Advertisement

Gibberellin Mutants

  • James B. Reid
Part of the Plant Gene Research book series (GENE)

Abstract

An enormous amount has been written on the gibberellins (GAs) during the last decade (for reviews see Graebe and Ropers, 1978; Hedden et al., 1978; MacMillan, 1980) culminating in the extensive work by Crozier (1983). During this time considerable advances have been made regarding their biosynthesis and metabolism due to the use of GC-MS techniques and the production of both radio- and stable-isotope labelled compounds (see Hedden, 1983). However, information is still lacking on the developmental processes controlled by endogenous GAs, the site of action of the GAs and the mechanism(s) by which GAs elicit a physiological response. Indeed it is still debated if endogenous GA levels are responsible for controlling developmental processes (Trewavas, 1981; Ingram et al., 1983; Phinney, 1984) and which of the over sixty identified GAs are biologically active (e. g. Hoad, 1983; Phinney, 1984).

Keywords

Internode Length Photoperiod Response Dwarf Mutant Endogenous Gibberellin Kaurenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, R. E., Vogel, O. A., Craddock, J. C., 1959: Comparative response to gibber-ellic acid of dwarf, semi-dwarf and tall winter wheat varieties. Agron. J. 51, 737–740.Google Scholar
  2. Atzorn, R., Weiler, E. W., 1983: The role of endogenous gibberellins in the formation of a-amylase by aleurone layers of germinating barley. Planta 159, 289–299.Google Scholar
  3. Baldev, B., Lang, A., Agatep, A. O., 1965: Gibberellin production in pea seeds developing in excised pods: effect of growth retardant AMO 1618. Science 147, 155–157.PubMedGoogle Scholar
  4. Barber, H. N., 1959: Physiological genetics of Pisum. II. The genetics of photoperi- odism and vernalisation. Heredity 13, 33–60.Google Scholar
  5. Barber, H. N., Jackson, W. D., Murfet, I. C., Sprent, J. I., 1958: Gibberellic acid and the physiological genetics of flowering in peas. Nature (London) 182, 1321.Google Scholar
  6. Barendse, G. W. M., Lang, A., 1972: Comparison of endogenous gibberellins and the fate of applied radioactive gibberellin A1, in a normal and a dwarf strain of Japanese morning glory. Plant Physiol. 49, 836–841.PubMedGoogle Scholar
  7. Baroncelli, S., Lercari, B., Cionini, P. G., Cavallini, A., D’Amato, P., 1984: Effect of light and gibberellic acid on coleoptile and first-foliage-leaf growth in durum wheat (Triticum durum L. Desf.). Planta 160, 298–304.Google Scholar
  8. Bearder, J. R., 1980: Plant hormones and other growth substances — their background, structure and occurrence. In: MacMillan, J. (ed.). Hormonal Regulation of Development. I. Molecular Aspects of Plant Hormones (Encyclo¬paedia of Plant Physiology, New Series, Vol. 9 ), pp. 9–112. Berlin — Heidelberg — New York: Springer-Verlag.Google Scholar
  9. Bearder, J. R., 1983: In vivo diterpenoid biosynthesis in Gibberella fujikuroi: the pathway after ent-kaurene. In: Crozier, A. (ed.). The Biochemistry and Physiology of Gibberellins, Vol. 1., pp. 251–387. New York: Praeger.Google Scholar
  10. Blixt, S., 1972: Mutation genetics in Pisum. Agri Hortique Genetica 30, 1–293.Google Scholar
  11. Blonstein, A. D., 1981: Developmental differences between dwarfing genes in barley. In: Asher, M. J. C. (ed.). Barley Genetics IV (Proceedings of the Fourth International Barley Genetics Symposium, Edinburgh 1980 ), pp. 566–570. Edinburgh: Edinburgh Univ. Press.Google Scholar
  12. Brian, P. W., 1957: The effects of some microbial metabolic products on plant growth. Symp. Soc. Exp. Biol. 11, 166–181.PubMedGoogle Scholar
  13. Brian, P. W., Hemming, H. G., 1955: The effect of gibberellic acid on shoot growth of pea. Physiol. Plant. 8, 669–681.Google Scholar
