Genetic Aspects of Abscisic Acid

  • Maarten Koornneef
Part of the Plant Gene Research book series (GENE)


Abscisic acid (ABA) is a naturally occurring plant hormone, probably present in all higher plants. Its discovery in the sixties, and its chemical structure have been described in several reviews (Addicott and Carns, 1983; Milborrow, 1984). ABA may be involved, often as an inhibitor, in many physiological processes such as abscission, bud- and seed dormancy, elongation growth, stomatal opening, root growth, geotropism, fruit ripening and senescence (Walton, 1980; Addicott and Carns, 1983; Milborrow, 1984). In many cases, however, the role of ABA could not be established conclusively, mainly because of the inadequate experimental approaches. In addition, experiments examining the correlation between endogenous ABA levels and physiological effects, or those involving the exogenous application of ABA etc. never provide more than circumstantial evidence, and compartmentation as well as tissue- and time-specific differences in hormone sensitivity complicate the interpretation of results. Methods of manipulating endogenous hormone levels would provide more direct approaches (Karssen, 1982) but specific chemical inhibitors, such as there are for gibberellins, are not known for ABA. The use of isogenic genotypes differing in endogenous ABA content provides plant physiologists with an important tool to elucidate the regulatory function of this compound.


Abscisic Acid Seed Dormancy Tomato Mutant Abscisic Acid Accumulation Wilty Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addicott, F. T., Cams, H. R., 1983: History and introduction. In: Addicott, F. T. (ed.), Abscisic Acid, pp. 1–21. New York: Praeger Scientific.Google Scholar
  2. Alldridge, N. A., 1964: Anomalous vessel elements in wilty dwarf tomato. Bot. Gaz. 125, 138–142.CrossRefGoogle Scholar
  3. Audus, L. J., 1983: Abscisic acid in root growth and geotropism. In: Addicott, F. T. (ed.), Abscisic Acid, pp. 421–477. New York: Praeger Scientific.Google Scholar
  4. Black, M., 1983: Abscisic acid in seed germination and dormancy. In: Addicott, F. T. (ed.), Abscisic Acid, pp. 331–363. New York: Praeger Scientific.Google Scholar
  5. Bowman, W. R, Linforth, R. S. T., Rossall, S., Taylor, I. B., 1984: Accumulation of an ABA analogue in the wilty tomato mutant, flacca. Biochem. Genet. 22, 369–377.PubMedCrossRefGoogle Scholar
  6. Bradford, K. J., 1983: Water relations and growth of the flacca tomato mutant in relation to abscisic acid. Plant Physiol. 72, 251–255.PubMedCrossRefGoogle Scholar
  7. Bradford, K. J., Sharkey, T. D., Farquhar, G. D., 1983: Gas exchange, stomatal behaviour and δ13values of the flacca tomato mutant in relation to abscisic acid. Plant Physiol. 72, 245–250.PubMedCrossRefGoogle Scholar
  8. Brenner, M. L., Burr, B., Burr, F., 1977: Correlation of genetic vivipary in corn with abscisic acid concentration. Plant Physiol. Suppl. 63, 36.Google Scholar
  9. Creelman, R. A., Zeevaart, J. A. D., 1984: Incorporation of oxygen into abscisic acid and phaseic acid from molecular oxygen. Plant Physiol. 75, 166–169.PubMedCrossRefGoogle Scholar
  10. Cummings, D. P., Stuthman, D. D., Green, C. E., 1978: Morphological mutations induced with ethyl methanesulphonate in oats. J. Hered. 69, 3–7.Google Scholar
  11. Donkin, M. E., Wang, T. L., Martin, E. S., 1983: An investigation into the stomatal behaviour of a wilty mutant of Pisum sativum. J. Exp. Bot. 34, 825–834.CrossRefGoogle Scholar
  12. Dooner, H. K., 1985: Viviparous-1 mutation in maize conditions pleiotropic enzyme deficiencies in the aleurone. Plant Physiol. 77, 486–488.PubMedCrossRefGoogle Scholar
  13. Durley, R. C., Kanangara, T., Seetharama, N., Simpson, G. M., 1983: Drought resistance of Sorghum bicolor 5. Genotypic differences in the concentrations of free and conjugated abscisic, phaseic and indole-3-acetic acids in leaves of field-grown drought-stressed plants. Can. J. Plant Sci. 63, 131–145.CrossRefGoogle Scholar
  14. Fong, F., Koehler, D. E., Smith, J. D., 1983: Fluridone induction of vivipary during maize seed development. In: Krueger, J. E., La Berge, D. E. (eds.). III. Int. Symp. on Pre-harvest Sprouting in Cereals, pp. 188–196. Boulder, Colo.: Westview Press.Google Scholar
  15. Goldbach, H., Michael, G., 1976: Abscisic acid content of barley grains during ri-pening as affected by temperature and variety. Crop Sci. 16, 787–800.CrossRefGoogle Scholar
  16. Hayter, A. M., Allison, M. J., 1976: Breeding for high diastatic power. In: Gaul, H. (ed.), Barley Genetics III Proc. of the 3rd Int. Barley Genet. Symp., Garching 1975, pp. 612–619. München: Verlag Karl Thiemig.Google Scholar
  17. Henson, I. E., 1983: Abscisic acid accumulation in detached leaves of rice (Oryza sativa L.) in response to water stress: a correlation with leaf size. Ann. Bot. 52, 385–398.Google Scholar
  18. Henson, I. E., 1984: The heritability of abscisic acid accumulation in water-stressed leaves of pearl millet (Pennisetum americanum [L.] Leeke). Ann. Bot. 53, 1–11.Google Scholar
  19. Henson, I. E., Mahalakshmi, V., Bidinger, F. R., Alagarswamy, G., 1981: Genotypic variation in pearl millet (Pennisetum americanum [L.] Leeke) in the ability to accumulate abscisic acid in response to water stress. J. Exp. Bot. 32, 899–910.CrossRefGoogle Scholar
  20. Henson, I. E., Loresto, G. C., Chang, T. T., 1985: Drought tolerance: Production of closely-related lines of rice differing in drought-induced abscisic acid accumulation. Int. Rice Res. Newsl., 10, 12–13.Google Scholar
  21. Hickok, L. G., 1984: Selection and analysis of ABA-resistant mutants in Ceratopteris. Am. J. Bot. 71, 141.Google Scholar
  22. Ho, T. H. D., Shih, S. C., Kleinhofs, A., 1980: Screening for barley mutants with altered hormone sensitivity in their aleurone layers. Plant Physiol. 66, 153–157.PubMedCrossRefGoogle Scholar
  23. Hocking, A., Clapham, J., Catsell, K. J., 1978: Abscisic acid binding to subcellular fractions from leaves of Vicia faba. Planta 138, 303–304.CrossRefGoogle Scholar
  24. Hornberg, C., Weiler, E. W., 1984: High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature (London) 310, 321–324.CrossRefGoogle Scholar
  25. Ibragimov, A. P., Igamberdyeva, Z. I., Saidova, S. A., 1978: Effect of moisture stress on the level of abscisic acid in cotton leaves. Uzb. Biol. Zh. 4, 11–14.Google Scholar
  26. Ilahi, I., Dörffiing, K., 1982: Changes in abscisic acid and proline levels in maize varieties of different drought resistance. Physiol. Plant. 55, 129–135.CrossRefGoogle Scholar
  27. Imber, D., Tal, M., 1970: Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169, 592–593.PubMedCrossRefGoogle Scholar
  28. Innes, P., Blackwell, R. D., Quarrie, S. A., 1984: Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. J. Agric. Sci. 102, 341–351.CrossRefGoogle Scholar
  29. Karssen, C. M., 1982: Role of endogenous hormones during seed development and the onset of primary dormancy. In: Wareing, P. F. (ed.). Plant Growth Substances 1982, pp. 623–632. London: Academic Press.Google Scholar
  30. Karssen, C. M., Brinkhorst-van der Swan, D. L. C., Breekland, A. E., Koornneef, M., 1983: Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158–165.Google Scholar
  31. Koornneef, M., 1981: The complex syndrome of ttg mutants. Arabidopsis. Inf. Serv. 18, 45–51.Google Scholar
  32. Koornneef, M., van der Veen, J. H., 1980: Induction and analysis of gibberellin- sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appi. Genet. 58, 257–263.CrossRefGoogle Scholar
  33. Koornneef, M., Jorna, M. L., Brinkhorst-van der Swan, D. L. C., Karssen, C. M., 1982: The isolation of abscisic acid (ABA)-defìcient mutants by selection of induced revertants in non-germinating gibberellin-sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor. Appi. Genet. 61, 385–393.Google Scholar
  34. Koornneef, M., Reuling, G., Karssen, C. M., 1984: The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61, 377–383.CrossRefGoogle Scholar
  35. Koornneef, M., Cone, J. W., Karssen, C. M., Kendrick, R. E., van der Veen, J. H., Zeevaart, J. A. D., 1985: Plant hormone and photoreceptor mutants in Arabidopsis and tomato. In: Freeling, M. (ed.). Plant Genetics (UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 35 ), pp. 103–114. New York, NY: Alan R. Liss. Inc.Google Scholar
  36. Larqué-Saavedra, A., Rodriguez, G. M. T., 1979: Maternal inheritance of abscisic acid (ABA) in Zea mays L. In: Abstracts of the 10th Intern. Conf. on Plant Growth Subst. Madison, Wisconsin, p. 23.Google Scholar
  37. Larqué-Saavedra, A., Wain, R. L., 1976: Studies on plant growth-regulating sub-stances. XLII. Abscisic acid as a genetic character related to drought tolerance. Ann. Appi. Biol. 83, 291–297.CrossRefGoogle Scholar
  38. Lee, J. M., Looney, N. E., 1977: Abscisic acid levels and genetic compaction in apple seedlings. Can. J. Plant Sci. 57, 81–85.CrossRefGoogle Scholar
  39. Mapelli, S., Rocchi, P., 1985: Endogenous abscisic acid in torosa-2 mutant tomato plant. Plant Cell Physiol. 26, 371–374.Google Scholar
  40. Marx, G. A., 1976: “Wilty”: a new gene of Pisum. Pisum Newsl. 8, 40–41.Google Scholar
  41. Milborrow, B. V., 1983: Pathways to and from abscisic acid. In: Addicott, F. T. (ed.), Abscisic Acid, pp. 79–111. New York: Praeger Scientific.Google Scholar
  42. Milborrow, B. V., 1984: Inhibitors. In: Wilkins (ed.). Advanced Plant Physiology, pp. 76–110. London: Pitman.Google Scholar
  43. Moore, R., Smith, J. D., 1984: Growth, graviresponsiveness and abscisic acid content of Zea mays seedlings treated with fluridone. Planta 162, 342–344.PubMedCrossRefGoogle Scholar
  44. Moore, R., Smith, J. D., 1985: Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L. Planta 164, 126–128.PubMedCrossRefGoogle Scholar
  45. Neill, S. J., Horgan, R., 1985: Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J. Exp. Bot. 36, 1222–1231.CrossRefGoogle Scholar
  46. Nevo, Y., Tal, M., 1973: The metabolism of abscisic acid in flacca, a wilty mutant of tomato. Biochem. Genet. 10, 79–90.PubMedCrossRefGoogle Scholar
  47. Pilet, P. E., 1982: Abscisic acid, one of the endogenous growth inhibitors regulating root gravireaction. In: Wareing, P. F. (ed.). Plant Growth Substances 1982, pp. 529–536. London: Academic Press.Google Scholar
  48. Postlethwait, S. N., Nelson, O. E., 1957: A chronically wilted mutant of maize. Am. J. Bot. 44, 628–633.CrossRefGoogle Scholar
  49. Quarrie, S. A., 1981: Genetic variability and heritability of drought-induced abscisic acid accumulation in spring wheat. Plant Cell Environ. 4, 147–151.CrossRefGoogle Scholar
  50. Quarrie, S. A., 1982: Droopy: a wilty mutant of potato deficient in abscisic acid. Plant Cell Environ. 5, 23–26.Google Scholar
  51. Quarrie, S. A., 1983: Genetic differences in abscisic acid physiology and their potential uses in agriculture. In: Addicott, F. T. (ed.), Abscisic Acid, pp. 365–419. New York: Praeger Scientific.Google Scholar
  52. Quarrie, S. A., 1984: Abscisic acid and drought resistance in crop plants. News Bull. Br. Plant Growth Regulator Group 7, 1–15.Google Scholar
  53. Quarrie, S. A., Henson, I. E., 1982: Biparental inheritance of drought-induced accu-mulation of abscisic acid in wheat and pearl millet. Ann. Bot. 49, 265–268.Google Scholar
  54. Quarrie, S. A., Jones, H. G., 1979: Genotypic variation in leaf water potential, stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Ann. Bot. 44, 323–332.Google Scholar
  55. Quarrie, S. A., Lister, P. G., 1984: Evidence of plastid control of abscisic acid accu-mulation in barley (Hordeum vulgare L.). Z. Pflanzenphysiol. 114, 295–308.Google Scholar
  56. Rick, C. M., Thompson, A. E., Brauer, O., 1959: Genetics and development of an instable chlorophyll deficiency in Lycopersicon esculentum. Am. J. Bot. 46, 1–11.CrossRefGoogle Scholar
  57. Robertson, D. S., 1955: The genetics of vivipary in maize. Genetics 40, 745–760.PubMedGoogle Scholar
  58. Robertson, D. S., 1975: Survey of the albino and white-endosperm mutants of maize. J. Hered. 66, 67–74.Google Scholar
  59. Robichaud, C. S., Wong, J., Sussex, I. M., 1980: Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev. Genet. 1, 325–330.CrossRefGoogle Scholar
  60. Robitaille, H. A., Carlson, R. F., 1976: Gibberellin and abscisic acid-like substances and the regulation of apple shoot extension. J. Am. Soc. Hortic. Sci. 101, 388–392.Google Scholar
  61. Rudnicki, R., Blumenfeld, A., Bukovac, M. J., 1973: Glycine seed germination: Differential response to abscisic acid. Experientia 29, 231.Google Scholar
  62. Simmonds, N. W., 1965: Mutant expression in diploid potatoes. Heredity 20, 65–72.CrossRefGoogle Scholar
  63. Sloger, C., Caldwell, B. E., 1970: Response of cultivars of soybean to synthetic abscisic acid. Plant Physiol. 46, 634–635.PubMedCrossRefGoogle Scholar
  64. Smith, J. D., McDaniel, S., Lively, S., 1978: Regulation of embryo growth by abscisic acid in vitro. Maize Genet. Coop. Newsl. 52, 107–108.Google Scholar
  65. Smith, J. D., Fong, F., Magill, C. W., Heriick, S., 1983: Fluridone-induced pheno- copies of vp-5 in Zea mays seed. Genetics Suppl. 104, 66.Google Scholar
  66. Stubbe, H., 1957: Mutanten der Kulturtomate, Lycopersicon esculentum, Miller L Kulturpfianze 5, 190–220.CrossRefGoogle Scholar
  67. Stubbe, H., 1958: Mutanten der Kulturtomate, Lycopersicon esculentum. Miller II. Kulturpfianze 6, 89–115.Google Scholar
  68. Stubbe, H., 1959: Mutanten der Kulturtomate, Lycopersicon esculentum, Miller III. Kulturpfianze 7, 82–112.Google Scholar
  69. Sung, Z. M., Fienberg, A., Chorneau, R., Borkird, C., Furner, I., Smith, J., Terzi, M., Loschiavo, F., Giuliano, G., Pitto, L., Nuti-Ronchi, V., 1984: Developmental biology of embryogenesis from carrot culture. Plant Mol. Biol. Rep. 2, 3–14.Google Scholar
  70. Tal, M., 1966: Abnormal stomatal behaviour in wilty mutants of tomato. Plant Physiol. 41, 1387–1391.PubMedCrossRefGoogle Scholar
  71. Tal, M., Nevo, Y., 1973: Abnormal stomatal behaviour and root resistance, and hor-monal imbalance in three wilty mutants of tomato. Biochem. Genet. 8, 291–300.PubMedCrossRefGoogle Scholar
  72. Tal, M., Eshel, A., Witztum, A., 1976: Abnormal stomatal behaviour and ion imbalance in Capsicum scabrous diminutive. J. Exp. Bot. 27, 953–960.CrossRefGoogle Scholar
  73. Tal, M., Imber, D., Erez, A., Epstein, E., 1979: Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. Plant Physiol. 63, 1044–1048.PubMedCrossRefGoogle Scholar
  74. Tal, M., Witztum, A., Shifriss, C., 1974: Abnormal stomatal behaviour and leaf anatomy in Capsicum annuum, scabrous diminutive, a wilty mutant of pepper. Ann. Bot. 38, 983–988.Google Scholar
  75. Taylor, I. B., 1984: Abnormalities of abscisic acid accumulation in tomato mutants. In: Menhennet, R., Lawrence, D. K. (eds.). Biochemical Aspects of Synthetic and Naturally Occurring Plant Growth Regulators, Monograph 11, pp. 73–90. Wantage: British Plant Growth Regulator Group.Google Scholar
  76. Taylor, I. B., Rossall, S., 1982: The genetic relationship between the tomato mutants, flacca and lateral suppressor, with reference to abscisic acid accumulation. Planta 154, 1–5.CrossRefGoogle Scholar
  77. Taylor, I. B., Tarr, A. R., 1984: Phenotypic interactions between abscisic acid deficient tomato mutants. Theor. Appl. Genet. 68, 115–119.CrossRefGoogle Scholar
  78. Tucker, D. J., 1976: Endogenous growth regulators in relation to side shoot development in the tomato. New Phytol. 77, 561–568.CrossRefGoogle Scholar
  79. Uknes, S. J., Ho, T. H. D., 1984: Mode of action of abscisic acid in barley aleurone layers. Plant Physiol. 75, 1126–1132.PubMedCrossRefGoogle Scholar
  80. Waggoner, P. E., Simmonds, N. W., 1966: Stomata and transpiration of droopy potatoes. Plant Physiol. 41, 1268–1271.PubMedCrossRefGoogle Scholar
  81. Wallace, R. H., Habermann, H. M., 1958: Absence of seed dormancy in a white mutant strain of Helianthus annuus L. Plant Physiol. 33, 252–254.PubMedCrossRefGoogle Scholar
  82. Walton, D. C., 1980: Biochemistry and physiology of abscisic acid. Annu. Rev. Plant Physiol. 31, 453–489.CrossRefGoogle Scholar
  83. Wang, T. L., Donkin, M. E., Martin, E. S., 1984: The physiology of a wilty pea: abscisic acid production under water stress. J. Exp. Bot. 35, 1222–1232.CrossRefGoogle Scholar
  84. Wong, J. R., Sussex, I. M., 1980: Isolation of abscisic acid-resistant variants from tobacco cell cultures. II. Selection and characterization of variants. Planta 148, 103–107.CrossRefGoogle Scholar
  85. Yavada, U. L., Lockard, R. G., 1977: Abscisic acid and gibberellin in three ungrafted apple (Malus sylvestris) rootstock. clones. Physiol. Plant. 40, 225–229.CrossRefGoogle Scholar
  86. Zeevaart, J. A. D., 1980: Changes in the levels of abscisic acid and its metabolites in excised leaf blades of Xanthium strumarium during and after water stress. Plant Physiol. 66, 672–678.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • Maarten Koornneef
    • 1
  1. 1.Department of GeneticsAgricultural UniversityWageningenThe Netherlands

Personalised recommendations