Transformation of Chlamydomonas Reinhardtii

  • J.-D. Rochaix
Part of the Plant Gene Research book series (GENE)


A great deal of progress has been achieved during the past years in the transformation of higher plants. In spite of the impressive advances in this field, a major drawback remains the slow growth of these organisms. In most cases it still takes several weeks or even months to regenerate a plant. While higher plants are uniquely suited for developmental studies, lower plants, especially unicellular algae, offer attractive possibilities for investigating basic features of plants such as photosynthesis and chloroplastnucleocytoplasmic interactions. These unicellular organisms grow rapidly and some of them can be manipulated with ease both at the biochemical and genetic level. However, transformation of lower plants is still in its infancy and only limited success has been reported. This article will provide a progress report on the transformation of Chlamydomonas reinhardtii. A short review on this transformation system was published earlier (Rochaix, 1983).


Chloroplast Genome NPTII Gene psbA Gene Physarum Polycephalum Chloroplast Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blanc, H., Dujon, B., 1981: Replication regions of the yeast mitochondrial DNA active in vitro and in yeast transformants. In: Slonimski etal. (eds.), Mitochondrial Genes, Cold Spring Harbor Laboratory Press N. Y., pp. 279–294.Google Scholar
  2. Beach, D., Piper, M., Shall, S., 1980: Isolation of chromosomal origins of repli¬cation in yeast. Nature 284, 185–187.PubMedCrossRefGoogle Scholar
  3. Bennoun, P., Diner, B. A., Wollman, F. A., Schmidt, G., Chua, N. H., 1981: Thyla- koid polypeptides associated with photosystem II in Chlamydomonas reinhardtii: comparison of system II mutants and particles. In: Akoyunoglou, G. (ed.), Photosynthesis III. Structure and Molecular Organisation of the Photo- synthetic apparatus. Balaban International Science Services, Philadelphia, PA, pp. 839–849.Google Scholar
  4. Bennoun, P., Spierer-Herz, M., Erickson, J., Girard-Bascou, J., Pierre, Y., Delosme, M., Rochaix, J.-D., 1986: Characterization of photosystem II mutants of Chlamydomonas reinhardtii lacking the psbA gene. Plant Molec. Biol. 6, 141–160.Google Scholar
  5. Bergmann, P., Schneider, M., Burkard, G., Weil, J. H., Rochaix, J.-D., 1985: Transfer RNA Gene Mapping Studies on Chloroplast DNA from Chlamy¬domonas reinhardtii. Plant Science 39, 133–140.CrossRefGoogle Scholar
  6. Broach, J. R., Li, Y. Y., Feldman, J., Jayaram, M., Abraham, J., Nasmyth, K. A., Hicks, J. B., 1980: Localization and Sequence Analysis of Yeast Origins of DNA replication. Cold Spring Harbor Symp. Quant. Biol. 47, 1165–1173.Google Scholar
  7. Brunke, K. J., Young, E. E., Buchbinder, B. U., Weeks, D. P., 1982: Coordinate regulation of the four tubulin genes of Chlamydomonas reinhardtii. Nucl. Acids Res. 10, 1295–1310.PubMedCrossRefGoogle Scholar
  8. Celniker, S. E., Campbell, J. L., 1982: Yeast DNA replication in vitro: Initiation and Elongation Events Mimic in Vivo Processes. Cell 31, 201–203.PubMedCrossRefGoogle Scholar
  9. Chan, C. S. M., Tye, B. R. K., 1980: Autonomously replicating sequences in Sac- charomyces cerevisiae. Proc. Natl. Acad. Sci., U.S.A. 77, 6329–6333.PubMedCrossRefGoogle Scholar
  10. Claes, H., 1971: Autolysin of the cell wall from the gametes of Chlamydomonas reinhardtii. Arch, für Mikrobiologie 78, 180–188.CrossRefGoogle Scholar
  11. Clarke, L., Carbon, J., 1978: Functional Expression of Cloned Yeast DNA in Escherichia coli: Specific Complementation of Argininosuccinate Lyase (argH) Mutations. J. Mol. Biol. 120, 517–532.PubMedCrossRefGoogle Scholar
  12. Cox, J. C., Bingham, S. E., Bishop, R. J., 1985: Transformation of Chlamydomonas reinhardtii with plasmids conferring antibiotic (Kanamycin) resistance. Abstracts 1st Intl. Congr. Plant Molec. Biol. p. 115.Google Scholar
  13. Davies, D. R., Plaskitt, A., 1971: Genetical and Structural Analysis of Cell Wall formation in Chlamydomonas reinhardtii. Genet. Res. 17, 33–43.CrossRefGoogle Scholar
  14. De Block, M., Schell, J., Van Montagu, M., 1985: Chloroplast transformation by Agrobacterium tumefaciens. EMBO J. 4, 1367–1372.PubMedGoogle Scholar
  15. Dron, M., Rahire, M., Rochaix, J.-D., Mets, L., 1983: First DNA Sequence of a Chloroplast Mutation. A Missense Alteration in the Ribulosebisphosphate Car-boxylase Large Subunit Gene. Plasmid 9, 32–324.CrossRefGoogle Scholar
