Mutants as Tools for the Elucidation of Photosynthetic Processes

  • Christa Critchley
  • Warwick Bottomley
Part of the Plant Gene Research book series (GENE)


Genetic, biochemical and physiological analyses of photosynthetic mutants have been used for many years in attempts to broaden our understanding of the structure-function relationships of the photosynthetic apparatus. The recent development of molecular biology has given us some insight into the primary structure of plant genes and is providing the techniques for the investigation of the molecular basis of mutations which were previously only detectable through their phenotypic expression. In spite of these advances we still have little understanding of the mechanisms regulating the expression of these genes. The use of recombinant DNA techniques in directly probing and manipulating the molecular pathways responsible for particular aspects of plant performance, such as photosynthesis, may lead to significant advances in our knowledge and understanding of these processes.


Large Subunit Small Subunit Chloroplast Genome Photo System Bisphosphate Carboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellemare, G., Bartlett, S. G., Chua, N.-H., 1982: Biosynthesis of chlorophyll a/b- binding polypeptides in wild type and the chlorina f2 mutant of barley. J. Biol. Chem. 257, 7762–7767.PubMedGoogle Scholar
  2. Bohnert, H.-J., Grouse, E. J., Schmitt, J. M., 1982: Organization and expression of plastid genomes. In: Parthier, B., Boulter, D. (eds.). Nucleic Acids and Proteins in Plants II. Encyclopedia of Plant Physiology, New Series, Vol. 14 B, pp. 475–530. New York — Berlin — Heidelberg: Springer-Verlag.Google Scholar
  3. Bohnert, H.-J., Lieffelhardt, W., 1982: Cyanelle DNA from Cyanophora paradoxa exists in two forms due to intramolecular recombination. FEBS Lett. 150, 403–406.CrossRefGoogle Scholar
  4. Bottomley, W., Bohnert, H.-J., 1982: The biosynthesis of chloroplast proteins. In: Parthier, B., Boulter, D. (eds.). Nucleic Acids and Proteins in Plants II. Ency-clopedia of Plant Physiology, New Series, Vol. 14 B, pp. 531 — 596. New York — Berlin — Heidelberg: Springer-Verlag.Google Scholar
  5. Broglie, R., Coruzzi, G., Lamppa, G., Keith, B., Chua, N.-H., 1983: Structural analysis of nuclear genes coding for the precursor to the small subunit of wheat ribulose-1,5-bisphosphate carboxylase. Bio/Technology 1, 55–61.CrossRefGoogle Scholar
  6. Browse, J., McCourt, C. R., Somerville, C. R. 1985: A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227, 763–765.PubMedCrossRefGoogle Scholar
  7. Cashmore, A. R., 1984: Structure and expression of a pea nuclear gene encoding a chlorophyll a/b-binding polypeptide. Proc. Nat. Acad. Sci., U.S.A. 81, 2960–2964.CrossRefGoogle Scholar
  8. Coruzzi, G., Broglie, R., Cashmore, A., Chua, N.-H., 1983: Nucleotide sequence of two pea cDNA clones encoding the small subunit of ribulose 1,5-bisphosphate carboxylase and the major chlorophyll a/b-binding thylakoid polypeptide. J. Biol. Chem. 258, 1399–1402.PubMedGoogle Scholar
  9. Dunsmuir, P., 1985: The petunia chlorophyll a/b-binding protein genes: a comparison of Cab genes from different gene families. Nuc. Acids Res. 13, 2503–2519.Google Scholar
  10. Dunsmuir, P., Smith, S. M., Bedbrook, J., 1983 a: A number of different nuclear genes for the small subunit of RuBCase are transcribed in petunia. Nuc. Acids Res. 11, 41774183.Google Scholar
  11. Dunsmuir, P., Smith, S. M., Bedbrook, J., 1983 b: The major chlorophyll a/b- binding protein of Petunia is composed of several polypeptides encoded by a number of distinct nuclear genes. J. Mol. Appl. Genet. 2, 285–300.Google Scholar
  12. Ellis, R. J., Highfield, P. E., Silverthorne, J., 1978: The synthesis of chloroplast proteins by subcellular systems. In: Hall, D. O., Coombs, J., Goodwin, T. W. (eds.). Photosynthesis 1977, pp. 497–506.Google Scholar
  13. Erickson, J. M., Rahire, M., Bennoun, P., Delepelaire, P., Diner, B., Rochaix, J.-D., 1984: Herbicide resitance in Chlamydomonas reinhardii VQsulis from a mutation in the chloroplast gene for the 32-kilodalton protein of photosystem II. Proc. Nat. Acad. Sci., U.S.A. 81, 3617–3621.CrossRefGoogle Scholar
  14. Feierabend, J., 1978: Cooperation of cytoplasmic and plastidic protein synthesis in rye leaves. In: Akoyunoglou, G., Argyroudi-Akoyunoglou, J. H. (eds.), Chloro-plast Development, pp. 207–213. Amsterdam: Elsevier.Google Scholar
  15. Goloubinoff, P., and Edelman, M., 1984: Chloroplast-coded atrazine resistance in Solarium nigrum. psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change. Nuc. Acids Res. 12, 9489–9496.CrossRefGoogle Scholar
  16. Gruissem, W., Greenberg, B. M., Zurawski, G., Prescott, D. M., Hallick, R. B., 1983: Biosynthesis of chloroplast transfer RNA in a spinach chloroplast tran-scription system. Cell 35, 815–828.PubMedCrossRefGoogle Scholar
  17. Hallier, U. W., Schmitt, J. M., Heber, U., Chaianova, S. S., Volodsarsky, A. D., 1978: Ribulose-5-bisphosphate carboxylase-deficient plastome mutants of Oenothera. Biochim. Biophys. Acta 504, 67–83.PubMedCrossRefGoogle Scholar
  18. Haworth, P., Kyle, D. J., Arntzen, C. J., 1982: Protein phosphorylation and excit-ation energy distribution in normal, intermittent-light-grown, and a chlorophyll b-less mutant of barley. Arch. Biochem. Biophys. 218, 199–206.PubMedCrossRefGoogle Scholar
  19. Hildebrandt, J., Bottomley, W., Moser, J., Herrmann, R. G., 1984: A plastome mutant of Oenothera hookeri has a lesion in the gene for the large subunit of Ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochim. Biophys. Acta 783, 67–73.Google Scholar
  20. Hirschberg, J., Bleecker, A., Kyle, D. J., Mcintosh, L., 1983: The molecular basis of triazine-herbicide resistance in higher-plant chloroplasts. Z. Naturforsch. 39 c, 412–420.Google Scholar
  21. Hirschberg, J., Mcintosh, L., 1983: Molecular basis of herbicide resistance in Amaranthus hybridus. Science 222, 1346–1349.PubMedCrossRefGoogle Scholar
  22. Holschuh, K., Bottomley, W., Whitfeld, P. R., 1984: Structure of the spinach chloroplast genes for the D2 and 44 kD reaction-centre proteins of photosystem II and for tRNASer (UGA). Nuc. Acids Res. 12, 8819–8834.CrossRefGoogle Scholar
  23. Honberg, L. S., 1984: Probing barley mutants with a monoclonal antibody to apolypeptide involved in photosynthetic oxygen evolution. Carlsberg Res. Commun. 49, 703–719.Google Scholar
  24. Hoyer-Hansen, G., Moller, B. L., Pan, L. C., 1979: Identification of coupling factor subunits in thylakoid polypeptide patterns of wild-type and mutant barley thy- lakoids using crossed immunoelectrophoresis. Carlsberg Res. Commun. 44, 337–351.Google Scholar
  25. Hoyer-Hansen, G., Casadoro, G., 1982: Unstable chloroplast ribosomes in the cold-sensitive barley mutant tigrina-O34. Carlsberg Res. Commun. 47, 103–118.Google Scholar
  26. Hoyer-Hansen, G., Moller, B. L., Henrey, L. E. A., Casadoro, G., 1982: Thylakoid polypeptide synthesis and assembly in wild-type and mutant barley. Cell Function and Differentiation, Part B, 111–125.Google Scholar
  27. Jenni, B., Fasnacht, M., Stutz, E., 1981: The multiple copies of the Euglena gracilis chloroplast genome are not uniform in size. FEBS Lett. 125, 175–179.CrossRefGoogle Scholar
  28. Kutzelnigg, H., Stubbe, W., 1974: Investigations on plastome mutants in Oenothera. 1. General considerations. Sub-Cell. Biochim. 3, 73–89.Google Scholar
  29. Kuwabara, T., Miyao, M., Murata, T., Murata, N., 1985: The function of 33-kDa protein in the photosynthetic oxygen-evolution system studied by reconstitution experiments. Biochem. Biophys. Acta 806, 283–289.Google Scholar
  30. Lonsdale, D. M., Hodge, T. P., Howe, C. J., Stern, D. B., 1983: Maize mitochondrial DNA contains a sequence homologous to the ribulose-l,5-bisphophate carboxylase large subunit gene of chloroplast DNA. Cell 34, 1007–1014.PubMedCrossRefGoogle Scholar
  31. McCourt, P., Browse, J., Watson, J., Arntzen, C. J., Somerville, C. R., 1985: Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol. 78, 853–858.PubMedCrossRefGoogle Scholar
  32. Metz, J. G., Seibert, M., 1984: Presence in photosystem II core complexes of a 34-kilodalton polypeptide required for water photolysis. Plant Physiol. 76, 829–832.PubMedCrossRefGoogle Scholar
  33. Metz, J. G., Wong, J., Bishop, N. I., 1980: Changes in electrophoretic mobility of chloroplast membrane polypeptide associated with the loss of the oxidizing side of photosystem II in low fluorescent mutants of Scenedesmus. FEBS Lett. 144, 61–66.CrossRefGoogle Scholar
  34. Miyao, M., Murata, N., 1984: Effect of urea on photosystem II particles: Evidence for an essential role of the 33 kilodalton polypeptide in photosynthetic oxygen evolution. Biochim. Biophys. Acta 765, 253–257.CrossRefGoogle Scholar
  35. Moller, B. L., Nugent, J. H. A., Evans, M. C. W., 1981: Electron paramagnetic resonance spectrometry of photosystem I mutants in barley. Carlsberg Res. Commun. 46, 373–382.Google Scholar
  36. Moller, B. L., Smillie, R. M., Hoyer-Hansen, G., 1980: A photosystem I mutant in barley (Hordeum vulgare L.). Carlsberg Res. Commun. 45, 87–99.Google Scholar
  37. Mullet, J. E., Orozco, E. M., Chua, N.-H., 1985: Multiple transcripts for higher plant rbcL and atpB genes and localization of the transcription initiation site of therbcL gene. Plant Mol. Biol. 4, 39–54.Google Scholar
  38. Nierzwicki-Bauer, S. A., Curtis, S. E., Haselkorn, R., 1984: Cotranscription of genes encoding the small and large subunits of ribulose-l,5-bisphosphate carboxylase in the cyanobacterium Anabaena 7120. Proc. Nat. Acid Sci., U.S.A. 81, 5962–5965.Google Scholar
  39. Nugent, J. H. A., Moller, B. L., Evans, M. C. W., 1980: EPR detection of the primary photochemistry of photosystem II in a barley mutant lacking photosystem I activity. FEBS Lett. 121, 355–357.CrossRefGoogle Scholar
  40. Ogren, W. L., Somerville, C. R., Somerville, S. C., Spreitzer, R. J., Spalding, M. H., Jordan, D. B., 1984: Genetic analysis of photosynthetic carbon pathways. In: Sybesma, C. (ed.). Advances in Photosynthesis Research, Vol. Ill, pp. 429–435. The Hague: Nijhoff/Junk.Google Scholar
  41. Palmer, J. D., 1983: Chloroplast DNA exists in two orientations. Nature (London) 301, 92–93.CrossRefGoogle Scholar
  42. Rasmussen, O. F., Bookjans, G., Stummann, B. M., Henningsen, K. W., 1984: Localization and nucleotide sequence of the gene for the membrane polypeptide D2 from pea chloroplast DNA. Plant Mol. Biol. 3, 191–199.Google Scholar
  43. Ryrie, L J., 1983: Immunological evidence for apoproteins of the light-harvesting chlorophyll-protein complex in a mutant of barley lacking chlorophyll b. Eur. J. Biochem. 131, 149–155.PubMedCrossRefGoogle Scholar
  44. Schmidt, R. J., Richardson, C. B., Gillham, N. W., Boynton, J. E., 1983: Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas. J. Cell Biol. 96, 1451–1463.PubMedCrossRefGoogle Scholar
  45. Scott, N. S., Timmis, J. N., 1984: Homologies between nuclear and plastid DNA in spinach. Theor. Appl. Genet. 67, 279–288.CrossRefGoogle Scholar
  46. Sears, B. B., Herrmann, R. G., 1985: Plastome mutation affecting the chloroplast ATP synthase involves a post-transcriptional defect. Current Genet. 9, 521–528.CrossRefGoogle Scholar
  47. Simpson, D. J., von Wettstein, D., 1980: Macromolecular physiology of plastids. XIV. Viridis mutants in barley: genetic, fluoroscopic and ultrastructural characterization. Carlsberg Res. Commun. 45, 283–314.Google Scholar
  48. Smith, S. M., Bedbrook, J., Spiers, J., 1983: Characterisation of three cDNA clones encoding different mRNAs for the precursor to the small subunit of wheat ribu- losebisphosphate carboxylase. Nuc. Acids Res. 11, 8719–8734.CrossRefGoogle Scholar
  49. Somerville, C. R., 1984: The analysis of photosynthetic carbon dioxide fixation and photorespiration by mutant selection. Oxford Surveys of Plant Molecular and Cell Biology 1, 103–131.Google Scholar
  50. Somerville, S. C., Ogren, W. L., 1983: An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc. Nat. Acad. Sci., U.S.A. 80, 1290–1294.CrossRefGoogle Scholar
  51. Somerville, S. C. Somerville, C. R., 1985: A mutant of Arabidopsis deficient in chloroplast dicarboxylate transport is missing an envelope protein. Plant Sci. Lett. 37, 217–220.CrossRefGoogle Scholar
  52. Spalding, M. H., Spreitzer, R. J., Ogren, W. L., 1983: Genetic and physiological analysis of the C02-concentrating system of Chlamydomonas reinhardii. Planta 159, 261–266.CrossRefGoogle Scholar
  53. Spalding, M. H., Spreitzer, R. H. Ogren, W. L. 1985: Use of mutants in analysis of the C02-concentrating pathway of Chlamydomonas reinhardii. In: Lucas, W. J., Berry, J. A., (eds.). Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiology, Rockville, MD, pp. 361–375.Google Scholar
  54. Stubbe, W., Herrmann, R. G., 1982: Selection and maintenance of plastome mutants and interspecific genome/plastome hybrids from Oenothera. In: Edelman, M., Hallick, R. B., Chua, N.-H. (eds.). Methods in Chloroplast Molecular Biology, pp. 149–165. Amsterdam: Elsevier.Google Scholar
  55. Whisson, D. L., Scott, N. S., 1985: Nuclear and mitochondrial DNA have sequence homology with a chloroplast gene. Plant Mol. Biol. 4, 267–273.Google Scholar
  56. Whitfeld, P. R., Bottomley, W., 1983: Organization and structure of chloroplast genes. Annu. Rev. Plant Physiol. 34, 279–310.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • Christa Critchley
    • 1
  • Warwick Bottomley
    • 2
  1. 1.Botany Department, The FacultiesAustralian National UniversityCanberraAustralia
  2. 2.CSIRO Division of Plant IndustryCanberraAustralia

Personalised recommendations