Transient Expression of DNA in Plant Cells

  • Michael Fromm
  • Virginia Walbot
Part of the Plant Gene Research book series (GENE)


Techniques for transferring DNA into cells often introduce much more DNA into the cell nucleus than the amount that becomes stably incorporated into the host’s chromosomes. If non-replicating, this extrachromosomal DNA is lost over a one to two week period as a result of dilution by cell division and susceptibility to intracellular degradation. During its transient existence in the cell, the extrachromosomal DNA is known to be transcriptionally active because typically 1 to 10% of the cells express the introduced DNA but only 0.01 to 0.1% of the cells stably integrate and maintain the introduced gene. This “transient expression” is extremely useful in studying gene structure and function relationships for a number of reasons. The most important is the speed with which results on gene expression can be obtained. The transfected cells are typically ready for analysis of gene expression 24 to 48 hours after DNA transfer. A second important aspect is the lack of host chromosomal flanking sequences that may influence gene expression. Quite often there is variation in gene expression in stable transformants depending on the site of insertion; such variation can be greater than the variation between the gene structures being compared (Odell et al., 1985; Velten et al., 1984). Transient DNA is free of host flanking sequences allowing a much simpler comparison of normal and altered gene structures.


Transient Expression Cauliflower Mosaic Virus Transient Assay Plant Protoplast Tobacco Protoplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Casadaban, M., Martinez-Arias, A., Shapira, S. K., Chou, J., 1983: Beta-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Meth. Enz. 100, 293–308.Google Scholar
  2. Danner, D., Leder, P., 1985: role of an RNA cleavage/poly(A) addition site in the production of membrane-bound and secreted iM mRNA. Proc. Natl. Acad. Sei., U.S.A. 82, 8658–8662.Google Scholar
  3. Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., Goodman, H. M., 1982: No- paline synthase: Transcript mapping and DNA sequence. J. Molec. Appl. Genet. 1, 561–573.Google Scholar
  4. Deshayes, A., Herrera-Estrella, L., Caboche, M., 1985: Liposome-mediated transformation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. EMBO J. 4, 2731–2737.PubMedGoogle Scholar
  5. Ecker, J. and Davis, R., 1986: Inhibition of gene expression in plant cells by expression of antisense RNA. Proc. Natl. Acad. Sei., U.S.A. 83, 5372–5376.Google Scholar
  6. Foster, J., Stafford, J., Queen, C., 1985: An immunoglobin promoter displays cell-type specificity independently of the enhancer. Nature 315, 423–425.PubMedCrossRefGoogle Scholar
  7. Fraley, R. T., Horsch, R. B., Matzke, A., Chilton, M. D., Sanders, P. R., 1984: In vitro transformation of petunia cells by an improved method of co-cultivation with A. tumefaciens. Plant Mol. Biol. 3, 371–378.Google Scholar
  8. Fromm, M., Berg, P., 1982: Deletion mapping of DNA regions required for SV40 early region promoter function in vivo. J. Molec. Appl. Gent. 1, 457–481.Google Scholar
  9. Fromm, M., Taylor, L. P., Walbot, V., 1985: Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sei., U.S.A. 82, 5824–5828.Google Scholar
  10. Fromm, M., Taylor, L. P., Walbot, V., 1986 a: Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.PubMedCrossRefGoogle Scholar
  11. Fromm, M., Taylor, L. P., Walbot, V., 1986 a: Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.PubMedCrossRefGoogle Scholar
  12. Hain, R., Stabel, P., Czernilofsky, A. P., Steinbiss, H. H., Herrera-Estrella, L., Schell, J., 1985: Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. J. Mol. Gen. Genet. 199, 161–168.Google Scholar
  13. Helmer, G. Casadaban, M., Bevan, M., Kayes, L., Chilton, M. D., 1984: A new chimaeric gene as a marker for plant transformation. Bio/Technology 2, 520–527.CrossRefGoogle Scholar
  14. Izant, J. G., Weintraub, H., 1985: Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science 229, 345–352.PubMedCrossRefGoogle Scholar
  15. Jacobsen, J. V., Beach, L. R., 1985: control of transcription of alpha-amylase and rRNA genes in barley aleurone protoplasts by gibberellin and abscisic acid. Nature 316, 275–277.Google Scholar
