Advertisement

Biochemical Systematics: Methods and Principles

  • M. Aparecida
  • H. Cagnin
  • Ceres M. R. Gomes
  • Otto R. Gottlieb
  • M. Claudia Marx
  • A. Imbiriba da Rocha
  • M. Fátima das G. F. Da Silva
  • J. Aparício Temperini
Part of the Plant Systematics and Evolution / Entwicklungsgeschichte und Systematik der Pflanzen book series (SYSTEMATICS, volume 1)

Abstract

Chemosystematics will not evolve to become a scientific discipline in absence of accepted chemotaxonomic procedures. Our approach to this problem includes, initially, the mapping of metabolites by consideration of their biosynthetic relationship, indicated by skeletons, substitution patterns and frequency of occurrence in nature. The maps form the basis for three-dimensional graphic presentations of the chemical constitution (relative to a given metabolic class) of plant groups, which aid in the deduction of basic chemosystematic principles, as well as for two-dimensional graphic presentations of taxonomic distances among subunits of these groups, which further the understanding of their evolutionary relations. Progress of this type of work with respect to several phenylalanine (cou-marins, benzylisoquinolines, Amaryllidaceae alkaloids), phenylalanine-acetate (isoflavonoids) and tryptophane-mevalonate (indole alkaloids) derived biogenetic classes of compounds are described, and its potentiality illustrated by reference to several taxa of flowering plants.

Keywords

Systematic Marker Biochemical Evolution Chemical Evolution Substitution Pattern Indole Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cronquist, A., 1961: Basic Botany. New York: Harper & Row.Google Scholar
  2. Cronquist, A., 1968: The Evolution and Classification of Flowering Plants. London: Nelson.Google Scholar
  3. Geissman, T. A., and Crout, D. H. C., 1969: Organic Chemistry of Secondary Plant Metabolism, p. 533. San Francisco: Freeman, Cooper & Co.Google Scholar
  4. Gottlieb, O. R., and Stefani, G. M., 1970: Xanthones from Kielmeyera excelsa. Phytochemistry 9, 453–454.CrossRefGoogle Scholar
  5. Harborne, J. B., Heywood, V. H., and King, L., 1976: Evolution of yellow flavonols in flowers of Anthemideae. Biochem. Syst. Ecol. 4, 1–4.CrossRefGoogle Scholar
  6. Haslam, E., 1974: The Shikimate Pathway, p. 198. New York: Wiley.Google Scholar
  7. Heywood, V. H., 1973: The role of chemistry in plant systematics. Pure Appl. Chem. 34, 355–375.CrossRefGoogle Scholar
  8. Polhill, R. M., 1976: personal communication.Google Scholar
  9. Rezende, C. M. A. da M., and Gottlieb, O. R., 1973: Xanthones as systematic markers. Biochem. Syst. 1, 111–118.CrossRefGoogle Scholar
  10. Rezende, C. M. A. da M., and Marx, M. C., 1975: Benzyltetrahydroisoquinoline-derived alkaloids as systematic markers. Biochem. Syst. Ecol. 3, 63–70.CrossRefGoogle Scholar
  11. Rochleder, F., 1854: Phytochemie, p. 260. In: Pflanzenchemie und Pflanzenverwandtschaft (Molisch, H., 1933), p. 3. Jena: G. Fischer.Google Scholar
  12. Tamura, M., 1962: Taxonomical and phylogenetical consideration of the Ranunculaceae. Acta Phytotax. Geobot. 20, 71–81.Google Scholar
  13. Traub, H. P., 1957: Classification of Amaryllidaceae. Subfamilies, tribes and genera. Plant Life (Herbertia) 13, 76–83.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. Aparecida
    • 1
  • H. Cagnin
    • 1
  • Ceres M. R. Gomes
    • 1
  • Otto R. Gottlieb
    • 2
  • M. Claudia Marx
    • 1
  • A. Imbiriba da Rocha
    • 1
  • M. Fátima das G. F. Da Silva
    • 1
  • J. Aparício Temperini
    • 1
  1. 1.Brazil
  2. 2.Instituto de QuímicaUniversidade de Säo PauloBrazil

Personalised recommendations