Advertisement

Agroinfection

  • Nigel Grimsley
  • David Bisaro
Part of the Plant Gene Research book series (GENE)

Abstract

Most plant viruses are transmitted in nature by invertebrate vectors, commonly either insects or nematodes, which have previously fed on infected plants. While it is sometimes desirable to use natural routes of infection in studies in which an understanding of virus ecology or epidemiology is the aim, these methods may be inconvenient for other types of experiments. Vector stocks may be difficult to maintain, and their introduction to plants may be difficult to perform in a controlled manner. It is also impossible to determine the number of virus particles which constitutes the inoculum. Mechanical inoculation of plants with purified virus preparations or isolated viral nucleic acid is often an effective alternative and has the advantage of being quantitative. However, some viruses are intractable in this regard and are mechanically transmitted to their host plants either poorly or not at all. The same is true for the isolated nucleic acid of certain viruses, whether in native or cloned form. The reasons for this are perhaps many, and could include such factors as the inability of the virus or nucleic acid to enter cells, or an inability to replicate in or move through those cell types which are most likely to receive infectious virus particles or nucleic acid during mechanical abrasion of the leaf.

Keywords

Cucumber Mosaic Virus Cauliflower Mosaic Virus Maize Streak Virus Potato Spindle Tuber Viroid Tomato Golden Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, P. P., Nelson, R. S., De., B., Hoffmann, N., Rogers, S. G., Fraley, R. T., Beachy, R. N., 1986: Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.PubMedCrossRefGoogle Scholar
  2. Baulcombe, D. C., Saunders, G. R, Bevan, M. W. Mayo, M. A., Harrison, B. D., 1986: Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321, 446–449.CrossRefGoogle Scholar
  3. Beachy, R. N., Abel, P. P., Nelson, R. S., Rogers, S. G., Fraley, R. T., 1986: Transgenic plants that express the coat protein gene of TMV are resistant to infection by TMV. In: Molecular Strategies for Crop Protection (UCLA Symposium). In press.Google Scholar
  4. Bevan, M. W., Mason, S. E., Goelet, P., 1985: Expression of tobacco mosaic virus coat protein by a cauliflower mosaic virus promoter in plants transformed by Agrobacterium. EMBO J. 4, 1921–1926.PubMedGoogle Scholar
  5. Bisaro, D. M. Hamilton, W. D. O., Coutts, R. H. A, Buck, K. W., 1982: Molecular cloning and characterization of the two DNA components of tomato golden mosaic virus. Nucl. Acids Res. 10, 4913–4922.PubMedCrossRefGoogle Scholar
  6. Bock, K. R, 1982: Geminivirus diseases in tropical crops. Plant Disease 66, 266–270.CrossRefGoogle Scholar
  7. Branch A. D., Robertson, H. D., 1984: A replication cycle for viroids and other small infectious RNAs. Science 223, 450–455.PubMedCrossRefGoogle Scholar
  8. Coutts, R. H. A., Buck, K. W., 1985: DNA and RNA polymerase activities of nuclei and hypotonic extracts of nuclei isolated from tomato golden mosaic virus infected tobacco leaves. Nucl. Acids Res. 13, 7881–7897.PubMedCrossRefGoogle Scholar
  9. Covey, S. N., Hull, R, 1985: Advances in Cauliflower Mosaic Virus Research. Oxford Surveys of Plant Molecular and Cell Biology, 2, 339–346.Google Scholar
  10. Covey, S. N., Lomonossoff. G. P., Hull, R, 1981: Characterisation of cauliflower mosaic virus DNA sequences which encode major polyadenylated transcripts. Nucl. Acids Res. 9, 6735–6747.PubMedCrossRefGoogle Scholar
  11. Cress, D. E., Kiefer, M. C., Owens, R. A., 1983: Construction of infectious potato spindle tuber viroid cDNA clones. Nucl. Acids Res. 11, 6821–6835.PubMedCrossRefGoogle Scholar
  12. Daubert, S., Shepherd, R J., Gardner, R. C., 1983. Insertional mutagenesis of cauliflower mosaic virus genome. Gene 25, 201–208.PubMedCrossRefGoogle Scholar
  13. DeBlock, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., Zambryski, P., 1984: Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3, 1681–1689.PubMedGoogle Scholar
  14. Dixon, L. K., Koenig, I., Hohn, T., 1983: Mutagenesis of cauliflower mosaic virus. Gene 25, 189–199.PubMedCrossRefGoogle Scholar
  15. Ecker, J. R., Davis, R. W., 1986: Inhibition of gene expression in plant cells by expression of antisense RNA. Proc. Natl. Acad. Sci. U.S.A. 83, 5372–5376.PubMedCrossRefGoogle Scholar
  16. Fraley, R. T., Horsch, R. B., Matzke, A., Chilton, M.-D., Chilton, W. S., Sanders, P. R, 1984: In vitro transformation of petunia cells by an improved method of co-cultivation with A. tumefaciens strains. Plant Mol. Biol. 3, 371–378.Google Scholar
  17. Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz, D., Flick, J. S., Fink, C. L., Hoffmann, N. L., Sanders, P. R., 1985: The SEY system: A new disarmed Ti plasmid vector for plant transformation. Bio/technology 3, 629–635.CrossRefGoogle Scholar
  18. Francki, R. I. B., Milne, R. G., Hatta, T., 1985: Geminivirus group. In: “Atlas of Plant Viruses”, Vol. 1. CRC Press, Boca Raton, Florida, pp. 33–46.Google Scholar
  19. Fromm, M. E., Taylor, L. P., Walbot, V., 1986: Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.PubMedCrossRefGoogle Scholar
  20. Gardner, R. C., Knauf, V. C., 1986 a: Transfer of Agrobacterium DNA to plants requires a T-DNA border but not the virE locus. Science 231, 725–727.PubMedCrossRefGoogle Scholar
  21. Gardner, R. C., Chanoles, K. R., Owens, R. A., 1986 b: Potato spindle tuber viroid infections mediated by the Ti plasmid of Agrobacterium tumefaciens. Plant Mol. Biol. 6, 221–228.CrossRefGoogle Scholar
  22. Gheysen, G., Dhaese, P., Van Montagu, M., 1985: In “Genetic Flux in Plants”, Hohn, B., Dennis, E. S., (eds.). Wien - New York: Springer.Google Scholar
  23. Goodman, R. M., 1981: Geminiviruses. J. Gen. Virol. 54, 9–21.CrossRefGoogle Scholar
  24. Grimsley, N., Hohn, B., Hohn, T., Waiden, R. M., 1986a: Agroinfection, an alternative route for plant virus infection by using Ti plasmid. Proc. Nat. Acad. Sei. U.S.A. 83, 3282–3286.CrossRefGoogle Scholar
  25. Grimsley, N., Hohn, T., Hohn, B., 1986b: Recombination in a plant virus: template-switching in cauliflower mosaic virus. EMBO J. 5, 641–646.PubMedGoogle Scholar
  26. Grimsley, N., Hohn, T., Davies, J. W., Hohn, B., 1987: Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 324, 177–179.Google Scholar
  27. Guilley, H., Dudley, R. K., Jonard, G., Balazs, E., Richards, K. E., 1982: Transcription of cauliflower mosaic virus DNA: detection of promoter sequences, and characterisation of transcripts. Cell 30, 763–773.PubMedCrossRefGoogle Scholar
  28. Hamilton, W. D. O., Sanders, R. C., Coutts, R. H. A., Buck, K. W., 1981: Characterization of tomato golden mosaic virus as a geminivirus. FEMS Microbiology Letters 11, 263–267.CrossRefGoogle Scholar
  29. Hamilton, W. D. O., Bisaro, D. M., Buck, K. W., 1982: Identification of novel DNA forms in tomato golden mosaic virus infected tissue: Evidence for a two component viral genome. Nucl. Acids Res. 10, 4901–4912.PubMedCrossRefGoogle Scholar
  30. Hamilton, W. D. O., Bisaro, D. M., Coutts, R. H. A., Buck, K. W., 1983: Demonstration of the bipartite nature of the genome of a single-stranded plant virus by infection with the cloned DNA components. Nucl. Acids Res. 11, 7387–7396.PubMedCrossRefGoogle Scholar
  31. Hamilton, W. D. O., Stein, V. E., Coutts, R. H. A., Buck, K. W., 1984: Complete nucleotide sequence of the infectious cloned DNA components to tomato golden mosaic virus: Potential coding regions and regulatory sequences. EMBO J. 3, 2197–2205.PubMedGoogle Scholar
  32. Hernalsteens, J. P., Thia-Toong, L., Schell, J., Van Montagu, M., 1984: An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J. 3, 3039–3041.PubMedGoogle Scholar
  33. Hille, J., Dekker, M., Luttighuis, H., van Kämmen, A., Zabel, P., 1986: Detection of T-DNA transfer to plant cells by A. tumefaciens virulence mutants using agroinfection. Mol. gen. Genet. 205, 411–416.Google Scholar
  34. Hohn, T., Hohn, B., Pfeiffer, P. 1985: Reverse transcription in cauliflower mosaic virus. Trends Biochem. Sei. 5, 205–209.Google Scholar
  35. Hooykaas-Van Slogteren, G. M. S., Hooykas, P. J. J., Schilperoort, R. A., 1984: Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311, 763–764.CrossRefGoogle Scholar
  36. Horsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, P. R., Lloyd, A. R., Hoffmann, N. L., 1984: Inheritance of functional foreign genes in plants. Science 223, 496–498.PubMedCrossRefGoogle Scholar
  37. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Wallroth, M., Eicholtz, D., Rogers, S. G., Fraley, R. T., 1985: A simple and general method for transferring genes into plants. Science 227, 1229–1231.CrossRefGoogle Scholar
  38. Howell, S. H., Walker, L. L., Waiden, R. M., 1982: Rescue of in vitro generated mutants of cloned CaMV genome on infected plants. Nature (London) 293, 485–486.Google Scholar
  39. Howell, S. H., 1985: The molecular biology of plant DNA viruses. CRC Critical Reviews in Plant Sciences 2, 287–316.CrossRefGoogle Scholar
  40. Hutchins, C. J., Keese, P., Visavader, J. E., Rathjen, P. D., Mclnnes, J. L., Symons, R. H., 1985: Comparison of multimeric plus and minus forms of viroids and virusoids. Plant Mol. Biol. 4, 293–304.Google Scholar
  41. Ishikawa, M., Meshi, T., Ohno, T., Okada, Y., Sano, T., Ueda, I., Shikata, E., 1984: A revised replication cycle for viroids: the role of longer than unit length RNA in viroid replication.Google Scholar
  42. Kaper, J. M., Tousignant, M. E., Lot, H., 1976: A low molecular weight replicating RNA associated with a divided genome plant virus: defective or satellite RNA? Biochem. Biophys. Res. Commun. 72, 1237–1243.Google Scholar
  43. Koukoliovä-Nicola, Z., Shillito, R. D., Hohn, B., Wang, K., Van Montagu, M., Zambryski, P., 1985: Involvement of circular intermediates in the transfer of T-DNA from Agrobacterium tumefaciens to plant cells. Nature (London) 313, 191–196.CrossRefGoogle Scholar
  44. Lebeurier, G., Hirth, L., Hohn, B., Hohn, T., 1982: In vivo recombination of cauliflower mosaic virus DNA. Proc. Nat. Acad. Sei. U.S.A.79, 2932–2936.CrossRefGoogle Scholar
  45. Matyis, J. G., Silva, D. M., Oliveira, A. R., Costa, A. S., 1975: Purificaco e morfologia do virus do mosaico dourado de tomateiro. Summa Phytopathol. 1, 267–274.Google Scholar
  46. Mossop, D. W., Francki, R. I. B., 1979: Comparative studies of two satellite RNAs of cucumber mosaic virus. Virology 95, 395–404.PubMedCrossRefGoogle Scholar
  47. Mullineaux, P. M., Donson, J., Morris-Krsinich, B. A. M., Boulton, M. I., Davies, J. W., 1984: The nucleotide sequence of maize streak virus DNA. EMBO J. 3, 3062–3068.Google Scholar
  48. Odell, J. T., Dudley, R. K., Howell, S. H., 1981: Structure of the 19 S RNA transcript encoded by the cauliflower mosaic virus genome. Virology 111, 377–385.PubMedCrossRefGoogle Scholar
  49. Odell, J. T., Nagy, F., Chua, N.-H., 1985: Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promotor. Nature 313, 810–812.PubMedCrossRefGoogle Scholar
  50. Ow, D. W., Wood, K. V., DeLuca, M., de Wet, J. R., Helsinki, D. R., Howell, S. H., 1986: Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.Google Scholar
  51. Paszkowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., Potrykus, I., 1984: Direct gene transfer to plants. EMBO J. 3, 2717–2722.PubMedGoogle Scholar
  52. Peralta, E. G., Heimiss, R., Ream, W., 1986: Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO J. 5, 1137–1142.Google Scholar
  53. Poison, A., Von Wechmar, M. B., 1980: A Novel Way to Transmit Plant Viruses. J. Gen. Virol. 51, 179–181.CrossRefGoogle Scholar
  54. Potrykus, I., Saul, M. W., Petruska, J., Paszkowski, J., Shillito, R. D., 1985: Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199, 183–188.CrossRefGoogle Scholar
  55. Rogers, S. G., Bisaro, D. M., Horsch, R. B., Fraley, R. T., Hoffman, N. L., Brand, L., Elmer, J. S., Lloyd, A. M., 1986: Tomato golden mosaic virus A component DNA replicates autonomously in transgenic plants. Cell 45, 593–600.PubMedCrossRefGoogle Scholar
  56. Sastry, G. R. K., Miles, C. A., Miller, I. S., Borland, P. A., Saeed, N., May, C. A., 1986: Tryptophan auxotrophs for increasing safety of Agrobacterium Ti-based recombinant plasmid work. Plant Mol. Biol. Rep. 4, 93–97.Google Scholar
  57. Shaw, W., 1975: Chloramphenicol acetyltransferase from resistant bacteria. Methods Enzymol. 53, 737–754.CrossRefGoogle Scholar
  58. Shewmaker, C. K., Caton, J. R., Houck, C. M., Gardner, R. C., 1985: Transcription of cauliflower mosaic virus integrated into plant genomes. Virology 140, 281–288.PubMedCrossRefGoogle Scholar
  59. Stachel, S. E., Timmerman, B., Zambryski, P., 1986: Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322, 706–712.CrossRefGoogle Scholar
  60. Stanley, D. M., 1985: The molecular biology of geminiviruses. Adv. Virus Res. 30, 139–177.PubMedCrossRefGoogle Scholar
  61. Tabler, M., Sanger, H. L., 1984: Cloned single- and double-stranded DNA copies of potato spindle tuber viroid (PSTV) RNA and co-inoculated subgenomic DNA fragments are infectious. EMBO J. 3, 3055–3062.PubMedGoogle Scholar
  62. Walden, R. M., Howell, S. H., 1983: Uncut recombinant plasmids bearing nested cauliflower mosaic virus genomes infect plants by intragenomic recombination. Plant Mol. Biol. 2, 927–937.Google Scholar
  63. Waterworth, H. E., Kaper, J. M., Tousignant, M. E., 1979: CARNA 5, the small cucumber mosaic virus-dependent replicating RNA, regulates disease expression. Science 204, 845–847.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1987

Authors and Affiliations

  • Nigel Grimsley
    • 1
  • David Bisaro
    • 2
  1. 1.Friedrich Miescher-InstitutBasleSwitzerland
  2. 2.Department of Botany and MicrobiologyAuburn UniversityAuburnUSA

Personalised recommendations