  16. Johansen, H., Schumperli, D., Rosenberg, M., 1984: Affecting gene expression by altering the length and sequence of the 5’ leader. Proc. Natl. Acad. Sei., U.S.A. 81, 7698–7702.Google Scholar
  17. Kozak, M., 1986: Point mutations define a sequence flanking the AUG initiator codon that modulated translation by eukaryotic ribosomes. Cell 44, 283–292.PubMedCrossRefGoogle Scholar
  18. Crens, F. H., Molendijk, L., Wullems, G. J., Schilperoort, R. A., 1982: In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296, 12–1A.Google Scholar
  19. Lebeurier, G., Hirth, L., Hohn, B., Hohn, T., 1982: In vivo recombination of cauliflower mosaic virus DNA. Proc. Natl. Acad. Sci., U.S.A. 79, 2932–2936.Google Scholar
  20. Lebkowski, J. S., Clancy, S. Miller, J. H., Calos, M. P., 1985: The lac I shuttle: rapid analysis of the mutagenic specificity of ultraviolet light in human cells. Proc. Natl. Acad. Sci., U.S.A. 82, 8606–8610.Google Scholar
  21. Lewis, E. D., Manley, J. L., 1985: Repression of simian virus 40 early transcription by viral DNA replication in human 293 cells. Nature 317, 172–175.PubMedCrossRefGoogle Scholar
  22. Myers, R., Tjian, R., 1980: Construction and analysis of simian virus 40 origins defective in tumor antigen binding and DNA replication. Proc. Natl. Acad. Sci., U.S.A. 77, 6491–6495.Google Scholar
  23. McKnight, S. L., Gavis, E. R., Kingsbury, R., Axel, R., 1981: Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25, 385–398.PubMedCrossRefGoogle Scholar
  24. Mosthaf, L., Pawlita, M., Gruss, P., 1985: A viral enhancer specifically active in human haematopoietic cells. Nature 315, 597–600.PubMedCrossRefGoogle Scholar
  25. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P. H., 1982: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.PubMedGoogle Scholar
  26. Odell, J. T., Nagy, F., Chua, N.-H., 1985: Identification of DNA sequences required for activity of the cauliflower mosaic virus 35 S promoter. Nature 313, 810–812.PubMedCrossRefGoogle Scholar
  27. Potrykus, I., Saul, M. W., Petruska, J., Paskowski, J., Shillito, R. D., 1985: Direct gene transfer to cells of a granimaceous monocot. Mol. Gen. Genet. 199, 183–188.Google Scholar
  28. Potter, H., Weir, L., Leder, P., 1984: Enhancer-dependent expression of human kappa immunolglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci., U.S.A. 81, 7161–7165.Google Scholar
  29. Rio, D. C., Laski, F. A., Rubin, G. M., 1986: Identification and immunochemical analysis of biologically active Drosophilia Pelementtransposase. Cell 44, 21–32.PubMedCrossRefGoogle Scholar
  30. Shillito, R. D., Saul, M. W., Paskowski, S. J., Muller, M., Potrykus, I., 1985: High efficiency direct gene transfer to plants. Bio/Technology 3, 1099–1103.CrossRefGoogle Scholar
  31. Smithies, O. Gregg, R. G., Boggs, S. S., Koralewski, M. A., Kucherlapati, R. S., 1985: Insertion fo DNA sequence into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234.PubMedCrossRefGoogle Scholar
  32. Subramani, S., Berg, P., 1983: Homologous and non-homologous recombination in monkey cells. Mol. Cell. Biol. 3, 1040–1052.Google Scholar
  33. Tanaka, N., Ikesami, M., Hohn, T., Matsui, C., Watanabe, I., 1984: E. coli Zspheroplast-mediated transfer of cloned cauliflower mosaic virus DNA into plant protoplasts. Mol. Gen. Genet. 195, 378–380.Google Scholar
  34. Velcich, A., Ziff, E., 1985: Adenovirus Ela proteins repress transcription from the SV40 early promoter. Cell 40, 705–716.PubMedCrossRefGoogle Scholar
  35. Velten, J., Velten, L., Hain, R., Schell, J., 1984: Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J. 3, 2723–2730.PubMedGoogle Scholar
  36. Walden, R. M., Howell, S. H., 1983: Uncut recombinant plasmids bearing nested cauliflower mosaic virus genomes infect plants by intragenomic recombination. Plant Mol. Biol. 2, 27–31.Google Scholar
  37. Wieringa, B., Hofer, E., Weissmann, C., 1984: A minimal intron length but no specific internal sequence is required for splicing the large rabbit beta-globin intron. Cell 37, 915–925.PubMedCrossRefGoogle Scholar
  38. Zimmermann, U., Vienken, J., 1982: Electric field induced cell to cell fusion. J. Membrane Biol. 67, 165–182.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1987

Authors and Affiliations

  • Michael Fromm
    • 1
  • Virginia Walbot
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations