Advertisement

Applications of Positron Emission Tomography to Neurosurgery

  • R. J. S. Wise
  • G. L. Lenzi
  • R. S. J. Frackowiak
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 10)

Abstract

The introduction a decade ago of X-ray computerised tomography has proved a boon to both patient and neurosurgeon alike. The importance of this advance is apparent from the number of CT scanners installed in centres around the world, the huge literature that has accumulated over their application and use, and the recent award of a Nobel Prize to Hounsfield.

Keywords

Positron Emission Tomography Cerebral Blood Flow Internal Carotid Artery Cerebral Blood Volume Regional Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phelps, M. E., Mazziotta, J. C., Huang, S. C., 1982: Study of cerebral function with positron computed tomography. J. Cereb. Blood Flow Metabol. 2, 113–162.CrossRefGoogle Scholar
  2. 2.
    Phelps, M. E., Hoffman, E. J., Mullani, N. A., Ter-Pogossian, M. M., 1975: Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210–223.PubMedGoogle Scholar
  3. 3.
    Muehllehner, G., Colsher, J. O., 1982: Positron emission tomography: instrumentation. In: Computed Emission Tomography (Ell, P. J., Holman, B. L., eds.), pp.3-41. Oxford University Press.Google Scholar
  4. 4.
    Reivich, M., Jehle, J., Sokoloff, L., Kety, S. S., 1969: Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J. Appl. Phys. 27, 296–300.Google Scholar
  5. 5.
    Sokoloff, L., 1981: Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metabol. 1, 7–36.CrossRefGoogle Scholar
  6. 6.
    Yamamoto, Y. L., Thompson, C. J., Meyer, E., Robertson, J. S., Feindel, W., 1977: Dynamic positron emission tomography for study of cerebral haemodynamics in cross section of the head using position-emitting 68Ga-EDTA and 77Kr. J. Comput. Assist. Tomogr. 1, 43–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Yen, C.-K., Yano, Y., Budinger, T. F., Friedland, R. P., Derenzo, S. E., Huesman, R. H., O’Brien, H. A., 1982: Brain tumour evaluation using Rb-82 and positron emission tomography. J. Nucl. Med. 23, 532–537.PubMedGoogle Scholar
  8. 8.
    Frackowiak, R. S. J., Lenzi, G. L., Jones, T., Heather, J. D., 1980: Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J. Comput. Assist. Tomogr. 4, 727–736.PubMedCrossRefGoogle Scholar
  9. 9.
    Lammertsma, A. A., Jones, T., Frackowiak, R. S. J., Lenzi, G. L., 1981: A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15. J. Comput. Assist. Tomogr. 5, 544–550.PubMedCrossRefGoogle Scholar
  10. 10.
    Raichle, M. E., Markham, J., Larson, K., Grubb, R. L., Welch, M. J., 1981: Measurement of local cerebral blood flow in man with positron emission tomography. J. Cereb. Blood Flow Metabol. 1(Suppl. 1), S19–S20.Google Scholar
  11. 11.
    Raichle, M. E., Larson, K. B., Markham, J., Depresseux, J.-C., Grubb, R. L., Ter-Pogossian, M. M., 1981: Measurement of regional oxygen consumption by positron emission tomography. J. Cereb. Blood Flow Metabol. 1(Suppl. 1), S7–S8.Google Scholar
  12. 12.
    Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., Kuhl, D. E., 1979: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6, 371–388.PubMedCrossRefGoogle Scholar
  13. 13.
    Sokoloff, L., Reivich, M., Kennedy, C., des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., Shinohara, M., 1977: The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916.PubMedCrossRefGoogle Scholar
  14. 14.
    Vyska, K., Freundlieb, C., Hvck, A., Becker, V., Feinendegen, L. E., Kloster, G., Stöcklin, G., Traupe, H., Heiss, W.-D., 1981: The assessment of glucose transport across the blood brain barrier in man by the use of 3-(11C)-methyl-D-glucose. J. Cereb. Blood Flow Metabol. 1(Suppl. 1), S42–S43.Google Scholar
  15. 15.
    Phelps, M. E., Huang, S. C., Hoffman, E. J., Kuhl, D. E., 1978: Validation of tomographic measurement of cerebral blood volume with C-11 labelled carboxyhaemoglobin. J. Nucl. Med. 20, 328–334.Google Scholar
  16. 16.
    Bustany, P., Sargent, T., Saudubray, J. M., Henry, J. F., Comar, D., 1981: Regional human brain uptake and protein incorporation of 11C-L-methionine studied in vivo with PET. J. Cereb. Blood Flow Metabol. 1(Suppl. 1), S17–S18.Google Scholar
  17. 17.
    Comar, D., Maziere, M., Gadot, J. M., Berger, G., Soussaline, F., 1979: Visualisation of 11C-flunitrazepan displacement in the brain of the live baboon. Nature 280, 329–331.PubMedCrossRefGoogle Scholar
  18. 18.
    Baron, J. C., Roeda, D., Munari, C., Crouzel, C., Stoffels, C., Chodkiewicz, J. P., Comar, D., 1982: Brain regional pharmaco-kinetics of 11C-diphenylhyantoin: positron emission tomography in man. Nuclear Medicine and Biology, Vol.11 (Raynaud, C., ed.), pp. 1748–1751. Oxford: Pergamon Press.Google Scholar
  19. 19.
    Diksic, M., Farrokhzad, S., Yamamoto, L., Feindel, W., 1982: Labeling of BCNU with 11C and 13N and its in vivo pharmacokinetics study with PET. Nuclear Medicine and Biology, Vol.11 (Raynaud, C., ed.), pp.2285–2286. Oxford: Pergamon Press.Google Scholar
  20. 20.
    Hübner, K. F., Purvis, J. T., Mahaley, S. M., Robertson, J. T., Rogers, S., Gibbs, W. D., King, P., Partain, C. L., 1982: Brain tumour imaging by positron emission computed tomography using 11C-labelled amino acids. J. Comput. Assist. Tomogr. 6, 544–550.PubMedCrossRefGoogle Scholar
  21. 21.
    Fukuda, H., Matsuzawa, T., Abe, Y., Endo, S., Yamada, K., Kubota, K., Hatazawa, J., Sato, T., Ito, J., Takahashi, H., Iwata, R., Ido, T., 1982: Cancer detection by F-18 fluorinated glucose analogs. Nuclear Medicine and Biology, Vol.11 (Raynaud, C., ed.), pp. 1996–1999. Oxford: Pergamon Press.Google Scholar
  22. 22.
    Erickson, K., Bergström, M., Eriksson, L., 1980: Positron emission tomography in the evaluation of subdural haematomas. J. Comput. Assist. Tomogr. 4, 737–745.CrossRefGoogle Scholar
  23. 23.
    Baron, J. C., Comar, D., Bousser, M. G., Soussaline, F., Crouzel, C., Plummer, D., Kellershohn, C., Castaigne, P., 1978: Etude tomographique chez l’homme, du débit sanguine et de la consommation d’oxygène du cerveau par inhalation continue d’oxygène 15. Rev. Neurol. (Paris) 134, 545–556.Google Scholar
  24. 24.
    Ackerman, R. H., Correia, J. A., Alpert, N. M., Baron, J. C., Gouliamos, A., Grotta, J. C., Brownell, G. L., Taveras, J. M., 1981: Positron imaging in ischemic stroke disease using compounds labelled with oxygen-15: initial results of clinicophysiologic correlations. Arch. Neurol. 38, 537–543.PubMedGoogle Scholar
  25. 25.
    Lenzi, G. L., Frackowiak, R. S. J., Jones, T., 1982: Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J. Cereb. Blood Flow Metabol. 2, 321–335.CrossRefGoogle Scholar
  26. 26.
    Meyer, J. S., 1958: Circulatory changes following occlusion of the middle cerebral artery and their relation to function. J. Neurosurg. 15, 653–673.PubMedCrossRefGoogle Scholar
  27. 27.
    Feindel, W., Perot, P., 1965: Red cerebral veins: a report on cerebral tumours and cerebral scars. J. Neurosurg. 22, 315–325.PubMedCrossRefGoogle Scholar
  28. 28.
    Wise, R. J. S., Bernardi, S., Frackowiak, R. S. J., Legg, N. J., Jones, T., 1983: Serial observations on the pathophysiology of acute stroke: the transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain 106, 197–222.PubMedCrossRefGoogle Scholar
  29. 29.
    Barnett, H. J. M., McCormick, C. W., 1980: The collaborative study on STA-MCA anastomosis: a progress report. Surg. Neurol. 13, 409–412.PubMedGoogle Scholar
  30. 30.
    Lassen, N. A., 1959: Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 39, 183–238.PubMedGoogle Scholar
  31. 31.
    Grubb, R. L., Phelps, M. E., Raichle, M. E., Ter-Pogossian, M. M., 1973: The effects of arterial blood pressure on the regional cerebral blood volume by X-ray fluorescence. Stroke 4, 390–399.PubMedCrossRefGoogle Scholar
  32. 32.
    Fog, M., 1938: The relationship between the blood pressure and the tonic regulation of the pial arteries. J. Neurol. Psychiat, 1, 187–197.CrossRefGoogle Scholar
  33. 33.
    Martin, W. R. W., Grubb, R. L., Raichle, M. E., 1984: Assessment of cerebrovascular reserve in cerebral ischemia with positron emission tomography. Acta neurochir. (Wien) (in press).Google Scholar
  34. 34.
    Grubb, R. L., Ratcheson, R. A., Raichle, M. E., Kliefoth, A. B., Gado, M. H., 1979: Regional cerebral blood flow and oxygen utilization in superficial temporal-middle cerebral artery anastomosis patients: an exploratory definition of clinical problems. J. Neurosurg. 50, 733–741.PubMedCrossRefGoogle Scholar
  35. 35.
    Baron, J. C., Bousser, M. G., Rey, A., Guillard, A., Comar, D., Castaigne, P., 1981: Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia: a case study with 15O position emission tomography. Stroke 12, 454–459.PubMedCrossRefGoogle Scholar
  36. 36.
    Weber, G. 1977: Enzymology of cancer cells. X. Engl. J. Med. 296, 486–493 and 441-551.Google Scholar
  37. 37.
    Di Chiro, G., de la Paz, R,, Smith, B., Kornblith, P., Sokoloff, L., Brooks, R., Blasberg, R., Cummins, C., Icessler, R., Wolf, A., Fowler, J., London, W., Sever, J., 1981: 18F-2-fluoro-2-deoxyglucose positron emission tomography of human cerebral gliomas. J. Comput. Assist. Tomogr. 5, 937–938.CrossRefGoogle Scholar
  38. 38.
    Ito, M., Lammertsma, A. A., Wise, R. J. S., Bernardi, S., Frackowiak, R. S. J., Heather, J. D., McKenzie, C. G., Thomas, D. G. T., Jones, T., 1982: Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using 15O and positron emission tomography: analytical techniques and preliminary results. Neuroradiology 23, 63–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Vaupel, P., 1979: Oxygen supply to malignant tumours. In: Tumour Blood Circulation (Peterson, H.-J., ed.), pp. 143–168. Florida: CRC Press, Inc.Google Scholar
  40. 40.
    Lammertsma, A. A., Wise, R. J. S., Jones, T., 1983: In vivo measurements of regional cerebral blood flow and blood volume in patients with brain tumours using positron emission tomography. Acta neurochir. (Wien) 69, 5–13.CrossRefGoogle Scholar
  41. 41.
    Baron, J. C., Bousser, M. G., Comar, D., Castaigne, P., 1980: “Crossed cerebellar diaschisis” in human supratentorial infarction. Ann. Neurol. 8, 128–135.Google Scholar
  42. 42.
