Skip to main content

Simultaneous Newton’s Iteration for the Eigenproblem

  • Chapter
Defect Correction Methods

Part of the book series: Computing Supplementum ((COMPUTING,volume 5))

Abstract

For an ill-conditioned eigenproblem (close eigenvalues and/or almost parallel eigenvectors) it is advisable to group some eigenvalues and to compute a basis of the corresponding invariant subspace. We show how Newton’s method may be used for the iterative refinement of an approximate invariant subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahués, M.: Raffinement d’éléments propres approchés d’un opérateur compact. Dr. Ing. Thesis, Université de Grenoble, 1983.

    Google Scholar 

  2. Ahués, M., Chatelin, F.: The use of defect correction to refine the eigenelements of compact integral operator. SIAM J. Numer. Anal. 20, 1087–1093 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  3. Anselone, P. M., Rall, L. B.: The solution of characteristic value-vector problems by Newton’s method. Numer. Math. 11, 38–45 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartels, R. H., Stewart, G. W.: Algorithm 432, solution of the matrix equation AX+XB=C. Comm. ACM 15, 820–826 (1972).

    Article  Google Scholar 

  5. Brandt, A., Mc Cormick, S., Ruge, J.: Multigrid methods for differential eigenproblems. SIAM J. S. S. C. 4, 244–260 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. Chatelin, F.: Spectral approximation of linear operators. New York: Academic Press 1983.

    MATH  Google Scholar 

  7. Chatelin, F.: Valeurs propres de matrices. Paris: Masson (to appear).

    Google Scholar 

  8. Chatelin, F., Miranker, W. L.: Aggregation/disaggregation for eigenvalue problems. SIAM. J. Num. Anal. 21, 567–582 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, C., Kahan, W.: The rotation of eigenvectors by a perturbation. III. SIAM. J. Num. Anal. 7, 1–46 (1968).

    Article  MathSciNet  Google Scholar 

  10. Gantmacher, F. R.: Theérie des matrices, Tome I. Paris: Dunod 1966.

    Google Scholar 

  11. Dongarra, J. J., Moler, C. B., Wilkinson, J. H.: Improving the accuracy of computed eigenvalues and eigenvectors. SIAM. J. Num. Anal. 20, 23–45 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  12. Golub, G. H., Nash, S., Van Loan, C.: A Hessenberg-Schur form for the problem AX+XB=C. IEEE Trans. Autom. Control AC-24, 909–913 (1979).

    Article  Google Scholar 

  13. Hackbusch, W.: On the computation of approximate eigenvalue and eigenfunctions of elliptic operators by means of a multigrid method. SIAM J. Num. Anal. 16, 201–215 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin Qun: Iterative refinement of finite element approximations for elliptic problems. RAIRO Anal. Numer. 16, 39–47 (1982).

    MathSciNet  MATH  Google Scholar 

  15. Parlett, B. N.: The symmetric eigenvalue problem. Englewood Cliffs, N. J.: Prentice-Hall 1980.

    MATH  Google Scholar 

  16. Peters, G., Wilkinson, J. H.: Inverse iteration, ill-conditioned equations and Newton’s method. SIAM Rev. 21, 339–360 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  17. Rosenblum, M.: On the operator equation BXXA = Q. Duke Math. J. 23, 263–269 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  18. Stewart, G. W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15, 727–764 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  19. Neumaier, A.: Residual inverse iteration for the nonlinear eigenvalue problem. Preprint, Univ. Freiburg, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this chapter

Cite this chapter

Chatelin, F. (1984). Simultaneous Newton’s Iteration for the Eigenproblem. In: Böhmer, K., Stetter, H.J. (eds) Defect Correction Methods. Computing Supplementum, vol 5. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7023-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7023-6_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81832-9

  • Online ISBN: 978-3-7091-7023-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics