Advertisement

Plant Genetic Approaches to Symbiotic Nodulation and Nitrogen Fixation in Legumes

  • Peter M. Gresshoff
  • Angela C. Delves
Part of the Plant Gene Research book series (GENE)

Abstract

We happily accepted the invitation to write this chapter because we have experienced the development of new approaches to research into the genetics, microbiology and biochemistry of symbiotic nitrogen fixation. We were confronted with a broad range of advances in the biochemical genetics of Rhizobium, especially relating to the genetic elements controlling the key symbiotic phenotypes: nitrogen fixation (the nif and fix genes) and nodulation (controlled by the nod genes). Likewise there has been a major application of plant molecular biology to the analysis of nodule-specific or nodule-enhanced plant gene products (Lee et al., 1983; Fuller et al., 1983; Govers et al., 1985; and Kaninakis and Verma, 1985). This major class of proteins or nodulins allows the molecular visualisation of the plant genome’s contribution to the symbiosis (Verma et al., 1985).

Keywords

Nitrogen Fixation Nitrate Reductase Nitrate Reductase Activity Rhizobium Strain Symbiotic Nitrogen Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albersheim, P., Anderson-Prouty, A. J., 1975: Carbohydrates, proteins, cell surface and the biochemistry of pathogenesis. Annu. Rev. Plant Physiol. 26, 31–52.CrossRefGoogle Scholar
  2. Appleby, C. A., 1984: Leghemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. 35, 443–478.CrossRefGoogle Scholar
  3. Appleby, C. A., 1985: Plant hemoglobin: properties, function and genetic origin. In: Ludden, P. W., Burris, J. E. (eds.), Nitrogen Fixation and CO2 Metabolism, pp. 41–51. Amsterdam: Elsevier.Google Scholar
  4. Appleby, C. A., Tjepkema, J. D., Trinick, M. J., 1983: Hemoglobin in the non-leguminous plant Parasponia. Possible genetic origins and function in nitrogen fixation. Science 220, 951–953.PubMedCrossRefGoogle Scholar
  5. Ausubel, P., Buikema, W., Earl, C., Klingensmith, J., Nixon, B. T., Szeto, W., 1985: Organisation and regulation of Rhizobium meliloti and Parasponia Bradyrhizobium nitrogen fixation genes. In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, pp. 165–171. Dordrecht: Nijhoff Publ.Google Scholar
  6. Badenoch-Jones, J., Summons, R., Djordjevic, M. A., Shine, J., Letham, D. S., Rolfe, B. G., 1982: Mass-spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants: Relation to root hair curling and nodule initiation. Appl. Environ. Microbiol. 44, 275–280.PubMedGoogle Scholar
  7. Badenoch-Jones, J., Rolfe, B. G., Letham, D. S., 1983: Phytohormones, Rhizobium mutants and nodulation in legumes. III.: Auxin metabolism in effective and ineffective pea root nodules. Plant Physiol. 73, 347–352.PubMedCrossRefGoogle Scholar
  8. Barton, K. A., Brill, W. J., 1983: Prospects in plant genetic engineering. Science 219, 671–676.PubMedCrossRefGoogle Scholar
  9. Barton, K. A., Brill, W. J., 1983: Prospects in plant genetic engineering. Science 219, 671–676.PubMedCrossRefGoogle Scholar
  10. Bauer, W. D., 1981: Infection of legumes by rhizobia. Annu. Rev. Plant Physiol. 32, 407–449.CrossRefGoogle Scholar
  11. Beach, K., Gresshoff, P. M., 1986: Culture and nodulation properties of legume roots transformed by Agrobacterium rhizogenes. Plant Science (submitted).Google Scholar
  12. Bedmar, E. J., Phillips, D. A, 1983: Pisum sativum cultivar effects on hydrogen metabolism of Rhizobium. Can. J. Bot. 62, 1682–1686.CrossRefGoogle Scholar
  13. Bedmar, E. J., Phillips, D. A, 1984: A transmissible plant shoot factor promotes uptake hydrogenase activity in Rhizobium symbionts. Plant Physiol. 75, 629–633.PubMedCrossRefGoogle Scholar
  14. Bedmar, E. J., Edie, S. A, Phillips, D. A., 1983: Host plant cultivar effects on hydrogen evolution by Rhizobium leguminosarum. Plant Physiol. 72, 1011–1015.PubMedCrossRefGoogle Scholar
  15. Bergersen, F. J., Goodchild, D. J., 1973: Aeration pathways in soybean root nodules. Aust. J. Biol. Sci. 26, 729–740.Google Scholar
  16. Bergersen, F. J., Turner, G. L., 1967: Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochim. Biophys. Acta 141, 507–515.PubMedGoogle Scholar
  17. Bergersen, F. J., Turner, G. L., 1978: Activity of nitrogenase and glutamine synthetase in relation to availability of oxygen in continuous cultures of a strain of cowpea Rhizobium species supplied with excess ammonium. Biochim. Biophys. Acta 538, 406–415.PubMedGoogle Scholar
  18. Bergmann, H., Preddie, E., Verma, D. P. S., 1983: Nodulin 35: A subunit of specific uricase (uricase II) induced and localized in uninfected cells of nodules. EMBO J. 2, 2333–2339.PubMedGoogle Scholar
  19. Billing, E., 1982: Entry and establishment of pathogenic bacteria in plant tissues. In: Rhodes-Roberts, M. E., Skinner, F. A. (eds.). Bacteria and Plants, pp. 51–70. London: Academic Press.Google Scholar
  20. Bisseling, T., Been, C., Klugkist, J., van Kammen, A., Nadler, K., 1983: Nodule specific host proteins in effective and ineffective root nodules of Pisum sativum. EMBO J. 2, 961–966.PubMedGoogle Scholar
  21. Bisseling, T., Govers, F., Gloudemans, T., Moerman, M., van Kammen, A., 1985: Expression of pea nodulins in effective and ineffective symbiosis. In: Analysis of the Plant Genes Involved in the Legume-Rhizobium Symbiosis, pp. 104–111. Paris: OECD Publ.Google Scholar
  22. Bowen, G. D., Kennedy, M. M., 1961: Heritable variation in nodulation of Centrosema pubescens Beuth. Qld. J. agri. Sci. 18, 161–170.Google Scholar
  23. Braaksma, F., 1982: Genetic control of nitrate reduction in Arabidopsis thaliana. PhD dissertation Univ. of Groningen, Haren, The Netherlands.Google Scholar
  24. Brill, W. J., 1980: Biochemical genetics of nitrogen fixation. Microbiol. Rev. 44, 449–467.PubMedGoogle Scholar
  25. Caldwell, B. E., 1966: Inheritance of a strain specific ineffective nodulation in soybeans. Crop Sci. 6, 427–428.CrossRefGoogle Scholar
  26. Calvert, H. E., Pence, M., Pierce, M., Malik, N. S. A., Bauer, W. D., 1984: Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Can. J. Bot. 62, 2375–2384.CrossRefGoogle Scholar
  27. Campbell, W. H., 1976: Separation of soybean leaf nitrate reductases by affinity chromatography. Plant Sci. Lett. 7, 239–247.CrossRefGoogle Scholar
  28. Carroll, B. J., 1985: The plant contribution to the soybean-Rhizobium symbiosis. PhD dissertation, Australian National University, Canberra, Australia.Google Scholar
  29. Carroll, B. J., Gresshoff, P. M., 1983: Nitrate inhibition of nodulation and nitrogen fixation in white clover. Z. Pflanzenphysiol. 110, 77–88.Google Scholar
  30. Carroll, B. J., Gresshoff, P. M., 1983: Nitrate inhibition of nodulation and nitrogen fixation in white clover. Z. Pflanzenphysiol. 110, 77–88.Google Scholar
  31. Carroll, B. J., McNeil, D. L., Gresshoff, P. M., 1984: Breeding soybeans for increased nodulation in the presence of external nitrate. In: Ghai, B. S. (ed.). Symbiotic Nitrogen Fixation, Vol. I, pp 43–50. Ludhiana, India: USG Pubi. Company.Google Scholar
  32. Carroll, B. J., McNeil, D. L., Gresshoff, P. M., 1985a: Isolation and properties of soybean (Glycine max) mutants that nodulate in the presence of high nitrate concentrations. Proc. Nat. Acad. Sci. U.S.A. 82, 4162–4166.CrossRefGoogle Scholar
  33. Carroll, B. J., McNeil, D. L., Gresshoff, P. M., 1985 b: A supernodulation and nitrate tolerant symbiotic (nts) soybean mutant. Plant Physiol. 78, 34–40.Google Scholar
  34. Carroll, B. J., McNeil, D. L. Gresshoff, P. M., 1986: Isolation of non-nodulation mutants of soybean by induced mutagenesis. Plant Science (submitted).Google Scholar
  35. Chen, C. M., Ertl, J. R., Leisner, S. M., Chang, C. C., 1985: Localization of cyto-kinin biosynthetic sites in pea plants and carrot roots. Plant Physiol. 78, 510–513.PubMedCrossRefGoogle Scholar
  36. Clark, F. F., 1957: Nodulation responses in two near isogenic lines of the soybean. Can. J. Microbiol. 3, 113–123.CrossRefGoogle Scholar
  37. Collins, J., 1983: Anatomical investigations of nodule initiation in white clover. Honours Degree Dissertation, Botany Department, Australian National University, Canberra.Google Scholar
  38. Cove, D. J., 1976: Chlorate toxicity in Aspergillus nidulans: studies of mutants altered in nitrate assimilation. Mol. Gen. Genet. 146, 147–159.PubMedCrossRefGoogle Scholar
  39. Cross, J. W., 1985: Auxin action: the search for the receptor. Plant, Cell Environ. 8, 351–359.CrossRefGoogle Scholar
  40. Cullimore, J. V., Lara, M., Lea, P. J., Miflin, B. J., 1983: Purification and properties of two forms of glutamine synthase from the plant fraction of Phaseolus root nodules. Pianta 157, 245–253.CrossRefGoogle Scholar
  41. Daly, J. M., 1984: The role of recognition in plant disease. Annu. Rev. Phytopathol. 22, 273–307.CrossRefGoogle Scholar
  42. Davies, T. M., 1985: Host genes affecting nodule formation and function in chickpea (Cicer arietinum). In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, p40. Dordrecht: Nijhoff Publ.Google Scholar
  43. Davies, T. M., Foster, K. W., Phillips, D. A., 1985: Non-nodulation mutants of chickpea. Crop Sci. 25, 345–348.CrossRefGoogle Scholar
  44. Day, P. R., 1974: Genetics of host-parasite interaction. San Francisco: W. H. Freeman.Google Scholar
  45. Dazzo, F. B., Gardiol, A. E., 1984: Host specificity in the Rhizobium-legume interaction. In: Verma, D. P. S., Hohn, Th. (eds.). Genes Involved in the Microbe-Plant Interaction. Plant Gene Research. Vol. 1, pp. 3–31. Wien — New York: SpringerGoogle Scholar
  46. Degenhardt, T. L., La Rue, T. A., Paul, E. A., 1976: Investigation of a non-nodulating cultivar of Pisum sativum. Can. J. Bot. 54, 1633–1636.CrossRefGoogle Scholar
  47. Delannay, X., Rodgers, D. M., Palmer, R. G., 1983: Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci. 23, 944–949.CrossRefGoogle Scholar
  48. Delves, A. C., Day, D. A., Price, G. D., Carroll, B. J., Gresshoff, P. M., 1985: Reflation of nodulation and nitrogen fixation in nitrate tolerant, supernodulating soybeans. In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, p41. Dordrecht: Nijhoff Publ.Google Scholar
  49. Delves, A. C., Mathews, A., Day, D. A., Carter, A. C., Carroll, B. J., Gresshoff, P. M., 1986: Regulation of the Rhizobium-legume symbiosis by root and shoot factors (submitted).Google Scholar
  50. Devine, T. E., 1985: Nodulation of soybean plant introduction lines with fastgrowing rhizobial strain USDA 205. Crop Sci. 25, 354–356.CrossRefGoogle Scholar
  51. Devine, T. E., Weber, D. F., 1977: Genetic specificity of nodulation. Euphytica 26, 527–535.CrossRefGoogle Scholar
  52. Devine, T. E., Palmer, R. G., Buzzell, R. L, 1983: Analysis of genetic linkage in the soybean. J. Heredity 74, 457–460.Google Scholar
  53. Ditta, G., Corbin, D., Leong, S., Barran, L., Helinski, D. R., 1983: Symbiotic nitrogen fixation genes of Rhizobium meliloti. In: Pühler, A. (ed.). The molecular genetics of the bacteria-plant interaction, pp. 88–97. New York — Berlin — Heidelberg: Springer.Google Scholar
  54. Djordjevic, M. A., Zurkowski, W., Shine, J., Rolfe, B. G., 1983: Sym plasmid transfer to various symbiotic mutants of Rhizobium trifolii, Rhizobium leguminosarum and Rhizobium meliloti. J. Bacteriol. 156, 1035–1045.PubMedGoogle Scholar
  55. Dommergues, Y. R., 1978: Impact on soil management and growth. In: Dommergues, Y. R., Krupa, S. V. (eds.). Interactions Between Non-pathogenic Soil Microorganisms and Plants, pp. 443–458. Amsterdam: Elsevier.Google Scholar
  56. Duke, S. H., Henson, C. A., 1985: Legume nodule carbon utilization in the synthesis of organic acids for the production of transport amides and amino acids: In: Ludden, P. W., Burris, J. E. (eds.). Nitrogen Fixation and CO2 Metabolism, pp. 293–302. Amsterdam: Elsevier.Google Scholar
  57. Elkan, G. H., 1961: A nodulation inhibiting root excretion from a non-nodulating soybean strain. Can. J. Microbiol. 7, 851–856.PubMedCrossRefGoogle Scholar
  58. Elmerich, C., 1984: Molecular biology and ecology of diazotrophs associating with non-leguminous plants. Biotechnology 2, 967–978.CrossRefGoogle Scholar
  59. Eskew, D. L., Schrader, L. E., 1977: Effect of rj1rj1 (non-nodulating) soybeans on nodulation of near isogenic Rj1Rj1 plants in nutrient culture. Can. J. Microbiol. 23, 988–993.Google Scholar
  60. Evans, L. S., Van’t Hof, J., 1973: Cell arrest in G2 in root meristems: a control factor from the cotyledons. Exp. Cell Res. 82, 471–473.Google Scholar
  61. Feenstra, W. J., Jacobsen, E., 1985: Pea mutants with an altered response to Rhizobium leguminosarum. In: Analysis of Plant Genes Involved in the Legume-Rhizobium Symbiosis, pp. 50–51. Paris: OECD Publ.Google Scholar
  62. Fischer, H. M., Hennecke, H., 1984: Linkage map of Rhizobium japonicum nifH and nifDK operons encoding the polypeptides of the nitrogenase enzyme complex. Mol. Gen. Genet. 196, 537–540.CrossRefGoogle Scholar
  63. Flor, H. H., 1955: Host-parasite interaction in flax rust — its genetic and other implications. Phytopathol. 45, 680–685.Google Scholar
  64. Flor, H. H., 1971: Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275–296.CrossRefGoogle Scholar
  65. Fraser, R. S. S., 1982: Are “pathogenesis-related” proteins involved in acquired systemic resistance of tobacco plants to tobacco mosaic virus? J. Gen. Virol. 58, 305–313.CrossRefGoogle Scholar
  66. Fuller, F., Verma, D. P. S., 1984: Appearance and accumulation of nodulin mRNAs and their relationship to the effectiveness of the root nodule. Plant Mol. Biol. 3, 21–28.CrossRefGoogle Scholar
  67. Fuller, F., Künster, P. N., Nguyen, T., Verma, D. P. S., 1983: Soybean nodulin genes: analysis of cDNA clones reveals several major tissue specific sequences in nitrogen fixing root nodules. Proc. Nat. Acad. Sci. U.S.A. 80, 2594–2598.CrossRefGoogle Scholar
  68. Gadal, P., 1983: Phosphoenolpyruvate carboxylase and nitrogen fixation. Physiol, veg. 21, 1069–1074.Google Scholar
  69. Gelin, O., Blixt, S., 1964: Root nodulation in peas. Agric. Hort. Genet. 22, 149–159.Google Scholar
  70. Gibson, A. H., Harper, J. E., 1985: Nitrate effects on nodulation of soybean by Rhizobium japonicum. Crop Sci. 25, 497–501.CrossRefGoogle Scholar
  71. Gibson, A. H., Pagan, J., 1977: Nitrate effects on the nodulation of legumes inoculated with nitrate reductase deficient mutants of Rhizobium. Planta 134, 17–32.CrossRefGoogle Scholar
  72. Gorbet, D. W., Burton, J. C., 1979: A non-nodulating peanut. Crop Sci. 19, 727–728.CrossRefGoogle Scholar
  73. Govers, F., Gloudemans, T., Moerman, M., van Kammen, A., Bisseling, T., 1985: Expression of plant genes during the development of pea root nodules. EMBO J. 4, 861–867.PubMedGoogle Scholar
  74. Gresshoff, P. M., Mohapatra, S. S., 1981: Legume cell and tissue culture. In: Rao, A. N. (ed.). Tissue Culture of Economically Important Crop Plants, pp. 11–24. Singapore: Univ. Singapore Press.Google Scholar
  75. Gresshoff, P. M. and 14 other authors, 1984: The Parasponia-Rhizobium nitrogen fixing symbiosis: Genetics, biochemistry, and molecular biology of a plant and bacterium. In: Swaminathan, M. (ed.). Genetics: New Frontiers, pp. 217–226. New Delhi: Oxford and IBH Publ. Comp.Google Scholar
  76. Gresshoff, P. M., McNeil, D. L., Carroll, B. J., 1985a: Symbiotic mutants of soybean capable of supernodulation in the absence and presence of nitrate. In: Szalay, A. A., Legocki, R. P. (eds.). Advances in the Molecular Genetics of the Bacteria-plant Interaction, pp. 49–51. Ithaca, N. Y.: Cornell Univ. Publ.Google Scholar
  77. Gresshoff, P. M., Day, D. A., Delves, A. C., Mathews, A., Olsson, J. A., Price, G. D., Schuller, K. A., Carroll, B. J., 1985 b: Plant host genetics of symbiotic nitrogen fixation and nodulation in pea and soybean. In: Evans, H. J., Bottamley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, pp. 19–25. Dordrecht: Nijhoff Publ.Google Scholar
  78. Guerinot, M. L., Chelm, B., 1985: Bacterial cAMP and heme in the Rhizobium-legume symbiosis. In: Evans, H. J., Bottomley, P. J., Newton, W. E., (eds.). Nitrogen Fixation Research Progress, p. 220. Dordrecht: Nijhoff Publ.Google Scholar
  79. Halverson, L. J., Stacey, G., 1984: Host recognition in the Rhizobium-soybean symbiosis: Detection of a protein factor in soybean root exudate which is involved in the nodulation process. Plant Physiol. 74, 84–89.PubMedCrossRefGoogle Scholar
  80. Halverson, L. J., Stacey, G., 1985: Host recognition in the Rhizobium-soybean symbiosis: Evidence for the involvement of lectin in nodulation. Plant Physiol. 77, 621–625.PubMedCrossRefGoogle Scholar
  81. Halverson, L. J., Stacey, G., 1985: Host recognition in the Rhizobium-soybean symbiosis: Evidence for the involvement of lectin in nodulation. Plant Physiol. 77, 621–625.PubMedCrossRefGoogle Scholar
  82. Hanks, J. F., Schubert, K., Tolber, N. E., 1983: Isolation and characterization of infected and uninfected cells from soybean nodules. Role of uninfected cells in ureide synthesis. Plant Physiol. 71, 869–873.PubMedCrossRefGoogle Scholar
  83. Harper, J. E., Gibson, A. H., 1984: Differential nodulation tolerance to nitrate among legume species. Crop Sci. 24, 797–801.CrossRefGoogle Scholar
  84. Heath, M. C., 1980: Reactions of nonsuscepts to fungal pathogens. Annu. Rev. Phytopathol. 18, 211–236.CrossRefGoogle Scholar
  85. Heath, M. C., 1981: A generalized concept of host-parasite specificity. Phytopathol. 71, 1121–1123.CrossRefGoogle Scholar
  86. Herridge, D. F., 1982: Use of the ureide technique to describe the nitrogen economy of field-grown soybean. Plant Physiol. 70, 7–11.PubMedCrossRefGoogle Scholar
  87. Herridge, D. F., Betts, J., 1985: Nitrate tolerance in soybean. Variation between genotypes. In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, p. 32. Dordrecht: Nijhoff Publ.Google Scholar
  88. Herridge, D. F., Roughley, R. J., Brockwell, J., 1984: Effect of rhizobia and soil nitrate on the establishment and functioning of the soybean symbiosis in the field. Aust. J. Agric. Res. 35, 149–161.CrossRefGoogle Scholar
  89. Hinson, K., 1975: Nodulation response from nitrate applied to soybean half-root systems. Agron. J. 67, 799–804.CrossRefGoogle Scholar
  90. Hinson, K., 1975: Nodulation response from nitrate applied to soybean half-root systems. Agron. J. 67, 799–804.CrossRefGoogle Scholar
  91. Holl, F. B., 1975: Host plant control of the inheritance of dinitrogen fixation in the Pisum sativum-Rhizobium symbiosis. Euphytica 24, 767–770.CrossRefGoogle Scholar
  92. Holl, F. B., 1983: Plant genetics: manipulation of the host. Can. J. Microbiol. 29, 945–953.CrossRefGoogle Scholar
  93. Holl, F. B., LaRue, T. A., 1976: Host genetics and nitrogen fixation. In: Hill, L. D. (ed.), Proc. Worid Soybean Conf Urbana, 111., pp. 156–163. Danville: The Interstate Printers and Publishers.Google Scholar
  94. Holl, F. B., Milliron, M. L., Delafield, S. J., 1983: Quantitative variation in root nodule leghemoglobins: Interspecific variation in component problems. Plant Sci. Lett. 32, 321–326.CrossRefGoogle Scholar
  95. Jacobsen, E., 1984: Modification of symbiotic interaction of pea (Pisum sativum) and Rhizobium leguminosarum by induced mutation. Plant and Soil 82, 427–438.CrossRefGoogle Scholar
  96. Jacobsen, E., Feenstra, W. J., 1984: A new pea mutant with efficient nodulation in the presence of nitrate. Plant Sci. Lett. 33, 337–344.CrossRefGoogle Scholar
  97. Jacobsen, E., Postma, J. G., Nijdam, H., 1985: Genetical and grafting experiments with pea mutants in studies of symbiosis. In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, p. 43. Dordrecht: Nijhoff Publ.Google Scholar
  98. Johansen, E., Finan, T. M., Gefter, M. L., Signer, E. R., 1984: Monoclonal antibodies to Rhizobium meliloti and surface mutants insensitive to them. J. Bacteriol. 160, 454–457.PubMedGoogle Scholar
  99. Jones, G. D., 1962: Variation in nodule characters in S. 100 Nomark white clover. J. Sci. Food. Agric. 13, 598–603.CrossRefGoogle Scholar
  100. Jordan, D. C., 1982: Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium japonicum gen. nov., a genus of slow-growing, root nodule producing bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32, 136–139.CrossRefGoogle Scholar
  101. Kahn, M., Krans, J., Sommerville, J. E. 1985. A model of nutrient exchange in the Rhizobium-legume symbiosis. 1985: In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.), Nitrogen Fixation Research Progress, pp. 193–199. Dordrecht: Nijhoff Publ.Google Scholar
  102. Kaninakis, P., Verma, D. P. S., 1985: Nodulin-24 gene of soybean encodes for a peptide of the peribacteroid membrane and was generated by tandem duplication of a sequence resembling an insertion element. Proc. Nat. Acad. Sci. U.S.A. 82, 4157–4161.CrossRefGoogle Scholar
  103. Keen, N. T., Kennedy, B. W., 1974: Hydroxyphaseolin and related isoflavonoids in the hypersensitive resistant reaction of soybean against Pseudomonas glycinea. Physiol. Plant Pathol. 4, 173–185.CrossRefGoogle Scholar
  104. Keen, N. T., Williams, P. H., 1971: Chemical and biological properties of a lipomucopolysaccharide from Pseudomonas lachrymans. Physiol. Plant Pathol. 1, 247–264.CrossRefGoogle Scholar
  105. Keithley, J. H., Nadler, K. D., 1983: Protoporphyrin formation in Rhizobium japonicum. J. Bacteriol. 154, 838–845.Google Scholar
  106. Klement, Z., 1982: Hypersensitivity. In: Mount, M. S., Lacey, G. H. (eds.), Phytopathogenic Prokaryotes. Vol. 2., pp. 150–177. New York: Academic Press.Google Scholar
  107. Kneen, B. E., LaRue, T. A., 1984 a: Nodulation resistant mutant of Pisum sativum (L). J. Hered. 75, 238–240.Google Scholar
  108. Kneen, B. E., LaRue, T. A., 1984b: Peas (Pisum sativum L.) with strain specificity for Rhizobium leguminosarum. Heredity 52, 383–389.CrossRefGoogle Scholar
  109. Kondorosi, A., and 11 other authors, 1985: Identification and organisation of Rhizobium meliloti genes relevant to the initiation and development of nodules. In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, pp. 73–78. Dordrecht: Nijhoff Publ.Google Scholar
  110. Kondorosi, E., Baufalvi, Z., Kondorosi, A., 1984: Physical and genetical analysis of a symbiotic region of Rhizobium meliloti. Identification of nodulation genes. Mol. Gen. Genet. 193, 445–452.CrossRefGoogle Scholar
  111. Kortt, A. A., Burns, J. E., Trinick, M. J., Appleby, C. A., 1985: The amino-acid sequence of hemoglobin I from Parasponia andersonii, a non-leguminous plant. FEBS Lett. 180, 55–60.CrossRefGoogle Scholar
  112. Kosslak, R. M., Bohlool, B. B., 1984: Suppression of nodule development of one side of a split root system of soybeans caused by prior inoculation of the other side. Plant Physiol. 75, 125–130.PubMedCrossRefGoogle Scholar
  113. LaFavre, J. S., Eaglesham, A. R. J., 1984: Increased nodulation of “non-nodulating” (rj1rj1) soybeans by high dose inoculation. Plant and Soil 80, 297–300.CrossRefGoogle Scholar
  114. Lalonde, M., 1979: Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L) Gaerthn. host plants by actinomycetal isolates from the North American Compteria peregrina (L.) Coult root nodule. Bot. Gaz. (suppl.) 140, 535–543.Google Scholar
  115. Lang-Unnasch, N., Ausubel, F. M., 1985: Nodule-specific polypeptides from effective alfalfa root nodules and from ineffective nodules lacking nitrogenase. Plant Physiol. 77, 833–839.PubMedCrossRefGoogle Scholar
  116. LaRue, T. A., Kneen, B. E., Gartside, E., 1985: Plant mutants defective in symbiotic nitrogen fixation. In: Analysis of the Plant Genes Involved in the Legume-Rhizobium Symbiosis, pp. 39–48. Paris: OECD Publ.Google Scholar
  117. Lawn, R. J., Brun, W. A., 1974: Symbiotic nitrogen fixation in soybean III: Effect of supplement nitrogen and intervarietal grafting. Crop Sci. 14, 22–25.CrossRefGoogle Scholar
  118. Lawn, R. J., Bushby, H. V. A., 1982: Effect of root, shoot and Rhizobium strain on nitrogen fixation in four aseatic Vigna species. New Phytol. 92, 425–434.CrossRefGoogle Scholar
  119. Lee, J. S., Brown, G. G., Verma, D. P. S., 1983: Chromosomal arrangement of leghemoglobin genes in soybean. Nuc. Acids Res. 16, 5541–5553.CrossRefGoogle Scholar
  120. Legocki, R. P., Verma, D. P. S., 1979: A nodule specific plant protein (nodulin 35) from soybean. Science 205, 190–193.PubMedCrossRefGoogle Scholar
  121. Legocki, R. P., Eaglesham, A. R. J., Szalay, A. A., 1983: Stem nodulation in Aeschynomene: A model system for bacteria-plant interaction In: Pühler, A. (ed.). The molecular genetics of the bacteria-plant interaction, pp. 210–219. New York — Berlin — Heidelberg: Springer.Google Scholar
  122. Leong, S. A., Ditta, G. S., Helinski, D. R., 1982: Heme biosynthesis in Rhizobium: identification of a cloned gene coding for gamma-aminolevulinic acid synthase in Rhizobium meliloti, J. Biol. Chem. 257, 8724–8730.PubMedGoogle Scholar
  123. Lie, T. A., 1971: Symbiotic nitrogen fixation under stress conditions. Plant and Soil, special volume, 117–127.Google Scholar
  124. Masterson, R. V., Prakash, R. K., Atherly A. G., 1985: Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum. J. Bacteriol. 163, 21–26.PubMedGoogle Scholar
  125. McNeil, D. L., 1982: Variation in the ability of Rhizobium strains to nodulate soybeans and maintain fixation in the presence of nitrate. Appl. Environ. Microbiol. 44, 647–652.PubMedGoogle Scholar
  126. McNeil, D. L., LaRue, T. A., 1984: Effect of nitrate source on ureides in soybean. Plant Physiol 74, 227–232.PubMedCrossRefGoogle Scholar
  127. McNeil, D. L., Carroll, B. J., Gresshoff, P. M., 1984: The nitrogen fixation capacity of bacteroids extracted from soybean nodules inhibited by nitrate, ammonia and dark treatments. In: Ghai, B. S. (ed.). Symbiotic Nitrogen Fixation, Vol. I, pp. 79–88. Ludhiana, India: USG Publ.Google Scholar
  128. Messager, A., 1985: Mutants for nodulation and nitrogen fixation. In: Analysis of the Plant Genes Involved in the Legume-Rhizobium Symbiosis, pp. 52–60. Paris: OECD Publ.Google Scholar
  129. Miflin, B. J., Cullimore, J. V., 1984: Nitrogen assimilation in the legume-Rhizobium symbiosis. A joint endeavour. In: Verma, D. P. S., Hohn, Th. (eds.). Genes Involved in the Microbe-Plant Interaction, Plant Gene Research, Vol. 1, pp. 129–174. Wien — New York: Springer.Google Scholar
  130. Minchin, F. R., Witty, J. F., Sheehy, J. E., Muller, M., 1983: A major error in the acetylene reduction assay. Decreases in nodular nitrogenase activity under assay conditions. J. Exp. Bot. 34, 641–649.CrossRefGoogle Scholar
  131. Misaghi, I. J., 1982: Physiology and biochemistry of plant-pathogen interaction. New York: Plenum Press.Google Scholar
  132. Mohapatra, S. S., Gresshoff, P. M., 1984: Sensitivity to oxygen of nitrogenase activity in Rhizobium strain ANU289 of the non-legume Parasponia (Ulmaceae). Aust. J. Biol. Sci. 37, 31–36.Google Scholar
  133. Mohapatra, S. S., Pühler, A., 1986: Detection of nodule specific polypeptides from effective and ineffective root nodules of Medicago sativa. J. Plant Physiol., sub¬mitted.Google Scholar
  134. Mulligan, J. T., Long, S. R., 1985: Induction of Rhizobium meliloti nodC hy plant exudate requires nodD. Proc. Nat. Acad. Sci. U.S.A. 82, 6609–6613.CrossRefGoogle Scholar
  135. Mulvaney, C. S., Hageman, R. H., 1984: Acetaldehyde oxime, a product formed during the in vivo nitrate reductase assay of soybean leaves. Plant Physiol. 76, 118–124.PubMedCrossRefGoogle Scholar
  136. Müller, P., Niehaus, K., Pühler, A., 1985: Isolation and characterisation of mutants of Rhizobium meliloti obtained by transposon Tn5 mutagenesis. In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, pp. 137. Dordrecht: Nijhoff Publ.Google Scholar
  137. Nadler, K. D., Avissar, Y. J., 1977: Heme biosynthesis in soybean root nodules: The role of bacterial gamma-aminolevulinic acid synthase and aminolevulinic acid dehydrase in the synthesis of the heme of leghemoglobin. Plant Physiol. 60, 433–436.PubMedCrossRefGoogle Scholar
  138. Nambiar, P. T. C., Nigam, S. N., Dart, P. J., Gibbons, R. W., 1983: Absence of root hairs in non-nodulating groundnut, Arachis hypogaea. (L). J. Exp. Bot. 34, 484–488.CrossRefGoogle Scholar
  139. Nelson, R. L., Bernard, R. L., 1984: Production and performance of hybrid soybeans. Crop Sci. 24, 549–553.CrossRefGoogle Scholar
  140. Nelson, R. S., Ryan, S. A., Harper, J. E., 1983: Soybean mutants lacking constitutive nitrate reductase I. Selection and initial plant characterization. Plant Physiol. 72, 503–509.PubMedCrossRefGoogle Scholar
  141. Nutman, P. S., 1946: Genetical factors concerned in the symbiosis of clover and nodule bacteria. Nature 157, 463–465.CrossRefGoogle Scholar
  142. Nutman, P. S., 1949: Physiological studies on nodule function II. The influence of delayed nodulation on the rate of nodulation in red clover. Ann. Bot. 13, 261–283.Google Scholar
  143. Nutman, P. S., 1953: Symbiotic effectiveness in nodulated red clover I. Variation in host and bacteria. Heredity 8, 35–46.CrossRefGoogle Scholar
  144. Nutman, P. S., 1969: Genetics of symbiosis and nitrogen fixation in legumes. Proc. R. Soc. London, Ser. B 172, 417–437.CrossRefGoogle Scholar
  145. Ohlendorf, H., 1983 a: Selektion auf Resistenz von Pisum sativum gegen Rhizobium- Stamm 31 Id. Z. Pflanzenziicht. 90, 204–221.Google Scholar
  146. Ohlendorf, H., 1983 b: Untersuchungen zur Vererbung der Resistenz von Pisum sativum gegen Rhizobium-Ieguminosarum-Stsimm 311d. Z. Pflanzenziicht. 91, 13–24.Google Scholar
  147. Olson, E. R., Sadowsky, M. J., Verma, D. P. S., 1985: Identification of genes involved in the Rhizobium-ltgumQ symbiosis by Dl-Mu (kan: lac)-generated transcript lesions. Biotechnology 3, 143–149.CrossRefGoogle Scholar
  148. Pacovsky, R. S., Bayne, H. G., Bethlenfalvay, G. J., 1984: Symbiotic interactions between strain of Rhizobium phaseoli and cultivars of Phaseolus vulgaris. Crop Sci. 24, 101–105.CrossRefGoogle Scholar
  149. Pankhurst, C. E., Sprent, J. I., 1975a: Surface features of soybean root nodules. Protoplasma 85, 85–98.CrossRefGoogle Scholar
  150. Pankhurst, C. E., Sprent, J. I., 1975 b: Effects of water stress on the respiration and nitrogen fixation ability of soybean root nodules. J. Exp. Bot. 26, 287–304.Google Scholar
  151. Peterson, M. A., Barnes, D. K., 1981: Inheritance of ineffective nodulation and non-nodulation traits in alfalfa. Crop Sci. 21, 611–616.CrossRefGoogle Scholar
  152. Phillips, D. A., Torrey, J. G., 1970: Cytokinin production by Rhizobium japonicum. Physiol. Plant 23, 1057–1063.CrossRefGoogle Scholar
  153. Phillips, D. A., Bedmar, E. J., Qualset, C. O., Teuben, L. R., 1985: Host legume control of Rhizobium function. In: Ludden, P. W., Burris, J. E. (eds.). Nitrogen Fixation and CO2 Metabolism, pp. 203–212. Amsterdam: Elsevier.Google Scholar
  154. Pierce, M., Bauer, W. D., 1983: A rapid regulatory response governing nodulation in soybean. Physiol. Plant 73, 286–290.Google Scholar
  155. Price, G. D., Mohapatra, S. S., Gresshoff, P. M., 1984: Structure of nodules formed by Rhizobium strain ANU289 in the non-legume Parasponia and the legume siratro (Macroptilium atropurpureum). Bot. Gaz. 145, 444–451.CrossRefGoogle Scholar
  156. Ralston, E. J., Imsande, J., 1982: Entry of oxygen and nitrogen into intact nodules of soybean. J. Exp. Bot. 33, 208–214.CrossRefGoogle Scholar
  157. Rennie, R. J., Dubetz, S., 1984: Multistrain versus single strain Rhizobium japonicum inoculants for early maturing (00 and 000) soybean cultivars: N2 fixation quantified by 15N isotope dilution. Agron. J. 76, 498–502.CrossRefGoogle Scholar
  158. Rennie, R. J., Kemp, G. A., 1984: 15N determined time course for nitrogen fixation in two cultivars of field bean. Agron. J. 76, 146–154.Google Scholar
  159. Robertson, J. G., Wells, B., Bisseling, T., Farnden, K. J. F., Johnston, A. W. B., 1984: Immunogold localisation of leghaemoglobin in the plant cytoplasm in nitrogen fixing root nodules of pea. Nature 311, 254–256.CrossRefGoogle Scholar
  160. Rolfe, B. G., Shine, J., 1984: Rhizobium-Leguminosae symbiosis. The bacterial point of view. In: Verma, D. P. S., Hohn, Th. (eds.), Genes Involved in Microbe-plant Interaction, Plant Gene Research, Vol. 1, pp. 95–128. Wien–New York: Springer.Google Scholar
  161. Ronson, C. W., Astwood, P. M., Downie, J. A., 1984: Molecular cloning and genetic organisation of C4-dicarboxylate transport genes from Rhizobium legumin-osarum. J. Bacteriol. 160, 903–909.PubMedGoogle Scholar
  162. Ronson, C. W., Lyttleton, P., Robertson, J. G., 1981: C4-dicarboxylate transport mutants of Rhizobium trifolii from ineffective nodules of Trifolium repens. Proc. Nat. Acad. Sci. U.S.A. 78, 4284–4288.CrossRefGoogle Scholar
  163. Ryan, S. A., Nelson, R. S., Harper, J. E., 1983: Soybean mutants lacking consti¬tutive nitrate reductase activity II. Nitrate assimilation, chlorate resistance and inheritance. Plant Physiol. 72, 510–514.PubMedCrossRefGoogle Scholar
  164. Sandeman, R. A., Gresshoff, P. M., 1985: Nitrogenase activity and inactivation in isolated bacteroids from the legume siratro and the non-legume Parasponia rigida. Plant Sci. Lett. 37, 199–204.CrossRefGoogle Scholar
  165. Schmidt, J., John, M., Kondorosi, E., Kondorosi, A., Wieneke, U., Schröder, G., Schröder, J., Schell, J., 1984: Mapping of the protein encoding region of the Rhizobium meliloti common nodulation genes. EMBO J. 3, 1705–1711.PubMedGoogle Scholar
  166. Schofield, P. R., Djordjevic, M. A., Rolfe, B. G., Shine, J., Watson, J., 1983: A molecular linkage map of the nitrogenase and nodulation genes of Rhizobium trifolii. Mol. Gen. Genet. 192, 456–466.CrossRefGoogle Scholar
  167. Schofield, P. R., Ridge, R. W., Rolfe, B. G., Shine, J., Watson, J., 1984: Host specific nodulation is encoded on a 14 Kb DNA fragment in Rhizobium trifolii. Plant Mol. Biol. 3, 3–15.CrossRefGoogle Scholar
  168. Schubert, K., 1981: Enzymes of purine biosynthesis and catabolism in Glycine max. Plant Physiol. 68, 1115–1122.PubMedCrossRefGoogle Scholar
  169. Schubert, K., Evans, H. J., 1976: Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated soybeans. Proc. Nat. Acad. Sci. U.S.A. 73, 1207–1211.CrossRefGoogle Scholar
  170. Schubert, K., Evans, H. J., 1976: Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated soybeans. Proc. Nat. Acad. Sci. U.S.A. 73, 1207–1211.CrossRefGoogle Scholar
  171. Scott, K. F., Rolfe, B. G., Shine, J., 1983: Biological nitrogen fixation: primary structure of the Rhizobium trifolii iron-protein gene. DNA 2, 149–158.PubMedCrossRefGoogle Scholar
  172. Sen, D., Weaver, R. W., 1984: A basis for different rates of nitrogen fixation by the same strains of Rhizobium in peanut and cowpea nodules. Plant Sci. Lett. 34, 239–246.CrossRefGoogle Scholar
  173. Sequira, L., 1984: Recognition systems in plant-pathogen interactions. Biol. Cell 51, 281–286.Google Scholar
  174. Sheehy, J. E., Fishbeck, K. A., DeJong, T. M., Williams, L. E. Phillips, D. A., 1980: Carbon exchange rates of shoots required to utilize available acetylene reduction capacity of soybean and alfalfa root nodules. Plant Physiol. 66, 101–104.Google Scholar
  175. Sheehy, J. E., Minchin, F. R., Witty, J. F., 1983: Biological control of the resistance to oxygen flux in nodules. Ann. Bot. 52, 565–572.Google Scholar
  176. Sinclair, T. R., Goudriaan, J., 1981: Physical and morphological constraints on transport in nodules. Plant Physiol. 63, 143–145.CrossRefGoogle Scholar
  177. Singleton, P. W., Stockinger, K. R., 1983: Compensation against ineffective nodulation in soybean. Crop Sci. 23, 69–72.CrossRefGoogle Scholar
  178. Skot, L., 1983: Cultivar and Rhizobium strain effects on the symbiotic performance of pea (Pisum sativum). Plant Physiol. 59, 585–589.CrossRefGoogle Scholar
  179. Smartt, J., 1984: Gene pools of grain legume. Econ. Bot. 38, 24–35.CrossRefGoogle Scholar
  180. Smith, G. R., Knight, W. E., 1984: Inheritance of ineffective nodulation in crimson clover. Crop Sci. 24, 601–604.CrossRefGoogle Scholar
  181. Spreit, L., Nelson, R. S., Harper, J. E., 1985: Nitrate reductases from wild type and nr1-soybean (Glycine max(L) Merr.) leaves I. Purification, kinetics and physical properties. Plant Physiol. 78, 80–85.CrossRefGoogle Scholar
  182. Streeter, J. G., 1977: Asparaginase and asparagine transaminase in soybean leaves and root nodules. Plant Physiol. 60, 235–239.PubMedCrossRefGoogle Scholar
  183. Summons, R. E., Letham, D. S., Gollnow, B. I., Parker, C. W., Entsch, B., Johnston, L. P., MacLeod, J. K., Rolfe, B. G., 1981: Cytokinin translocation and metabolism in species of Leguminosae: studies in relation to shoot and nodule development. In: Guern, J., Peaud-Lenoél, C. (eds.). Metabolism and Molecular Activity of Cytokinins, pp. 69–79. New York — Berlin — Heidelberg: SpringerGoogle Scholar
  184. Sutton, W. D., Paterson, A. D., 1983: Further evidence for plant host effect on Rhizobium bacteroid viability. Plant Sci. Lett. 30, 33–41.CrossRefGoogle Scholar
  185. Tanner, J. W., Anderson, 1. C., 1963: Investigation on non-nodulating soybean strains. Can. J. Plant Sci. 43, 542–546.Google Scholar
  186. Thimann, K. V., 1936: On the physiology of the formation of nodules on legume roots. Proc. Nat. Acad. Sci. U.S.A. 22, 511–514.CrossRefGoogle Scholar
  187. Thomas, R. J., Jokinen, K., Schrader, L. E., 1983: Effect of Rhizobium japonicum mutants with enhanced nitrogen fixation activity on nitrogen transport and photosynthesis of soybean during vegetative growth. Crop Sci. 23, 453–456.CrossRefGoogle Scholar
  188. Tjepkema, J. D., Yocum, C. S., 1974: Measurement of oxygen partial pressure within soybean nodules by microelectrode. Planta 119, 351–360.CrossRefGoogle Scholar
  189. Trinick, M. J. 1973: Symbiosis between Rhizobium and the non-legume Trema aspera. Nature (London) 244, 459–460.CrossRefGoogle Scholar
  190. Tran, T. V. K., Toabart, P., Cousson, A., Darvil, A. G., Gollin, D. J., Chelf, P., Albersheim, P., 1985: Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharides. Nature 314, 615–617.CrossRefGoogle Scholar
  191. Tsein, H. C., Dreyfus, B. L., Schmidt, E. L., 1983: Initial stages in the morphogenesis of nitrogen fixing stem nodules of Sesbania rostrata. J. Bacteriol. 156, 888–897.Google Scholar
  192. Tudge, C., 1984: Whatever happens to nitrogen? New Scientist 9, 13–15.Google Scholar
  193. Van den Bos, R., Schots, A., Hentelez, J., van Kammen, A., 1983: Constitutive nitrogenase synthesis from de novo transcribed mRNA in isolated Rhizobium leguminosarum bacteroids. Bioch. Biophys. Acta 740, 313–322.Google Scholar
  194. Vance, C. P., Johnson, L. E. B., 1983: Plant induced ineffective nodules in alfalfa (Medicago sativa L): structural and biochemical comparisons. Can. J. Bot. 61, 93–106.CrossRefGoogle Scholar
  195. Verma, D. P. S., Nadler, K. D., 1984: Legume-Rhizobium symbiosis: The host’s point of view. In: Verma, D. P. S., Hohn, Th. (eds.) Genes Involved in Microbe-Plant Interaction, Plant Gene Research, Vol. 1, pp. 58–84. Wien — New York: Springer.Google Scholar
  196. Verma, D. P. S., Lee, J. S., Katinakis, P., Sutton, B., 1985: Nodule specific genes of soybean. In: Analysis of Plant Genes Involved in the Legume-Rhizobium Symbiosis, pp. 74–84. Paris: OECD Publ.Google Scholar
  197. Vest, G., 1970: Rj3 — a gene controlling ineffective nodulation in soybean. Crop Sci. 10, 34–35.CrossRefGoogle Scholar
  198. Vest, G., Caldwell, B. E., 1972: Rj4 — a gene controlling ineffective nodulation in soybean. Crop Sci. 12, 692.CrossRefGoogle Scholar
  199. Viands, D. R., Vance, C. P., Reichel, G. H., Barnes, D. K., 1979: An ineffective nitrogen fixation trait in alfalfa. Crop Sci. 19, 905–908.CrossRefGoogle Scholar
  200. Weber, C. R., 1966: Modulating and non-nodulating soybean isolines II. Response to applied nitrogen and modified soil conditions. Agron. J. 58, 46–49.CrossRefGoogle Scholar
  201. Weinman, J. J., Fellows, F. F., Gresshoff, P. M., Shine, J., Scott, K. F., 1984: Structural analysis of the genes encoding the molybdenum-iron protein of nitrogenase in the Parasponia Rhizobium strain ANU289. Nuc. Acids Res. 12, 8329–8344.CrossRefGoogle Scholar
  202. Werner, D., Mörschel, E., Kort, R., Mellor, R. B., Bassarab, S., 1984: Lysis of bacteroids in the vicinity of the host cell nucleus in an ineffective (fix-) root nodule of soybean (Glycine max). Planta 162, 8–16.CrossRefGoogle Scholar
  203. Werner, D., Christensen, T., Mellor, R. B., Mörschel, E., 1985: Glycosyltransferases and the peribacteroid membrane. In: Analysis of the Plant Genes Involved in the Legume-Rhizobium Symbiosis, pp. 61–71. Paris: OECD Publ.Google Scholar
  204. Whitmore-Smith, D., 1985: Studies on the constitutive nitrate reductase activity of different soybean mutants. Honours dissertation. Botany Department, Australian National University, Canberra, Australia.Google Scholar
  205. Williams, L. F., Lynch, D. L., 1954: Inheritance of a non-nodulation character in soybean. Agron. J. 46, 28–29.CrossRefGoogle Scholar
  206. Williams, L. E., DeJong, T. M., Phillips, D. A., 1982: Effect of changes in shoot carbon exchange rate on soybean nodule activity. Plant Physiol. 69, 432–436.PubMedCrossRefGoogle Scholar
  207. Winarno, R., Lie, T. A., 1979: Competition between Rhizobium strains in nodule formation. Interaction between nodulating and non-nodulating strains. Plant and Soil 51, 135–142.CrossRefGoogle Scholar
  208. Witty, J. F., Minchin, F. R., Sheehy, J. E., Minguez, M. I., 1984: Acetylene-induced changes in the oxygen diffusion resistance and nitrogenase activity of legume root nodules. Ann. Bot. 53, 13–20.Google Scholar
  209. Witty, J. F., Skot, L., Revsbech, N. P., 1985: Direct evidence for a variable barrier to oxygen diffusion into legume nodules. In: Evans, H. J., Bottomley, P. J., Newton, W. E. (eds.). Nitrogen Fixation Research Progress, p. 355. Dordrecht: Nijhoff Publ.Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • Peter M. Gresshoff
    • 1
  • Angela C. Delves
    • 1
  1. 1.Botany DepartmentAustralian National UniversityCanberraAustralia

Personalised recommendations