  14. Cleland, C. F., Zeevaart, J. A. D., 1970: Gibberellins in relation to flowering and stem elongation in the long-day plant Silene armeria. Plant Physiol. 46, 392–400.PubMedGoogle Scholar
  15. Cooper, J. P., 1958: The effect of gibberellic acid on a genetic dwarf in Lolium perenne. New Phytol. 57, 235–238.Google Scholar
  16. Cross, B. E., Gait, R. H. B., Hanson, J. R., 1964: The biosynthesis of the gibberellins. Part I. (—)-Kaurene as a precursor of gibberellic acid. J. Chem. Soc. 295–300.Google Scholar
  17. Crozier, A., 1983: The Biochemistry and Physiology of Gibberellins, Vols. 1 and 2, p. 568 and p. 452. New York: Praeger.Google Scholar
  18. Crozier, A., Durley, R. C., 1983: Modern methods of analysis of gibberellins. In: Crozier, A. (ed.). The Biochemistry and Physiology of Gibberellins, Vol. 1, pp. 485–560. New York: Praeger.Google Scholar
  19. Crozier, A., Kuo, C. C., Durley, R. C., Pharis, R. P., 1970: The biological activities of 26 gibberellins in nine plant bioassays. Can. J. Bot. 48, 867–877.Google Scholar
  20. Crozier, A., Reid, D. M., 1971: Do roots synthesize gibberellins? Can. J. Bot. 49, 967–975.Google Scholar
  21. Dalton, P. J., Murfet, I. C., 1975: The effect of gibberellic acid and genotype le la cry on flowering in peas. Pisum Newsl. 7, 5–7.Google Scholar
  22. Davies, L. J., Rappaport L., 1975: Metabolism of tritiated gibberellins in d-5 dwarf maize. II. [3H] gibberellin A1 and [3H] gibberellin A3, and related compounds. Plant Physiol. 56, 60–66.PubMedGoogle Scholar
  23. Davies, P. J., Emshwiller, E., Gianfagna, T. J., Proebsting, W. M., Noma, M., Pharis, R. P., 1982: The endogenous gibberellins of vegetative and reproductive tissue of G2 peas. Planta 154, 266–272.Google Scholar
  24. Davies, P. J., Proebsting, W. M., Gianfagna, T. J., 1977: Hormonal relationships in whole plant senescence. In: Pilet, P. E. (ed.). Plant Growth Regulation (9th International Conference on Plant Growth Substances, 1976, Lausanne), pp. 273–280. Berlin — Heidelberg — New York: Springer-Verlag.Google Scholar
  25. de Haan, H., 1927: Length factors in Pisum. Genetica 9, 481–497.Google Scholar
  26. Eeuwens, C. J., Gaskin, P., Macmillan, J., 1973: Gibberellin A20 in seed of Pisum sativum L. cv. Alaska. Planta 115, 73–76.Google Scholar
  27. Eeuwens, C. J., Schwabe, W. W., 1975: Seed and pod wall development in Pisum sativum L. in relation to extracted and applied hormones. J. Exp. Bot. 26, 1–14.Google Scholar
  28. Favret, E. A., Favret, G. C., Malvarez, E. M., 1975: Genetic regulatory mechanisms for seedling growth in barley. In: Barley Genetics III (Proc. 3rd Int. Barley Genet. Symp.), pp. 37–42. Garching, W. Germany.Google Scholar
  29. Fick, G. N., Qualset, C. O., 1973: Genes for dwarfness in wheat, Triticum aestivum L. Genetics 75, 531–539.PubMedGoogle Scholar
  30. Fick, G. N., Qualset, C. O., 1975: Genetic control of endosperm amylase activity and gibberellic acid responses in standard-height and short-statured wheats. Proc. Nat. Acad. Sci., U.S.A. 72, 892–895.Google Scholar
  31. Foster, C. A., 1977: Slender: an accelerated extension growth mutant of barley. Barley Genet. Newsl. 7, 24–27.Google Scholar
  32. Gale, M. D., Hanson, P. R., 1982: The plant breeding potential of genetic variation in cereal phytohormone systems. In: McLaren, J. S. (ed.). Chemical Manipulation of Crop Growth and Development (Proceedings of Easter School of Agricultural Science, Univ. of Nottingham), pp. 425–449. London: Butter-worths.Google Scholar
  33. Gale, M. D., Law, C. N., 1977: The identification and exploitation of Norin 10 semi-dwarfmg genes. Plant Breeding Inst., Cambridge. Annu. Report, pp. 21–35.Google Scholar
  34. Gale, M. D., Law, C. N., Marshall, G. A., Worland, A. J., 1975: The genetic control of gibberellic acid insensitivity and coleoptile length in a ‘dwarf’ wheat. Heredity 34, 393–399.Google Scholar
  35. Gale, M. D., Marshall, G. A., 1973: Insensitivity to gibberellin in dwarf wheats. Ann. Bot. 37, 729–735.Google Scholar
  36. Gale, M. D., Marshall, G. A., 1976: The chromosomal location of Gai 1 and Rht 1, genes for gibberellin insensitivity and semi-dwarfism, in a derivative of Norin 10 wheat. Heredity 37, 283–289.Google Scholar
  37. Gaskin, R, Gilmour, S. J., Lenton, J. R., MacMillan, J., Sponsel, V. M., 1984: Endogenous gibberellins and kaurenoids identified from developing and germinating barley grain. J. Plant Growth Regul. 2, 229–242.Google Scholar
  38. Gaskin, P., Gilmour, S. J., MacMillan, J., Sponsel, V. M., 1985: Gibberellins in immature seeds and dark-grown shoots of Pisum sativum. Gibberellins identified in the tall cultivar Alaska in comparison with those in the dwarf Progress No. 9. Planta 163, 283–289.Google Scholar
  39. Gianfagna, T., Zeevaart, J. A. D., Lusk, W. J., 1983: Effect of photoperiod on the metabolism of deuterium-labelled gibberellin A53 in spinach. Plant Physiol. 72, 86–89.PubMedGoogle Scholar
  40. Gilmour, S. J., Gaskin, P., Sponsel, V. M., MacMillan, J., 1984: Metabolism of gibberellins in immature barley grain. Planta 161, 186–192.Google Scholar
  41. Gilmour, S. J., MacMillan, J., 1984: Effect of inhibitors of gibberellin biosynthesis on the induction of a-amylase in embryoless caryopses of Hordeum vulgare cv. Himalaya. Planta 162, 89–90.Google Scholar
  42. Goto, N., Esashi, Y., 1973: Diffusible and extractable gibberellins in bean cotyledons in relation to dwarfism. Physiol. Plant. 28, 480–489.Google Scholar
  43. Graebe, J. E., Ropers, H. J., 1978: Gibberellins. In: Letham, D. S., Goodwin, P. B., Higgins, T. J. V. (eds.), Phytohormones and Related Compounds — A Comprehensive Treatise. Vol. I. The Biochemistry of Phytohormones and Related Compounds, pp. 107–204. Amsterdam: Elsevier/North-Holland.Google Scholar
  44. Guttridge, C. G., 1973: Stem elongation and runnering in the mutant strawberry, Fragaria vesca L. arborea Staudt. Euphytica 22, 357–361.Google Scholar
  45. Harada, J., Vergarra, B. S., 1971: Response of different rice varieties to gibberellins. Crop Sci. 11, 373–374.Google Scholar
  46. Hedden, P., 1983: In vitro metabolism of gibberellins. In: Crozier, A. (eds.). The Biochemistry and Physiology of Gibberellins, Vol. 1, pp. 99–149. New York: Praeger.Google Scholar
  47. Hedden, P., MacMillan, J., Phinney, B. O., 1978: The metabolism of the gibberellins. Annu. Rev. Plant Physiol. 29, 149–192.Google Scholar
  48. Hedden, P., Phinney, B. O., 1979: Comparison of ent-kaurene and ent-isokaurene synthesis in cell-free systems from etiolated shoots of normal and dwarf-5 maize seedlings. Phytochemistry 18, 1475–1479.Google Scholar
  49. Hedden, P., Phinney, B. O., MacMillan, J., Sponsel, V. M., 1977: MetaboHsm of kaurenoids by Gibberella fujikuroi in the presence of the plant growth retardant, N, N, N-trimethyl-l-methyl-(22′,6′,6′-trimethylcyclohex-2′-en-r-yl)prop-2-enyl- ammonium iodide. Phytochemistry 16, 1913–1917.Google Scholar
  50. Heupel, R. C., Phinney, B. O., Spray, C. R., Gaskin, P., MacMillan, J., Hedden, P., Graebe, J. E., 1985: Native gibberellins and metabolism of [14C] gibberellin A53 and of [17-13C, 17-3H2] gibberellin A20 in tassels of Zea mays. Phytochemistry 24, 47–53.Google Scholar
  51. Ho, T. D., Nolan, R. C., Shute, D. E., 1981: Characterisation of a gibberellin-insen- sitive dwarf wheat, D6899. Plant Physiol. 67, 1026–1031.PubMedGoogle Scholar
  52. Ho, T. D., Shih, S., Kleinhofs, A., 1980: Screening for barley mutants with altered hormone sensitivity in their aleurone layers. Plant Physiol. 66, 153–157.PubMedGoogle Scholar
  53. Hoad, G. v., 1983: Gibberellin bioassays and structure-activity relationships. In: Crozier, A. (ed.), The Biochemistry and Physiology of Gibberellins, Vol. 2, pp. 57–94. New York: Praeger.Google Scholar
  54. Hopp, H. E., Favret, G. C., Favret, E. A., 1981: Control of barley development using dwarf mutants. In: Induced Mutants as a Tool for Crop Improvement, p. 243. Vienna: IAEA.Google Scholar
  55. Hu, M. L., Konzak, C. F., 1974: Genetic association of gibberellic acid insensitivity and semi-dwarfing in hexaploid wheat. Annu. Wheat Newsl. 20, 184–185.Google Scholar
  56. Ingram, T. J., 1980: Gibberellins and reproductive development in peas. Ph. D. Thesis, University of East Anglia, U. K.Google Scholar
  57. Ingram, T. J., Browning, G., 1979: Influence of photoperiod on seed development in the genetic line of peas G2 and its relation to changes in endogenous gibberellins measured by combined gas chromatography — mass spectrometry. Planta 146, 423–432.Google Scholar
  58. Ingram, T. J., Reid, J. B., MacMillan, J., 1985: Internode length in Pisum sativum. L. The kinetics of growth and [3H] gibberellin A20 metabolism in genotype na Le. Planta 164, 429–438.Google Scholar
  59. Ingram, T. J., Reid, J. B., Murfet, I. C., Gaskin, P., Willis, C. L., MacMillan, J., 1984: Internode length in Pisum. The Le gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160, 455–463.Google Scholar
  60. Ingram, T. J., Reid, J. B., Potts, W. C., Murfet, I. C., 1983: Internode length in Pisum. IV. The effect of the Le gene on gibberellin metabolism. Physiol. Plant. 59, 607–616.Google Scholar
  61. Inouke, M., Sakurai, N., Kuraishi, S., 1982: Growth regulation of dark-grown dwarf barley coleoptile by the endogenous IAA content. Plant Cell Physiol. 23, 689–698.Google Scholar
  62. Jones, R. L., 1973: Gibberellins: their physiological role. Annu. Rev. Plant Physiol. 24, 571–598.Google Scholar
  63. Jones, R. L., Lang, A., 1968: Extractable and diffusible gibberellins from light- and dark-grown pea seedlings. Plant Physiol. 43, 629–634.PubMedGoogle Scholar
  64. Kamiya, Y., Graebe, J. E., 1983: The biosynthesis of all major pea gibberellins in a cell-free system from Pisum sativum. Phytochemistry 22, 682–689.Google Scholar
  65. Katsumi, M., Foard, D. E., Phinney, B. O., 1983: Evidence for the translocation of gibberellin A3 and gibberellin-like substances in grafts between normal, dwarf 1 and dwarf 5 seedlings of Zea mays L. Plant Cell Physiol. 24, 379–388.Google Scholar
  66. Katsumi, M., Phinney, B. O., Jefferies, P. R., Hendrick, C. A., 1964: Growth response of the d-5 and an-1 mutants of maize to some kaurene derivatives. Science 144, 849–850.PubMedGoogle Scholar
  67. Keller, P. L., Coulter, M. W., 1982: The relationship of endogenous gibberellins to light-regulated stem elongation rates in dwarf and normal cultivars of Pisum sativum L. Plant Cell Physiol. 23, 409–416.Google Scholar
  68. King, W., Murfet, I. C., 1985: Flowering in Pisum: A sixth locus, Dne. Ann. Bot., 56, 835–846.Google Scholar
  69. Köhler, D., 1970: The effect of red light on the growth and gibberellin-content of pea seedlings. Z. Pflanzenphysiol. 62, 426–435.Google Scholar
  70. Koornneef, M., Jorna, M. L., Brinkhorst — van der Swan, D. L. C., Karssen, C. M., 1982: The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.). Heynh. Theor. Appl. Genet. 61, 385–393.Google Scholar
  71. Koornneef, M., van der Veen, J. H., 1980: Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.). Heynh. Theor. Appl. Genet. 58, 257–263.Google Scholar
  72. Koornneef, M., van der Veen, J. H., Spruit, C. J. P., Karssen, C. M., 1981: Isolation and use of mutants with an altered germination behaviour in Arabidopsis thaliana and tomato. In: Induced Mutants as a Tool for Crop Plant Improvement 251, 227–232. Vienna: IAEA-SM.Google Scholar
  73. Kuraishi, S., 1974: Biogenesis of auxin in the coleoptile of a semi-brachytic barley, uzu. Plant Cell Physiol. 15, 295–306.Google Scholar
  74. Kurogochi, S., Murofushi, N., Ota, Y., Takahashi, N., 1979: Identification of gib- berellins in the rice plant and quantitative changes of gibberellin A19 throughout its life cycle. Planta 146, 185–191.Google Scholar
  75. Lockhart, J. A., 1956: Reversal of light inhibition of pea stem growth by gibber- ellins. Proc. Nat. Acad. Sci., U.S.A. 42, 841–848.PubMedGoogle Scholar
  76. Loy, J. B., Liu, P. B. W., 1974: Response of seedlings of a dwarf and a normal strain of watermelon to gibberellins. Plant Physiol. 53, 325–330.PubMedGoogle Scholar
  77. McComb, A. J., McComb, J. A., 1970: Growth substances and the relation between phenotype and genotype in Pisum sativum. Planta 91, 235–245.Google Scholar
  78. MacMillan, J., 1980: Hormonal Regulation of Development. I. Molecular Aspects of Plant Hormones (Encyclopedia of Plant Physiology, New Series, Vol. 9 ). Berlin — Heidelberg — New York: Springer-Verlag.Google Scholar
  79. MacMillan, J., 1984: Analysis of plant hormones and metabolism of gibberellins. In: Crozier, A., Hillman, J. R. (eds.), The Biosynthesis and Metabolism of Plant Hormones (Society of Experimental Biology Seminar, Series 23 ), pp. 1–16. Cambridge: Cambridge University Press.Google Scholar
  80. McVittie, J. A., Gale, M. D., Marshall, G. A., Westcott, B., 1978: The intra-chromo- somal mapping of the Norin 10 and Tom Thumb dwarfing genes. Heredity 40, 67–70.Google Scholar
  81. Magara, J., 1963: Notes on the possible role of endogenous “gibberellins” in the determining of monofactorial dwarfism in dwarf sweet peas (Lathyrus odoratus L.) and in mutants d1 and d5 of maize. Ann. Physiol. Veg. 5, 249–261.Google Scholar
  82. Marx, G. A., 1968: Influence of genotype and environment on senescence in peas, Pisum sativum L. Bioscience 18, 505–506.Google Scholar
  83. Metzger, J. D., Zeevaart, J. A. D., 1980a: Identification of six endogenous gibberellins in spinach shoots. Plant Physiol. 65, 623–626.PubMedGoogle Scholar
  84. Metzger, J. D., Zeevaart, J. A. D., 1980 b: Effect of photoperiod on the levels of endogenous gibberellin in spinach as measured by combined gas chromatog- raphy-selected ion current monitoring. Plant Physiol. 66, 844–846.Google Scholar
  85. Moh, C. C., Alan, J. J., 1967: The response of a radiation-induced dwarf bean mutant to gibberellic acid. Turrialba 17, 176–178.Google Scholar
  86. Morris, R., Schmidt, J. W., Johnson, V. A., 1972: Chromosomal location of a dwarfing gene in “Tom Thumb” wheat derivative by monosomic analysis. Crop Sci. 12, 247–249.Google Scholar
  87. Murakami, Y., 1972: Dwarfing genes in rice and their relation to gibberellin biosynthesis. In: Carr, D. J. (ed.). Plant Growth Substances, 1970, pp. 166–174. Berlin — Heidelberg — New York: Springer-Verlag.Google Scholar
  88. Murfet, I. C., 1971a: Flowering in Pisum. Three distinct phenotypic classes determined by the interaction of a dominant early and a dominant late gene. Heredity 26, 243–257.Google Scholar
  89. Murfet, I. C., 1971b: Flowering in Pisum: reciprocal grafts between known genotypes. Aust. J. Biol. Sci. 24, 1089–1101.Google Scholar
  90. Murfet, I. C., 1973: Flowering in Pisum. Hr, a gene for high response to photoperiod. Heredity 31, 157–164.Google Scholar
  91. Murfet, I. C., 1978: The flowering genes Lf, E, Sn and Hr in Pisum: their relationship with other genes, and their descriptions and type lines. Pisum Newsl. 10, 48–52.Google Scholar
  92. Murfet, I. C., 1982: Flowering in the garden pea: expression of gene Sn in the field and use of multiple characters to detect segregation. Crop Sci. 22, 923–926.Google Scholar
  93. Murfet, I. C., 1985: Pisum sativum L. In: Halevy, A. H. (ed.). Handbook of Flowering, Vol. IV, pp. 97–126. Boca Raton, Florida: CRC Press.Google Scholar
  94. Murfet, I. C., Reid, J. B., 1973: Flowering in Pisum; evidence that gene Sn controls a graft-transmissible inhibitor. Aust. J. Biol. Sci. 26, 675–677.Google Scholar
  95. Murfet, I. C., Reid, J. B., 1985: The control of flowering and internode length in Pisum. In: Hebblethwaite, P. D., Heath, M. C., Dawkins, T. C. K. (eds.). The Pea Crop: a Basis for Improvement, pp 67–80. London: Butterworths.Google Scholar
  96. Murofushi, N., 1983: Life cycle regulation in rice by endogenous plant hormones. In: Miyamoto, J. (ed.). Pesticide Chemistry. Human Welfare and the Environment (Proceedings of the 5th International Congress of Pesticide Chemistry, 1982, Kyoto), pp. 21–28. Oxford: Pergamon Press.Google Scholar
  97. Musgrave, A., Kende, H., 1970: Radioactive gibberellin A5 and its metabolism in dwarf peas. Plant Physiol. 45, 53–55.Google Scholar
  98. Ogawa, Y., 1962: Quantitative differences of gibberellin-like substances in normal and dwarf varieties of Pharbitis nil. Chois. Bot. Mag. Tokyo 75, 449–450.Google Scholar
  99. Perez, A. T., Marsh, H. V., Lachman, W. H., 1974: Physiology of the yellow-green 6 gene in tomato. Plant Physiol. 53, 192–197.PubMedGoogle Scholar
  100. Phinney, B. O., 1956: Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc. Nat. Acad. Sci., U.S.A. 42, 185–189.PubMedGoogle Scholar
  101. Phinney, B. O., 1961: Dwarfing genes in Zea mays and their relation to the gibberellins. In: Klein, R. M. (ed.). Plant Growth Regulation, pp. 489–501. Ames, Iowa: Iowa State College Press.Google Scholar
  102. Phinney, B. O., 1984: Gibberellin A1, dwarfism and the control of shoot elongation in higher plants. In: Crozier, A., Hillman, J. R. (eds.). The Biosynthesis and Metabolism of Plant Hormones (Society of Experimental Biology Seminar, Series 23 ), pp. 17–41. Cambridge: Cambridge University Press.Google Scholar
  103. Phinney, B. O., Spray, C., 1982: Chemical genetics and the gibberellin pathway in Zea mays L. In: Wareing, P. F. (ed.). Plant Growth Substances 1982, pp. 101–110. London Academic Press.Google Scholar
  104. Potts, W. C., 1982: The involvement of gibberellins with the internode length and flowering genotypes of Pisum. Ph. D. Thesis, University of Tasmania, Australia.Google Scholar
  105. Potts, W. C., Reid, J. B., 1983: Internode length in Pisum. III. The effect and interaction of the Na/na and Le/le gene differences on endogenous gibberellin-like substances. Physiol. Plant. 57, 448–454.Google Scholar
  106. Potts, W. C., Reid, J. B., Murfet, I. C., 1982: Internode length in Pisum. I. The effect of the Le/le gene difference on endogenous gibberellin-like substances. Physiol. Plant. 55, 323–328.Google Scholar
  107. Potts, W. C., Reid, J. B., Murfet, I. C., 1985: Internode length in Pisum. Gibberellins and the slender phenotype. Physiol. Plant. 63, 357–364.Google Scholar
  108. Proano, V. A., Greene, G. L., 1968: Endogenous gibberellins of a radiation induced single gene dwarf mutant of bean. Plant Physiol. 43, 613–618.PubMedGoogle Scholar
  109. Proebsting, W. M., Davies, P. J., Marx, G. A., 1977: Evidence for a graft-transmis- sible substance which delays apical senescence in Pisum sativum L. Planta 135, 93–94.Google Scholar
  110. Proebsting, W. M., Davies, P. J., Marx, G. A., 1978: Photoperiod-induced changes in gibberellin metabolism in relation to apical growth and senescence in genetic lines of peas (Pisum sativum L.). Planta 141, 231–238.Google Scholar
  111. Proebsting, W. M., Heftman, E., 1980: The relationship of [3H]GA9 metabolism to photoperiod induced flowering in Pisum sativum L. Z. Pflanzenphysiol. 98, 305–309.Google Scholar
  112. Radley, M., 1970: Comparison of endogenous gibberellins and response to applied gibberellin of some dwarf and tall wheat cultivars. Planta 92, 292–300.Google Scholar
  113. Redei, G. P., 1975: Induction of auxotrophic mutations in plants. In: Ledoux, L. (ed.). Genetic Manipulations with Plant Material, pp. 329–349. New York — London: Plenum Press.Google Scholar
  114. Reid, J. B., 1976: Regulation of Flowering in Pisum. Ph. D. Thesis, University of Tasmania, Australia.Google Scholar
  115. Reid, J. B., 1979 a: Red-far-red reversibility of flower development and apical sen-escence in Pisum. Z. Pflanzenphysiol. 93, 297–301.Google Scholar
  116. Reid, J. B., 1979 b: Flowering in Pisum.:the effect of age on the gene Sn and the site of action of gene Hr. Ann. Bot. 44, 163–173.Google Scholar
  117. Reid, J. B., 1980: Apical senescence in Pisum: a direct or indirect role for the flowering genes. Ann. Bot. 45, 195–201.Google Scholar
  118. Reid, J. B., 1983: Internode length genes in Pisum. Do the internode length genes affect growth in dark-grown plants? Plant Physiol. 72, 759–763.PubMedGoogle Scholar
  119. Reid, J. B., 1983: Internode length genes in Pisum. Do the internode length genes affect growth in dark-grown plants? Plant Physiol. 72, 759–763.PubMedGoogle Scholar
  120. Reid, J. B., Dalton, P. J., Murfet, I. C., 1977: Flowering in Pisum: dots gibberellic acid directly influence the flowering process? Aust. J. Plant Physiol. 4, 479–483.Google Scholar
  121. Reid, J. B., Murfet, I. C., 1977: Flowering in Pisum: the effect of light quality on genotype lf e Sn Hr. J. Exp. Bot. 28, 1357–1364.Google Scholar
  122. Reid, J. B., Murfet, I. C., 1984: Flowering in Pisum: a Tifth locus, Veg. Ann. Bot. 53, 369–382.Google Scholar
  123. Reid, J. B., Murfet, I. C., Potts, W. C., 1983: Internode length in Pisum. II. Additional information on the relationship and action of loci Le, La, Cry, Na and Lm. J. Exp. Bot. 34, 349–364.Google Scholar
  124. Reid, J. B., Murfet, I. C., Potts, W. C., 1983: Internode length in Pisum. II. Additional information on the relationship and action of loci Le, La, Cry, Na and Lm. J. Exp. Bot. 34, 349–364.Google Scholar
  125. Sawhney, V. K., 1974: Morphogenesis of the stamenless-2 mutant in tomato. III. Relative levels of gibberellins in the normal and mutant plants. J. Exp. Bot. 25, 1004–1009.Google Scholar
  126. Sembdner, G., Schreiber, K., 1965: Activities of gibberellin A3, A5 and A6 on the maize-dwarf mutants d1, d3 and d5 in the dark. Flora, oder Allg. Bot. Z. Abt. A 156, 359–363.Google Scholar
  127. Shifriss, O., 1973: The drooping syndrome of Ricinus. J. Hered. 64, 351–355.Google Scholar
  128. Sidorova, K. K., 1970: The study of allelism in phenotypically identical mutants of pea in connection with the law of homologous series in hereditary variability. Genetika 6, 23–35.Google Scholar
  129. Smith, R. R., 1974: Inheritance of a gibberellin-responsive dwarf mutant in red clover. Euphytica 23, 597–600.Google Scholar
  130. Sponsel, V. M., 1982: Effects of applied gibberellins and napthylacetic acid on pod development in fruits of Pisum sativuim L. cv. Progress No. 9. J. Plant Growth Regul. 1, 147–152.Google Scholar
  131. Sponsel, V. M., 1983 a: In vivo gibberellin metabolism in higher plants. In: Crozier, A. (ed.). The Biochemistry and Physiology of Gibberellins, Vol. 1, pp. 151–250. New York: Praeger.Google Scholar
  132. Sponsel, V. M., 1983 b: The localisation, metabolism and biological activity of gibberellins in maturing and germinating seeds of Pisum sativum cv. Progress No. 9. Planta 159, 454–468.Google Scholar
  133. Spray, C., Phinney, B. O., Gaskin, P., Gilmour, S. J., MacMillan, J., 1984: Internode length in Zea mays L. The dwarf-1 mutant controls the 3β-hydroxylation of gib-berellin A20 to gibberellin A1. Planta 160, 464–468.Google Scholar
  134. Stoddart, J. L., 1983: Sites of gibberellin biosynthesis and action. In: Crozier, A. (ed.). The Biochemistry and Physiology of Gibberellins, Vol. 2, pp. 1–55. New York: Praeger.Google Scholar
  135. Stoddart, J. L., 1984: Growth and gibberellin-A1 metabolism in normal and gibberellin-insensitive (Rht 3) wheat (Triticum aestivum L.) seedlings. Planta 161, 432–438.Google Scholar
  136. Stoddart, J. L., Venis, M. A., 1980: Molecular and subcellular aspects of hormone action. In: MacMillan, J. (ed.). Hormonal Regulation of Development. I. Molecular Aspects of Plant Hormones (Encyclopaedia of Plant Physiology, New Series, Vol. 9 ), pp. 445–510. Berlin — Heidelberg — New York: Springer-Verlag.Google Scholar
  137. Suge, H., 1972: Effect of uzu (uz) gene on the level of endogenous gibberellins in barley. Jpn. J. Genet 47, 423–430.Google Scholar
  138. Suge, H., 1978: The genetic control of gibberellin production in rice. Jpn. J. Genet. 53, 199–207.Google Scholar
  139. Suge, H., 1979: Gibberellin relationships in a dwarf mutant of sweet potato. Jpn. J. Genet. 54, 35–42.Google Scholar
  140. Suge, H., 1983: Gibberellin relationships in a dwarf mutant of barley: brachytic (br 2). Jpn. J. Genet. 58, 555–566.Google Scholar
  141. Suge, H. Murakami, Y., 1968: Occurrence of a rice mutant deficient in gibberel- lin-like substances. Plant Cell Physiol. 9, 411–414.Google Scholar
  142. Suttle, J. C., Zeevaart, J. A. D., 1979: Stem growth, flower formation and endogenous gibberellins in a normal and a dwarf strain of Silene armeria. Planta 145, 175–180.Google Scholar
  143. Suzuki, Y., Kurogochi, S., Murofushi, N., Ota, Y, Takahashi, N., 1981: Seasonal changes of GA1, GA19 and abscisic acid in three rice cultivars. Plant Cell Physiol. 22, 1085–1093.Google Scholar
  144. Trewavas, A., 1981: How do plant growth substances work? Plant Cell Environ. 4, 203–228.Google Scholar
  145. Vanderhoef, L. N., Kosuge, T., 1984: The molecular biology of plant hormone action: research directions of the future (Workshop summaries — II), p. 40. Rockville: Am. Soc. Plant Physiol.Google Scholar
  146. Wareing, P. P., Seth, A. K., 1967: Aging and senescence in the whole plant. Symp. Soc. Exp. Biol. 21, 543–558.PubMedGoogle Scholar
  147. Weber, V. E., Gottschalk, W., 1973: Die Beziehungen zwischen Zellgröße und Internodienlänge bei strahleninduzierten Pisum-Mutanten. Beitr. Biol. Pflanz. 49, 101–126.Google Scholar
  148. Wellensiek, S. J., 1969: The physiological effects of flower forming genes in peas. Z. Pflanzenphysiol. 60, 1388–1402.Google Scholar
  149. Wellensiek, S. J., 1976: A genetical look at flower formation in Silene armeria L. In: Jacques, R. (ed.), Etudes de Biologie Végétale, Hommage au Professor Pierre Chouard, pp. 301–312. Paris: Louis-Jean.Google Scholar
  150. Wylie, A., Ryugo, K., 1971: Diffusible and extractable growth regulators in normal and dwarf shoot apices of peach. Prunus persica Botsch. Plant Physiol. 48, 91–93.PubMedGoogle Scholar
  151. Zeevaart, J. A. D., 1971: Effects of photoperiod on growth rate and endogenous gibberellins in the long-day rosette plant spinach. Plant Physiol. 47, 821–827.PubMedGoogle Scholar
  152. Zeevaart, J. A. D., 1983: Gibberellins and flowering. In: Crozier, A. (ed.), The Bio-chemistry and Physiology of Gibberellins, Vol. 2, pp. 333–374. New York: Praeger.Google Scholar
  153. Zeevaart, J. A. D., 1984: Gibberellins in single gene dwarf mutants of tomato. Plant Physiol. Suppl. 75, 186.Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • James B. Reid
    • 1
  1. 1.Department of BotanyUniversity of TasmaniaHobartAustralia

Personalised recommendations