On a Principle of Direct Defect Correction Based on A-Posteriori Error Estimates

  • H.-J. Reinhardt
Part of the Computing Supplementum book series (COMPUTING, volume 5)


A combination of an iterative procedure with realistic a-posteriori error estimates allows the approximate solution of functional equations where an error improvement can be achieved which is controlled by a direct defect correction (or: residual improvement). The underlying mathematical theory is presented which is essentially based on the Inverse Function Theorem. As applications, defect corrections via projection methods for linear problems as well as for nonlinear problems are analyzed. For a linear model problem of a singularly perturbed one-dimensional boundary value problem, computational results are presented where one defect correction step is performed using a self-adaptive finite element method.


Asymptotic Expansion Projection Method Singular Perturbation Error Indicator Singular Perturbation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Babuska, L, Aziz, A. K.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Conf. Baltimore, 1972), pp. 5–359. New York: Academic Press 1972.Google Scholar
  2. [2]
    Barrett, J. W., Morton, K. W.: Optimal Petrov-Galerkin methods through approximate symmetrization. IMA J. Numer. Anal. 1, 439–468 (1981).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Berger, M. S., Fraenkel, L. E.: On singular perturbations of nonlinear operator equations. Indiana Univ. Math. J. 20, 623–631 (1971).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Böhmer, K.: A defect correction method for functional equations. In: Approximation Theory (Proc. Internat. Coll., Bonn, 1976), pp. 16–29. (Lecture Notes in Mathematics, Vol. 556.) Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  5. [5]
    Böhmer, K.: Discrete Newton methods and iterated defect corrections. Numer. Math. 37, 167–192 (1981).MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Eckhaus, W.: Formal approximations and singular perturbations. SIAM Rev. 19, 593–633 (1977).MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Eckhaus, W.: Asymptotic analysis of singular perturbations. Studies in Math. and its Applications, Vol. 9. Amsterdam: North-Holland 1979.Google Scholar
  8. [8]
    Fife, P. C.: Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech. Anal. 52, 205–232 (1973).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Frank, R.: The method of iterated defect-correction and its application to two-point boundary value problems. I. Numer. Math. 25, 409–419 (1976). II. Numer. Math. 27, 407–420 (1977).MATHCrossRefGoogle Scholar
  10. [10]
    Hackbusch, W.: Bemerkungen zur iterierten Defektkorrektur und zu ihrer Kombination mit Mehrgitterverfahren. Rev. Roumaine Math. Pures Appl. 26, 1319–1329 (1981).MathSciNetMATHGoogle Scholar
  11. [11]
    van Harten, A.: Nonlinear singular perturbation problems: Proofs of correctness of a formal approximation based on a contraction principle in a Banach space. J. Math. Anal. Appl. 65, 126–168 (1978).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Hemker, P. W.: The defect correction principle. In: An Introduction to Computational and Asymptotic Methods for Boundary and Interior Layers (Lecture Notes, BAIL II Short Course, Dublin 1982), pp. 11–32. Dublin: Boole Press 1982.Google Scholar
  13. [13]
    Pereyra, V.: Iterated deferred corrections for nonlinear operator equations. Numer. Math. 10, 316–323 (1967).MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.MATHGoogle Scholar
  15. [15]
    Reinhardt, H.-J.: On asymptotic expansions in nonlinear, singularly perturbed difference equations. Numer. Funct. Anal. Optim. 1, 565–587 (1979).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Reinhardt, H.-J.: Singular perturbations of difference methods for linear ordinary differential equations. Applicable Anal. 10, 53–70 (1980).MathSciNetCrossRefGoogle Scholar
  17. [17]
    Reinhardt, H.-J.: A-posteriori error estimates for the finite element solution of a singularly perturbed linear ordinary differential equation. SIAM J. Numer. Anal. 18, 406–430 (1981).MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Reinhardt, H.-J.: A-posteriori error analysis and adaptive finite element methods for singularly perturbed convection-diffusion equations. Math. Methods Appl. Sci. 4, 529–548 (1982).MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Reinhardt, H.-J.: Analysis of adaptive finite element methods for − u″ + u′ = f based on a-posteriori error estimates. In: Theory and Applications of Singular Perturbations (Oberwolfach, 1981), pp. 207–227. (Lecture Notes in Mathematics, Vol. 942.) Berlin-Heidelberg-New York: Springer 1982.CrossRefGoogle Scholar
  20. [20]
    Reinhardt, H.-J.: Defect correction and asymptotic expansions for the approximate solution of functional equations containing a small parameter. I. Basic perturbation theory; II. Asymptotic expansions for a singular perturbation problem. In: An Introduction to Computational and Asymptotic Methods for Boundary and Interior Layers (Lecture Notes, BAIL II Short Course, Dublin 1982), pp. 88–99. Dublin: Boole Press 1982.Google Scholar
  21. [21]
    Reinhardt, H.-J.: Defect corrections with finite element methods for singular perturbation problems. In: Computational and Asymptotic Methods for Boundary and Interior Layers (Proc. BAIL II Conf., Dublin 1982), pp. 348–352. Dublin: Boole Press 1982Google Scholar
  22. [22]
    Rosenblat, S.: Asymptotically equivalent singular perturbation problems. Studies in Appl. Math. 55, 249–280 (1976).MathSciNetMATHGoogle Scholar
  23. [23]
    Stetter, H. J.: The defect correction principle and discretization methods. Numer. Math. 29, 425–443 (1978).MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Witsch, K.: Projective Newton-Verfahren und Anwendungen auf nichtlineare Randwertaufgaben. Numer. Math. 31, 209–230 (1978).MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Yarmish, J.: Newton’s method techniques for singular perturbations. SIAM J. Math. Anal. 6, 661–680 (1975).MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Böhmer, K., Hemker, P. W., Stetter, H. J.: In these Proceedings.Google Scholar
  27. [27]
    Frank, R., Hertling, J., Ueberhuber, C. W.: An extension of the applicability of iterated deferred corrections. Math. Comp. 31, 907–915 (1977).MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H.-J. Reinhardt
    • 1
  1. 1.Fachbereich MathematikJ. W. Goethe-UniversitätFrankfurt a. M.Federal Republic of Germany

Personalised recommendations