosmochimica Acta 32, 358 (1968).CrossRefGoogle Scholar
  76. 76.
    Seifert, W. K., and R. M. Teeter: Carboxylic Acids in a California Petroleum: Identification of Structural Types. Chem. Ind. (London) 1969, 1464.Google Scholar
  77. 77.
    Seifert, W. K., and R. M. Teeter: Identification of Polycyclic Naphthenic, Mono-, and Diaromatic Crude Oil Carboxylic Acids. Analyt. Chem. 42, 180 (1970).CrossRefGoogle Scholar
  78. 78.
    Seifert, W. K., and R. M. Teeter: Identification of Polycyclic Aromatic and Heterocyclic Crude Oil Carboxylic Acids. Analyt. Chem. 42, 750 (1970).CrossRefGoogle Scholar
  79. 79.
    Streibl, M., and V. Herout: Terpenoids - Especially Oxygenated Mono-, Sesqui-, Di-, and Triterpenes. “Organic Geochemistry”, ed. by G. Eglinton and M. T. J. Murphy, p. 411. New York: Springer. 1969.Google Scholar
  80. 80.
    Seifert, W. K.: Effect of Phenols on the Interfacial Activity of Crude Oil (California) Carboxylic Acids and the Identification of Carbazoles and Indoles. Analyt. Chem. 41, 562 (1969).CrossRefGoogle Scholar
  81. 81.
    Burlingame, A. L., P. C. Wszolek, and B. R. Simoneit: The Fatty Acid Content of Tasmanites. Advances in Organic Geochemistry 1968 ed. by P. A. Schenk and I. Havenaar, p. 131. Oxford: Pergamon. 1969.Google Scholar
  82. 82.
    Carruthers, W., and J. W. Cook: The Constituents of High Boiling Petroleum Distillates I. Preliminary Studies. J. Chem. Soc. (London) 1954, 2047.Google Scholar
  83. 83.
    Barton, D. H. R., W. Carruthers, and K. H. Overton: Triterpenoids Part XXI. A Triterpenoid Lactone from Petroleum. J. Chem. Soc. (London) 1956, 788.Google Scholar
  84. 84.
    Eglinton, G., D. H. Hunneman, and K. Douraghi-Zadeh: Gas Chromatographic-Mass Spectrometric Studies of Long-Chain Hydroxy Acids II. Tetrahedron 24, 5929 (1968).CrossRefGoogle Scholar
  85. 85.
    Hertz, H. S., D. D. Andresen, M. V. Duricic, K. Bieman, M. Saban, and D. Vitorovic: The Isolation and Identification of Gamma-Lactones in the Acidic Fraction of Aleksinac (Yugoslavia) Shale Bitumen. Geochimica et Cosmochimica Acta 37, 1687 (1973).CrossRefGoogle Scholar
  86. 86.
    Haug, P., H. K. Schnoes, and A. L. Burlingame: Ketocarboxylic Acids Isolated from the Colorado Green River Shale (Eocene). Chem. Commun. 1967, 1130.Google Scholar
  87. 87.
    Hare, P. E.: Geochemistry of Proteins, Peptides, and Amino Acids. “Organic Geochemistry”, ed. by G. Eglinton and M. T. J. Murphy, pp. 438–463. New York: Springer. 1969.Google Scholar
  88. 88.
    Kvenvolden, K. A.: Amino Acid Geochemistry. Annual Review of Earth and Planetary Sciences, Vol. III, 1974, ed. by F. A. Donath, Annual Reviews Inc., Palo Alto, California, in preparation.Google Scholar
  89. 89.
    Kvenvolden, K. A., and E. Peterson: Racemization of Amino Acids in Sediments from Saanich Inlet, British Colombia. Science 169, 1079 (1970).CrossRefGoogle Scholar
  90. 90.
    Kvenvolden, K. A., E. Peterson, J. Wehmiller, and P. E. Haere: Racemization of Amino Acids in Marine Sediments Determined by Gas Chromatography. Geochimica et Cosmochimica Acta 37, 2215 (1973).CrossRefGoogle Scholar
  91. 91.
    Kvenvolden, K. A.: Criteria for Distinguishing Biogenic and Abiogenic Amino Acids Preliminary Considerations. Space Life Sciences 4, 60 (1973).Google Scholar
  92. 92.
    Baker, E. W.: Porphyrins. Organic Geochemistry, ed. by G. Eglinton and M. T. J. Murphy, pp. 464–497. New York: Springer. 1969.Google Scholar
  93. 93.
    Jenkins, G. I.: The Occurrence and Determination of Carboxylic Acids and Esters in Petroleum. J. Inst. Petroleum 51, 313 (1965).Google Scholar
  94. 94.
    Copelin, E. C.: Identification of 2-Quinolones in a California Crude Oil. Analyt. Chem. 36, 2274 (1964).Google Scholar
  95. 95.
    Burlingame, A. L., and B. R. Simoneit: Isoprenoid Fatty Acids Isolated from the Kerogen Matrix of the Green River Formation (Eocene). Science 160, 531 (1968).CrossRefGoogle Scholar
  96. 96.
    Burlingame, A. L., and B. R. Simoneit: High Resolution Mass Spectrometry of Green River Formation Kerogen Oxidations. Nature 222, 741 (1969).CrossRefGoogle Scholar
  97. 97.
    Simoneit, B. R., and A. L. Burlingame: Carboxylic Acids Derived from Tasmanian Tasmanite by Extractions and Kerogen Oxidations. Geochimica et Cosmochimica Acta 37, 595 (1973).CrossRefGoogle Scholar
  98. 98.
    Djuricic, M. V., D. Vitorovic, B. D. Andresen, H. S. Hertz, R. C. Murphy, G. Preti, and K. Biemann: Acids Obtained by Oxidation of Kerogens of Ancient Sediments of Different Geographic Origin. Advances in Organic Geochemistry 1971, p. 305. Oxford-Braunschweig: Pergamon. 1972.Google Scholar
  99. 99.
    Cogswell, T. E., J. F. Mckay, and D. R. Latham: Gel Permeation Chromatographic Separation of Petroleum Acids. Analyt. Chem. 43, 645 (1971).CrossRefGoogle Scholar
  100. 100.
    Mckay, J. F., D. M. Jewell, and D. R. Latham: The Separation of Acidic Compound Types Isolated from High Boiling Distillates. Separation Science 7, 361 (1972).CrossRefGoogle Scholar

