Endosperm Proteins

  • Peter I. Payne
Part of the Plant Gene Research book series (GENE)


Nearly all the major crop plants of the world are cereals, comprising in decreasing order of production, wheat, maize, rice, barley, sorghum, oats, millet and rye (Harlan and Starks, 1980). The major organ by volume of the cereal grain is the endosperm which serves virtually exclusively as a store of food reserves for the germinating seedling.


Storage Protein Glutenin Subunit Quality Protein Maize Wheat Endosperm Endosperm Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth, C. C., Johnson, H. M., Jackson, E. A., Miller, T. E., Gale, M. D., 1984: The chromosomal locations of leaf peroxidase genes in hexaploid wheat, rye and barley. Theor. Appl. Genet. 69, 205–210.Google Scholar
  2. Altschul, A. M., 1965: Proteins: their chemistry and politics. London: Chapman and Hall.Google Scholar
  3. Bartels, D., Thompson, R. D., 1983: The characterisation of cDNA clones coding for wheat storage proteins. Nuc. Acids Res. 11, 2961–2977.CrossRefGoogle Scholar
  4. Bietz, J. A., Shepherd, K. W., Wall, J. S., 1975: Single-kernel analysis of glutenin: used in wheat genetics and breeding. Cereal Chem. 52, 513–532.Google Scholar
  5. Brown, J. W. S., Kemble, R. J., Law, C. N., Flavell, R. B., 1979: Control of endosperm proteins in Triticum aestivum (var. Chinese Spring) and Aegilops umbellulata by homoeologous group 1 chromosomes. Genetics 93, 189–200.PubMedGoogle Scholar
  6. Burnham, C. R., Hagberg, A., 1956: Cytogenetic notes on chromosome interchanges in barley. Hereditas 42, 467–482.CrossRefGoogle Scholar
  7. Burr, F. A., Burr, B., 1981: In vitro uptake and processing of prezein and other maize preproteins by maize membranes. J. Cell Biol. 90 427–434.Google Scholar
  8. Cameron-Mills, V., Ingversen, J., Brandt, A., 1978: Transfer of in vitro synthesised barley endosperm proteins into the lumen of the endoplasmic reticulum. Carlsberg Res. Commun. 43, 91–102.Google Scholar
  9. Cameron-Mills, V., von Wettstein, D., 1980: Protein body formation in the developing barley endosperm. Carlsberg Res. Commun. 45, 577–594.Google Scholar
  10. Cooke, R. J., Cliff, E. M., Draper, S. R., 1983: Barley cultivar characterisation by electrophoresis II Classification of hordein electrophoregrams. J. Nat. Inst. Agric. Bot. (G. B.) 16, 197–206.Google Scholar
  11. Doll, H., 1980: A nearly non-functional mutant allele of the storage protein locus Hor2 in barley. Hereditas 93, 217–222.CrossRefGoogle Scholar
  12. Doll, H., 1983: Barley seed proteins and possibilities for their improvement. In: Gottschalk, W., Muller, H. P. (eds.). Seed Proteins, pp. 207–223. The Hague: Martinus Nijhoff.Google Scholar
  13. Doll, H., 1984: Nutritional aspects of cereal proteins and approaches to overcome their deficiencies. Philos. Trans. R. Soc. London, Ser.B 304, 373–380.CrossRefGoogle Scholar
  14. Ellis, J. W. S., 1984: The cereal grain trade in the United Kingdom: the problem of cereal variety. Philos. Trans. R. Soc. London, Ser.B 304, 395–407.Google Scholar
  15. Eslick, R. F., Ramage, R. T., 1969: Primary trisomies in the variety Betzes. Barley Newsl. 12, 17.Google Scholar
  16. Flavell, R. B., Payne, P. I, Thompson, R. D., Law, C. N., 1984: Strategies for the improvement of wheat-grain quality using molecular genetics. Biotechnol. Genet. Eng. Rev. 2, 157–173.Google Scholar
  17. Forde, B. G., Kries, M., Williamson, M. S., Fry, R. P., Pywell, J., Shewry, P. R., Bunce, N., Miflin, B. J., 1985: Short tandem repeats shared by B- and C- hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J. 4, 9–15.PubMedGoogle Scholar
  18. Galante, E., Vitale, A., Manzocchi, L., Soave, C., Salamini, F., 1983: Genetic control of a membrane component and zein deposition in maize endosperm. Mol. Gen. Genet. 192, 316–321.CrossRefGoogle Scholar
  19. Giorgi, B., 1981: A line with a deletion on the long arm of chromosome 6B isolated in Triticum aestivum cv. Chinese Spring. Wheat Inf. Serv. 50, 22–23.Google Scholar
  20. Grama, A., Gerechter-Amitai, Z. K., Blum, A., 1984: Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides. In: Cereal Grain Protein Improvement, pp. 145 — 153. Vienna: International Atomic Energy Agency.Google Scholar
  21. Graveland, A., Bosveld, P., Lichtendonk, W. J., Marseille, J. P., Moonen, J. H. E., Scheepsta, A., 1985: A model for the molecular structure of the glutenins from wheat flour. J. Cereal Sci. 3, 1–16.CrossRefGoogle Scholar
  22. Harlan, J. R., Starks, K. J., 1980: Germplasm resources and needs. In: Maxwell, F. G., Jennings, R. (eds.): Breeding Plants Resistant to Insects, pp. 254–273. New York: John Wiley.Google Scholar
  23. Hu, N. T., Peifer, M. A., Heidecker, G., Messing, J., Rubenstein, I., 1982: Primary structure of a genomic zein sequence of maize. EMBO J. 11, 1337–1342.Google Scholar
  24. IAEA, 1984: Cereal Grain Protein Improvement, 385 pp. Vienna: International Atomic Energy Agency.Google Scholar
  25. Kasarda, D. D., 1982: Toxic proteins and peptides in celiac disease: relations to cereal genetics. In: Walcher, D., Kretchmer, N. (eds.). Food, Nutrition and Evolution. New York: Masson.Google Scholar
  26. Kasarda, D. D., Okita, T. W., Bernadin, J. E., Baecker, P. A., Nimmo, C. C., Lew, E. J.-L., Dietler, M. D., Greene, F. C., 1984: Nucleic acid (cDNA) and amino acid sequences of α—type gliadins from wheat (Triticum aestivum). Proc. Nat. Acad. Sci. U.S.A. 81, 4712–4716.CrossRefGoogle Scholar
  27. Koie, B., Doll, H., 1979: Protein and carbohydrate components in the Ris ϕ high-lysine barley mutants. In: Seed Improvement in Cereal and Grain Legumes, I, pp. 205–215. Vienna: International Atomic Energy Agency.Google Scholar
  28. Kries, M., Shewry, P. R., Forde, B. G., Rahman, S., Miflin, B. J., 1983: Molecular analysis of a mutation conferring the high lysine phenotype on the grain of barley (Hordeum vulgare). Cell 34, 161–167.CrossRefGoogle Scholar
  29. Kries, M., Shewry, P. R., Forde, B. G., Rahman, S., Bahramian, M. B., Miflin, B. J., 1984: Molecular analysis of the effect of the lys 3a gene on the expression of Hor loci in developing endosperms of barley (Hordeum vulgare). Biochem. Genet. 22, 231–255.CrossRefGoogle Scholar
  30. Langridge, P., Pintor-Toro, J. A., Feix, G., 1982: Transcriptional effects of the opaque-2 mutation of Zea mays L. Planta 156, 166–170.CrossRefGoogle Scholar
  31. Larkins, B. A., Hurkman, W. G., 1978: Synthesis and deposition of zein proteins in maize endosperm. Plant Physiol. 62, 256–263.PubMedCrossRefGoogle Scholar
  32. Law, C. N., Worland, A. J., 1973: Aneuploidy in wheat and its use in genetic analysis. In: Annual Report, 1972, pp. 25–65. Cambridge: Plant Breeding Institute.Google Scholar
  33. Law, C. N., Snape, J. W., Worland, A. J., 1983: Quantitative genetic studies in wheat. In: Proc. 6th International Wheat Genetics Symposium, Kyoto, Japan 1983, pp. 539–547. Kyoto: Germplasm Institute.Google Scholar
  34. Lawrence, G. J., Shepherd, K. W., 1981: Chromosomal location of genes controlling seed proteins in species related to wheat. Theor. Appl. Genet. 59, 25–31.Google Scholar
  35. Marks, M. D., Larkins, B. A., 1982: Analysis of sequence microheterogeneity among zein messenger RNAs. J. Biol. Chem. 257, 9976–9983.Google Scholar
  36. Miflin, B. J., Shewry, P. R., 1979: The synthesis of proteins in normal and high lysine barley seeds. In: Laidman, D. L., Wyn Jones, R. G. (eds.). Recent Advances in the Biochemistry of Cereals, pp. 239–273. London: Academic Press.Google Scholar
  37. Miflin, B. J., Forde, B. G., Kreis, M., Rahman, S., Forde, J., Shewry, P. R, 1984: Molecular biology of the grain storage proteins of the Triticeae. Philos. Trans. R. Soc. London, Ser.B 304, 333–339.CrossRefGoogle Scholar
  38. Miller, T. E., Reader, S. M., 1982: A major deletion of part of chromosome 5A of Triticum aestivum. Wheat Inf. Serv. 55, 10–12.Google Scholar
  39. Oram, R. N., Doll, H., Koie, B., 1975: Genetics of two storage protein variants in barley. Hereditas 80, 53–58.CrossRefGoogle Scholar
  40. Orth, R. A., Bushuk, W., 1972: A comparative study of the protein of wheats of diverse baking qualities. Cereal Chem. 49, 268–275.Google Scholar
  41. Osborne, T. B., 1907: The proteins of the wheat kernel. Carnegie Inst. Washington Publ. 84. Washington: Judd and Dutweiler.Google Scholar
  42. Park, W. M., Stegemann, H., 1979: Rice protein patterns. Comparison by various PAGE — techniques in slabs. Z. Acker Pflanzenbau 148, 446–454.Google Scholar
  43. Parker, M. L., 1980: Protein body inclusions in developing wheat endosperm. Ann. Bot. 46, 29–36.Google Scholar
  44. Parker, M. L., 1982: Protein accumulation in developing endosperm of a high- protein line of Triticum dicoccoides. Plant Cell Environ. 5, 37–43.Google Scholar
  45. Payne, P. I., Corfield, K. G., 1979: Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta 145, 83–88.CrossRefGoogle Scholar
  46. Payne, P. I., Law, C. N., Mudd, E. E., 1980: Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor. Appl. Genet. 58, 113–120.CrossRefGoogle Scholar
  47. Payne, P. I., Corfield, K. G., Holt, L. M., Blackman, J. A., 1981: Correlations between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food. Agric. 32, 51–60.CrossRefGoogle Scholar
  48. Payne, P. I., Rhodes, A. P., 1982: Cereal storage proteins: structure and role in agriculture and food technology. Encyl. Plant. Physiol. 14A, 346–369.Google Scholar
  49. Payne, P. L, Holt, L. M., Worland, A. J., Law, C. N., 1982: Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Part 3. Telocentric mapping of the subunit genes on the long arms of the homoeologous group 1 chromosomes. Theor. Appl. Genet. 63, 129–138.CrossRefGoogle Scholar
  50. Payne, P. L, Holt, L. M., Hutchinson, J., Bennett, M. D., 1984 a: Development and characterisation of a line of bread wheat, Triticum aestivum, which lacks the short-arm satellite of chromosome IB and the Gli-Bl locus. Theor. Appl. Genet. 68, 327–334.Google Scholar
  51. Payne, P. I., Holt, L. M., Jackson, E. A., Law, C. N., 1984b: Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos. Trans. R. Soc. London, Ser.B 304, 359–371.CrossRefGoogle Scholar
  52. Peterson, D. M., 1978: Subunit structure and composition of oat seed globulin. Plant Physiol. 62, 506–509.PubMedCrossRefGoogle Scholar
  53. Rafalski, J. A., Scheets, K., Metzler, M., Peterson, D. M., Hedgcoth, C., Soll, D. G., 1984: Developmentally regulated plant genes: the nucleotide sequence of a wheat gliadin clone. EMBO J. 3, 1409–1415.PubMedGoogle Scholar
  54. Rajhathy, T., Thomas, H., 1974: Cytogenetics of oats (Avena L). Ottawa: The Genetics Society of Canada.Google Scholar
  55. Rhighetti, P. G., Gianazza, E., Viotti, A., Soave, C., 1977: Heterogeneity of storage proteins in maize. Planta 136, 115–123.CrossRefGoogle Scholar
  56. Riley, R., Kimber, G., 1961: Aneuploids and the cytogenetic structure of wheat varietal populations. Heredity 16, 275–290.CrossRefGoogle Scholar
  57. Robert, L. S., Matlashewski, G. J., Adeli, K., Nozzolillo, C., Altosaar, I, 1983a: Electrophoretic and developmental characterisation of oat (Avena sativa L) globulins in cultivars of different protein content. Cereal Chem. 60, 231–234.Google Scholar
  58. Robert, L. S., Nozzolillo, D., Altosaar, I., 1983 b: Molecular weight and charge heterogeneity of prolamins (avenins) from nine oat (Avena sativa L) cultivars of different protein content and from developing seeds. Cereal Chem. 60, 438–442.Google Scholar
  59. Rybalka, A. I., Sozinov, A. A., 1979: Mapping the locus of Gli 1B, which controls the biosynthesis of reserve proteins in soft wheat. Tsitol. Genet. 13, 276–282.Google Scholar
  60. Sears, E. R., 1954: The aneuploids of common wheat. Research Bulletin Agricultural Experimental Station, University of Missouri, Columbia, Missouri, 572.Google Scholar
  61. Sears, E. R., 1966: Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley, R., Lewis, K. R. (eds.). Chromosome Manipulation and Plant Genetics, pp. 29–45. Edinburgh: Oliver and Boyd.Google Scholar
  62. Shepherd, K. W., Jennings, A. C., 1970: Genetic control of rye endosperm proteins. Experientia 27, 98–99.CrossRefGoogle Scholar
  63. Shewry, P. R., Faulks, A. J., Pratt, H. M., Miflin, B. J., 1978: The varietal identification of single seeds of wheat by sodium dodecyl sulphate polyacrylamide gel electrophoresis of gliadin. J. Sci. Food. Agric. 29, 847–849.CrossRefGoogle Scholar
  64. Shewry, P. R., Autran, J.-C., Nimmo, C. C., Ellen, J.-L., Kasarda, D. D., 1980: N— terminal amino acid sequence homology of protein components from barley and a diploid wheat. Nature (London) 286, 520–522.CrossRefGoogle Scholar
  65. Shewry, P. R., Miflin, B. J., Kasarda, D. D., 1984 a: The structural and evolutionary relationships of the prolamin storage proteins of barley, rye and wheat. Philos. Trans. R. Soc. London, Ser.B 304, 297–308.CrossRefGoogle Scholar
  66. Shewry, P. R., Bradberry, D., Franklin, J., White, R. P., 1984 b: The chromosomal locations and linkage relationships of the structural genes for the prolamin storage protein (secalins) of rye. Theor. Appl. Genet. 69, 63–69.Google Scholar
  67. Shewry, P. R., Miflin, B. J., 1985: Seed storage proteins of economically important cereals. Adv. Cereal. Sci. Technol. 7, 1–83.Google Scholar
  68. Shewry, P. R., Parmar, S., Miller, T. E., 1985: Chromosomal location of the structural genes for the Mr 75,000 γ-secalins in Secale montanum Guss: evidence for a translocation involving chromosomes 2R and 6R of cultivated rye (Secale cereale). Heredity 54, 381–383.CrossRefGoogle Scholar
  69. Simmonds, D. H., O’Brien, T. P., 1981: Morphological and biochemical development of the wheat endosperm. Adv. Cereal Sci. Technol. 4, 5–70.Google Scholar
