Solution of Linear and Nonlinear Algebraic Problems with Sharp, Guaranteed Bounds

  • S. M. Rump
Part of the Computing Supplementum book series (COMPUTING, volume 5)


In this paper new methods for solving algebraic problems with high accuracy are described. They deliver bounds for the solution of the given problem with an automatic verification of the correctness. Examples of such problems are systems of linear equations, over- and underdetermined systems of linear equations, algebraic eigenvalue problems, nonlinear systems, polynomial zeros, evaluation of arithmetic expressions, linear, quadratic and convex programming and others. The new methods apply for these problems over the space of real numbers, complex numbers as well as real intervals and complex intervals.


Fixed Point Theorem Newton Iteration Interval Vector Interval Operation Automatic Verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AbBr75]
    Abbot, J. P., Brent, R. P.: Fast local convergence with single and multistep methods for nonlinear equations. Austr. Math. Soc. B 19, 173–199 (1975).CrossRefGoogle Scholar
  2. [AlHe74]
    Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Mannheim-Wien-Zürich: Bibl. Inst. 1974.MATHGoogle Scholar
  3. [Al79]
    Alefeld, G.: Intervallanalytische Methoden bei nicht-linearen Gleichungen. In: Jahrbuch Überblicke Mathematik 1979. Zürich: B. I. Verlag 1979.Google Scholar
  4. [Bo71]
    Boggs, P. T.: The solution of nonlinear systems of equations by A-stable integration techniques. SIAM J. Numer. Anal. 8, 767–785 (1971).MathSciNetCrossRefGoogle Scholar
  5. [Bo77]
    Bohlender, G.: Floating-point computation of functions with maximum accuracy. IEEE Trans. Comput. C-26, 621–632 (1977).MathSciNetCrossRefGoogle Scholar
  6. [Bö80]
    Böhm, H.: Berechnung von Schranken für Polynomwurzeln mit dem Fixpunktsatz von Brouwer. Interner Bericht des Inst. f. Angew. Math., Universität Karlsruhe, 1980.Google Scholar
  7. [Bö83]
    Böhm, H.: Berechnung von Polynomnullstellen und Auswertung arithmetischer Ausdrücke mit garantierter, maximaler Genauigkeit, Dr.-Dissertation, Inst. f. Angew. Math., Universität Karlsruhe, 1983.Google Scholar
  8. [Bra72]
    Branin, F. H.: Widely convergent method for finding multiple solutions of simultaneous nonlinear equations. IBM J. Res. Develop. 16, 504–522 (1972).MathSciNetMATHCrossRefGoogle Scholar
  9. [Bro69]
    Broyden, C. G.: A new method of solving nonlinear simultaneous equations. Comput. J. 12, 94–99 (1969).MathSciNetMATHGoogle Scholar
  10. [DeSe67]
    Deist, F. H., Sefor, L.: Solution of systems of nonlinear equations by parameter variation. Comput. J. 10, 78–82 (1967).MATHCrossRefGoogle Scholar
  11. [Fo70]
    Forsythe, G. E.: Pitfalls in computation, or why a Math book isn’t enough. Technical Report No. CS147, Computer Science Department, Stanford University, 1–43 1970.Google Scholar
  12. [Kn69]
    Knuth, D.: The Art of Computer Programming, Vol. 2. Reading, Mass.: Addison-Wesley 1969.MATHGoogle Scholar
  13. [Kr69]
    Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969).MathSciNetMATHCrossRefGoogle Scholar
  14. [Kö80]
    Köberl, D.: The solution of non-linear equations by the computation of fixed points with a modification of the sandwich method. Computing 25, 175–178 (1980).MathSciNetMATHCrossRefGoogle Scholar
  15. [KuMi81]
    Kulisch, U., Miranker, W. L.: Computer Arithmetic in Theory and Practice. New York: Academic Press 1981.MATHGoogle Scholar
  16. [Ku69]
    Kulisch, U.: Grundzüge der Intervallrechnung (Überblicke Mathematik 2) (Laugwitz, D., Hrsg.), pp. 51–98. Mannheim: Bibliographisches Institut 1969.Google Scholar
  17. [Ku71]
    Kulisch, U.: An axiomatic approach to rounded computations. Mathematics Research Center. University of Wisconsin, Madison, Wisconsin, TS Report No. 1020, 1–29 (1969); Numer. Math. 19, 1–17 (1971).MathSciNetCrossRefGoogle Scholar
  18. [Ku76]
    Kulisch, U.: Grundlagen des numerischen Rechnens (Reihe Informatik, 19). Mannheim-Wien-Zürich: Bibliographisches Institut 1976.MATHGoogle Scholar
  19. [Ma80]
    Martinez, J. M.: Solving non-linear simultaneous equations with a generalization of Brent’s method. BIT 20, 501–510 (1980).MathSciNetMATHCrossRefGoogle Scholar
  20. [Mo66]
    Moore, R. E.: Interval Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1966.MATHGoogle Scholar
  21. [Mo77]
    Moore, R. E.: A test for existence of solution for non-linear systems. SIAM J. Numer. Anal. 4, 611–615 (1977).CrossRefGoogle Scholar
  22. [MoCo79]
    Moré, J. J., Cosnard, M. Y.: Numerical solution of non-linear equations. ACM Trans. on Math. Software 5, 64–85 (1979).MATHCrossRefGoogle Scholar
  23. [OrRb70]
    Ortega, J. M. Reinboldt, W. C: Iterative Solution of Non-linear Equations in Several Variables. New York-San Francisco-London: Academic Press 1970.Google Scholar
  24. [Ru80]
    Rump, S. M.: Kleine Fehlerschranken bei Matrixproblemen, Dr.-Dissertation, Inst. f. Angew. Math., Universität Karlsruhe, 1980.Google Scholar
  25. [Ru82]
    Rump, S. M.: Solving non-linear systems with least significant bit accuracy. Computing 29, 183–200 (1982).MathSciNetMATHCrossRefGoogle Scholar
  26. [Ru 83]
    Solving algebraic problems with high accuracy. Habilitationsschrift, Universität Karlsruhe; appeared in: A New Approach to Scientific Computation (Kulisch, U. W., Miranker, W. L., eds.). New York: Academic Press 1983.Google Scholar
  27. [RuBö83]
    Rump, S. M., Böhm, H.: Least significant bit evaluation of arithmetic expressions in single-precision. Computing 30, 189–199 (1983).MathSciNetMATHCrossRefGoogle Scholar
  28. [RuKa80]
    Rump, S. M., Kaucher, E.: Small bounds for the solution of systems of linear equations. In: Computing, Suppl. 2. Wien-New York: Springer 1980.Google Scholar
  29. [SRS72]
    Schwarz, H. R., Rutishauer, H., Stiefel, E.: Matrizen-Numerik. Stuttgart: B. G. Teubner. 1972.Google Scholar
  30. [St72]
    Stoer, J.: Einführung in die Numerische Mathematik I. (Heidelberger Taschenbücher, Band 105.) Berlin-Heidelberg-New York: Springer 1972.MATHGoogle Scholar
  31. [StBu73]
    Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik II. (Heidelberger Taschenbücher, Band 114.) Berlin-Heidelberg-New York: Springer 1973.MATHGoogle Scholar
  32. [Va62]
    Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1962.Google Scholar
  33. [Wi69]
    Wilkinson, J. H.: Rundungsfehler. Berlin-Heidelberg-New York: Springer 1969.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • S. M. Rump
    • 1
  1. 1.IBM Entwicklung und ForschungBöblingenFederal Republic of Germany

Personalised recommendations