Acknowledgments as to Sources of Figures

  1. Figs. 3, 6, 7; Charts 5, 10, 11: From: W. K. Seifert: Steroid Acids in Petroleum — Animal Contribution to the Origin of Petroleum. Pure and Applied Chemistry 34, 633–640 (1973). London: Butterworth’s and Co. (Publishers Ltd.)CrossRefGoogle Scholar
  2. Figs. 4, 5: Charts 6, 7, 8: From: W. K. Seifert, E. J. Gallegos, and R. M. Teeter: Proof of Structure of Steroid Carboxylic Acids in a California Petroleum by Deuterium Labeling, Synthesis, and Mass Spectrometry. J. Amer. Chem. Soc. 94, 5880 (1972).CrossRefGoogle Scholar
  3. Chart 12: From: A. Ensminger, A. VAN Dorsselaer, Cri. Spyckerelle, P. Albrecht, and G. Ourisson: Pentacyclic Triterpenes of the Hopane Type as Ubiquitous Geochemical Markers: Origin and Significance. Presented at Sixth International Meeting of Organic Geochemistry. Paris, France, September 18–21, 1973, in press. Permission by Dr. P. Albrecht, Institut de Chimie, Université Louis Pasteur, Strasbourg, 1 Rue Blaise Pascal, Strasbourg, France.Google Scholar
  4. Fig. 2.: From: W. K. Seifert, and R. M. Teeter: Preparative Thin-Layer Chromatography and High Resolution Mass Spectrometry of Crude Oil Carboxylic Acids. Analyt. Chemistry 41, 786 (1969).CrossRefGoogle Scholar
  5. Figs. 8, 10, II: From: W. K. Seifert, and R. M. Tu Ier: Identification of Polycyclic Aromatic, and Heterocyclic Crude Oil Carboxylic Acids. Analyt. Chemistry 42, 750 (1970).CrossRefGoogle Scholar
  6. Fig. 9.: From: W. K. Seifert, and R. M. Teeter: Identification of Polycyclic, Naphthenic, Mono-, and Diaromatic Crude Oil Carboxylic Acids. Analyt. Chemistry 42, 180 (1970).CrossRefGoogle Scholar
  7. Fig. 12: From: W. K. Seifert: Effect of Phenols on the Interfacial Activity of Crude Oil (California) Carboxylic Acids and the Identification of Carbazoles and Indoles. Analyt. Chemistry 41, 562 (1969).CrossRefGoogle Scholar
  8. Fig. 1.: From: D. L. Lawlor, and W. E. Robinson: Fatty Acids in Green River Formation Oil Shale. Div. of Petrol, Chem. Amer. Chem. Soc. Detroit Meeting, 1965.Google Scholar
  9. Table 1: From: G. Costantinides, and G. Arich: Nonhydrocarbon Compounds in Petroleum; in Fundamental Aspects of Petroleum Geochemistry. Ed. by B. Nagy and U. Colombo, pp. 143–151. New York: Elsevier. 1957.Google Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • W. K. Seifert
    • 1
  1. 1.Chevron Oil Field Research CompanyRichmondUSA

Personalised recommendations