  70. Singh, N. K., Shepherd, K. W., 1985: The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm. Theor. Appl. Genet., 71, 79–92.CrossRefGoogle Scholar
  71. Singh, R. J., Tsuchiya, T., 1977: Morphology, fertility and transmission in seven monotelotrisomics of barley. Z. Pflanzenzücht. 78, 327–340.Google Scholar
  72. Snape, J. W., Flavell, R. B., O’Dell, M., Hughes, W. G., Payne, P. I, 1985: Intrachromosomal mapping of the nucleolar organiser region relative to three marker loci on chromosome IB of wheat (Triticum aestivum). Theor. Appl. Genet. 69, 263–270.CrossRefGoogle Scholar
  73. Soave, C., Tardani, L., Di Fonzo, N., Salamini, F., 1981: Zein level in maize endosperm depends on a protein under control of the opaque-2 and opaque-6 loci. Cell 27, 403–410.PubMedCrossRefGoogle Scholar
  74. Soave, C., Salamini, F., 1984: Organisation and regulation of zein genes in maize endosperm. Philos. Trans. R. Soc. London, Ser.B 304, 341–347.CrossRefGoogle Scholar
  75. Tallberg, A., 1984: Biochemical and genetic characterisation of lysine genes and their utilization in breeding barley for improved grain protein. In: Cereal Grain Protein Improvement, pp. 205–214. Vienna: International Atomic Energy Agency.Google Scholar
  76. Tatham, A. S., Miflin, B. J., Shewry, P. R., 1985: The β—turn conformation in wheat gluten proteins: relationship to gluten elasticity. Cereal Chem., 62, 405–411.Google Scholar
  77. Thompson, R. D., Bartels, D., Harberd, N. P., Flavell, R. B., 1983: Characterisation of the multigene family coding for HMW glutenin subunits in wheat using cDNA clones. Theor. Appl. Genet. 67, 87–96.CrossRefGoogle Scholar
  78. Tsuchiya, T., 1967: The establishment of a trisomic series in a two-rowed cultivated variety of barley. Can. J. Genet. Cytol. 9, 667–682.Google Scholar
  79. Valentini, G., Soave, C., Ottaviano, E., 1979: Chromosomal location of zein genes in Zea mays. Heredity 42, 33–40.CrossRefGoogle Scholar
  80. Vasal, S. K., Villegas, E., Tang, C. Y., 1984: Recent advances in the development of quality protein maize germplasm at CIMMYT. In: Cereal Grain Protein Improvement, pp. 167–189. Vienna: International Atomic Energy Agency.Google Scholar
  81. Vogel, K. P., Johnson, V. A., Mattern, P. J., 1983: Results of systematic analyses for protein and lysine composition of common wheats (Triticum aestivum L) in the USDA world collection. Nebr. Res. Bull. 258, 27.Google Scholar
  82. Wall, J. S., 1979: The role of wheat proteins in determining baking quality. In: Laidman, D. L., Wyn Jones, R. G. (eds.). Recent advances in the Biochemistry of Cereals, pp. 275–311. London: Academic Press.Google Scholar
  83. Wrigley, C. W., Shepherd, K. W., 1973: Electrofocussing of grain proteins from wheat genotypes. Ann. N. Y. Acad. Sci. 209, 154–162.PubMedCrossRefGoogle Scholar
  84. Yamagata, H., Tanaka, K., Kasai, Z., 1982: Evidence for a precursor form of rice glutelin subunits. Agric. Biol. Chem. 46, 321–322.CrossRefGoogle Scholar
  85. Zhae, W. M., Gatehouse, J. A., Boulter, D., 1983: The purification and partial amino acid sequence of a polypeptide from the glutelin fraction of rice grains: homology to pea legumins. FEBS Lett. 162, 96–102.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • Peter I. Payne
    • 1
  1. 1.Plant Breeding InstituteTrumpington, CambridgeUK

Personalised recommendations