On Some Two-level Iterative Methods

  • J. Mandel
Part of the Computing Supplementum book series (COMPUTING, volume 5)


Multigrid methods for boundary value problems and integral equations of the second kind, projection-iterative methods for operator equations, and iterative aggregation methods for systems of linear equations are shown to be particular cases of a unifying framework based on the defect correction principle. Several convergence proofs using contraction arguments are given.


Banach Space Iterative Method Multigrid Method Convergence Proof Defect Correction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anselone, P. M.: Collectively Compact Operator Approximation Theory. Englewood Cliffs, N. J.: Prentice-Hall 1971.MATHGoogle Scholar
  2. [2]
    Atkinson, K.: Iterative variants of the Nyström method for the numerical solution of integral equations. Numer. Math. 22, 17–31 (1973).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Böhmer, K.: Discrete Newton methods and iterated defect corrections. Numer. Math. 37, 167–192 (1981).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Brakhage, H.: Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numer. Math. 2, 183–196 (1960).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Brandt, A.: Multi-level adaptive solutions to boundary value problems. Math. Comp. 31, 333–390 (1977).MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Brandt, A.: Algebraic multigrid theory: The symmetric case. Report, Weizmann Institute of Science, Rehovot, Israel, 1983.Google Scholar
  7. [7]
    Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations. Report, Colorado State University, Fort Collins, Colo., 1983.Google Scholar
  8. [8]
    Chatelin, F., Miranker, W. L.: Acceleration by aggregation of successive approximation methods. Lin. Alg. Appl. 43, 17–47 (1982).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Dudkin, L. M., Ershov, E. B.: Iterindustry input-output models and the material balances of separate products (in Russian). Planovoe Khozyajstvo 5, 59–64 (1965).Google Scholar
  10. [10]
    Golovach, G. P., Kalajda, O. F.: The quadrature-iterative method for solving Fredholm integral equations of the second kind (in Ukrainian). Dop. AN USSR, A 1971, No. 4, 297–300.Google Scholar
  11. [11]
    Hackbusch, W.: On the fast solution of parabolic boundary control problems. SIAM J. Control Optim. 17, 231–244 (1979).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Hackbusch, W.: On the fast solution of nonlinear elliptic equations. Numer. Math. 32, 83–95 (1979).MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Hackbusch, W.: On the fast solving of elliptic control problems. J. Opt. Theory Appl. 31, 565–581 (1980).MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Hackbusch, W.: Die schnelle Auflösung der Fredholmschen Integralgleichung zweiter Art. Beiträge Numer. Math. 9, 47–62 (1981).Google Scholar
  15. [15]
    Hackbusch, W.: Multigrid convergence theory. In [16].Google Scholar
  16. [16]
    Hackbusch, W., Trottenberg, U. (eds.): Multigrid Methods. Proceeding Köln 1981. (Lecture Notes in Mathematics, Vol. 960.) Berlin-Heidelberg-New York: Springer 1982.Google Scholar
  17. [17]
    Hemker, P. W., Schippers, H.: Multiple grid methods for the solution of Fredholm integral equations of the second kind. Math. Comp. 36, 215–232 (1981).MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Kurpel’, N. S.: Projection-iterative Methods of Solving Operator Equations (in Russian). Kiev: Naukova Dumka 1968.Google Scholar
  19. [19]
    Luchka, A. Yu.: Projection-iterative Methods of Solving Differential and Integral Equations (in Russian). Kiev: Naukova Dumka 1980.Google Scholar
  20. [20]
    Mandel, J.: Convergence of an iterative method for the system Ax+y = x using aggregation. Ekonom.-Mat. Obzor 17, 287–291 (1981).MathSciNetGoogle Scholar
  21. [21]
    Mandel, J.: A convergence analysis of the iterative aggregation method with one parameter. Lin. Alg. Appl. 59, 159–169 (1984).MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Mandel, J.: A convergent nonlinear splitting via orthogonal projection. Aplikace Matematiky 29, 250–257 (1984).MathSciNetMATHGoogle Scholar
  23. [23]
    Mandel, J.: On multilevel iterative methods for integral equations of the second kind and related problems. Numer. Math. (to appear).Google Scholar
  24. [24]
    Mandel, J., Sekerka, B.: A local convergence proof for the iterative aggregation method. Lin. Alg. Appl. 51, 163–172 (1983).MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Miranker, W. L., Pan, V. Ya.: Methods of aggregation. Lin. Alg. Appl. 29, 231–257 (1980).MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Nowak, Z.: Use of the multigrid method for the Laplacian problems in three dimensions. In [16].Google Scholar
  27. [27]
    Rabinovich, I. N.: The mathematical background of iterative aggregation algorithms using input-output balance. In: Iterative Aggregation and Its Use in Planning (Dudkin, L. M., ed.) (in Russian). Moskva: Ekonomika 1979.Google Scholar
  28. [28]
    Sekerka, B.: Iterační metoda pro řešení meziodvětvových vztahů. Ekonom.-Mat. Obzor 17, 241–260 (1981).Google Scholar
  29. [29]
    Sokolov, Yu. D.: On the method of averaging functional corrections (in Russian). Ukr. Mat. Zh. 9, 82–100 (1957).MATHCrossRefGoogle Scholar
  30. [30]
    Stetter, H. J.: The defect correction principle and discretization methods. Numer. Math. 29, 425–442 (1978).MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    Vakhutinski, I. Y., Dudkin, L. M., Ryvkin, A. A.: Iterative aggregation — a new approach to the solution of large-scale problems. Econometrica 47, 821–841 (1979).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. Mandel
    • 1
  1. 1.Computer CenterCharles UniversityPraha 1Czechoslovakia

Personalised recommendations