    Lammertsma, A. A., Wise, R. J. S., Jones, T., 1983: Regional cerebral blood flow and oxygen utilization in edema associated with cerebral tumours. In: Recent Progress in the Study and Therapy of Brain Edema (Go, K. G., Baethmann, A. J., eds.). New York-London: Plenum (in press).Google Scholar
  43. 43.
    Rhodes, C. G., Wise, R. J. S., Hatazawa, J., Frackowiak, R. S. J., Palmer, A. J., Jones, T., 1982: Mismatching between cerebral oxygen and glucose metabolism in patients with cerebral glioma and stroke. Nuclear Medicine and Biology, Vol. II (Raynaud, C., ed.), pp. 2000–2003. Oxford: Pergamon Press.Google Scholar
  44. 44.
    Warburg, O., 1956: On the origin of cancer cells. Science 123, 309–314.PubMedCrossRefGoogle Scholar
  45. 45.
    Diksic, M., Farrokhzad, S., Yamamoto, L., Feindel, W., 1982: Synthesis of “no carrier added” 1,3-bis-(2-chloroethyl) nitrosurea (BCNU). J. Nucl. Med. 23, 895–898.PubMedGoogle Scholar
  46. 46.
    Kuhl, D. E., Engel, J., Phelps, M. E., Selin, C., 1980: Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann. Neurol. 8, 348–360.PubMedCrossRefGoogle Scholar
  47. 47.
    Engel, J., Rausch, R., Lieb, J. P., Kuhl, D. E., Crandall, P. H., 1981: Correlation of criteria used for localizing epileptic foci in patients considered for surgical therapy of epilepsy. Ann. Neurol. 9, 215–244.PubMedCrossRefGoogle Scholar
  48. 48.
    Grubb, R, L., Raichle, M. E., Eichung, J. O., Gado, M. H., 1977: Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow and oxygen utilization in humans. J. Neurosurg. 46, 446–453.PubMedCrossRefGoogle Scholar
  49. 49.
    W. R. W., Baker, R. P., Grubb, R. L., Raichle, M. E., 1984 Cerebral blood volume changes in subarachnoid hemorrhage. Acta neurochir. Wien (in press).Google Scholar
  50. 50.
    Montgomery, E. B., Grubb, R. L., Raichle, M. E., 1981: Cerebral hemodynamics and metabolism in postoperative cerebral vasospasm and treatment with hypertensive therapy. Ann. Neurol. 9, 502–506.PubMedCrossRefGoogle Scholar
  51. 51.
    Pickard, J. D., Matheson, M., Patterson, J., Wyper, D., 1980: Prediction of late ischemic complications after cerebral aneurysm surgery by the intraoperative measurement of cerebral blood flow. J. Neurosurg. 53, 305–308.PubMedCrossRefGoogle Scholar
  52. 52.
    Farrar, J. K., Gamache, F. W., Ferguson, G. G., Drake, C. G., 1981: Cerebral blood flow (CBF) in profound intraoperative hypotension: correlation with pre-and postoperative measurements. J. Cereb. Blood Flow Metabol. 1(Suppl. 1), S520–S521.Google Scholar
  53. 53.
    Engel, J., jr., Kuhl, D. E., Phelps, M. E., Mazziotta, J. C., 1982: Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann. Neurol. 12, 510–517.PubMedCrossRefGoogle Scholar
  54. 54.
    Engel, J., jr., Brown, J., Kuhl, D. E., Phelps, M. E., Mazziotta, J. C., Crandall, P. H., 1982: Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann. Neurol. 12, 518–528.PubMedCrossRefGoogle Scholar
  55. 55.
    Engel, J., jr., Kuhl, D. E., Phelps, M. E., Crandall, P. H., 1982: Comparative localization of epileptic foci in partial epilepsy by PCT and EEG. Ann. Neurol. 12, 529–537.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • R. J. S. Wise
    • 1
  • G. L. Lenzi
    • 2
  • R. S. J. Frackowiak
    • 1
    • 3
  1. 1.MRC Cyclotron UnitHammersmith HospitalLondonUK
  2. 2.III Cattedra di Clinica NeurologicaUniversità di RomaItaly
  3. 3.National Hospital for Nervous DiseasesLondonUK

Personalised recommendations