  16. Erickson, J. M., Rahire, M., Rochaix, J.-D., 1984: Chlamydomonas reinhardtii gens for the 32000 mol wt protein of photosystem II contains four large introns and is located entirely within the chloroplast inverted repeat. EMBO J. 3, 2753–2762.Google Scholar
  17. Erickson, J. M., Rahire, M., Rochaix, J.-D., Mets, L., 1985: Herbicide Resistance and Cross-Resistance: Changes at three distinct Sites in the Herbicide-Binding Protein. Science 228, 204–207.PubMedCrossRefGoogle Scholar
  18. Erickson, J. M., Rahire, M., Malnoe, P., Girard-Bascou, J., Pierre, Y., Bennoun, P., Rochaix, J.-D., 1986: Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression. EMBO J., submitted.Google Scholar
  19. Ferris, P. J., Vogt, V. M., 1982: Structure of the Central Spacer Region of Extra- chromosomal Ribosomal DNA in Physarum polycephalum. J. Mol. Biol. 159, 359–381.PubMedCrossRefGoogle Scholar
  20. Galloway, R., Mets, L., 1984: Atrazine, bromacil and diuron resistance in Chlamy-domonas: A single non-mendelian genetic locus controls the structure of the thylakoid binding site. Plant Physiol. 74, 469–474.PubMedCrossRefGoogle Scholar
  21. Gillham, N. W., 1965: Induction of chromosomal and non chromosomal mutations in Chlamydomonas reinhardtii with N-methyl-N’-Nitro-N-Nitrosoguanidine. Genetics 52, 529–537.PubMedGoogle Scholar
  22. Gillham, N. W., 1978: Organelle Heredity, Raven, New York.Google Scholar
  23. Goldschmidt-Clermont, M ., 1986: The two genes for the small subunit of RuBP Carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii. Plant Molec. Biol. 6, 13–21.CrossRefGoogle Scholar
  24. Harris, E. H., 1982: Nuclear gene Loci of Chlamydomonas reinhardtii. In: O’Brien, S. J. (ed.), Genetic Maps, Vol. 2, pp. 168–174, Laboratory of Viral Carcino-genesis, National Cancer Institute, NIH, Frederick, MD 21701.Google Scholar
  25. Hasnain, S. E., Manavathu, E. K., Leung, W. L., 1985: DNA mediated Transformation of Chlamydomonas reinhardtii cells: Use of Aminoglycoside 3’–phos-photransferase as a selectable marker. Mol. Cell Biol. 5, 3647–3650.PubMedGoogle Scholar
  26. Hsiao, C., Carbon, J. M., 1979: High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc. Natl. Acad. Sci., U.S.A. 76, 3829–3833.PubMedCrossRefGoogle Scholar
  27. Hyman, B. C., Cramer, J. H., Rownd, R. H., 1982: Properties of a Saccharomyces cerevisiae mtDNA segment conferring high-frequency yeast transformation. Proc. Natl. Acad. Sci., U.S.A. 79, 1578–1582.PubMedCrossRefGoogle Scholar
  28. Koyo, H., Greenberg, B. D., Sugino, A., 1981: Yeast 2 μ plasmid DNA replication in vitro: Origin and direction. Proc. Natl. Acad. Sci., U.S.A. 78, 7261–7265.CrossRefGoogle Scholar
  29. Künzler, P., 1985: The linear extrachromosomal DNA of Physarum polycephalum replicates and is maintained under non selective conditions in two different lower eukaryotes. Nucl. Acids Res. 13, 1855–1869.PubMedCrossRefGoogle Scholar
  30. Lemieux, C., Turmel, M., Lee, R. W., 1980: Characterization of chloroplast DNA in Chlamydomonas eugametes and C. moewusii and its inheritance in hybrid progeny. Curr. Genet. 2, 139–147.CrossRefGoogle Scholar
  31. Loppes, R., Matagne, R., Strijkert, P. J., 1972: Complementation at the ARG7 locus in Chlamydomonas reinhardtii. Heredity 28, 239–251.CrossRefGoogle Scholar
  32. Loppes, R., Matagne, R., 1972: Allelic complementation between ARG7 mutants in Chlamydomonas reinhardtii. Genetica [The Hague] 43, 422–430.CrossRefGoogle Scholar
  33. Loppes, R., Denis, C., 1983: Chloroplast and Nuclear DNA Fragments from Chlamydomonas Promoting High Frequency Transformation of Yeast. Curr. Genet. 7, 473–480.CrossRefGoogle Scholar
  34. Mayfield, S. P., Bennoun, P., Rochaix, J.-D., 1987 a: Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of photo- system II particles in Chlamydomonas reinhardtii. EMBO J. 6, 313–318.Google Scholar
  35. Mayfield, S. P., Bennoun, P., Rochaix, J.-D., 1987a: Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of photo- system II particles in Chlamydomonas reinhardtii. EMBO J. 6, 313–318.Google Scholar
  36. Mets, L., 1980: Uniparental inheritance of chloroplast DNA sequences in interspe¬cific hybrids of Chlamydomonas. Curr. Genet. 2, 131–138.CrossRefGoogle Scholar
  37. Myers, A. M., Grant, D. M, Rabert, D. K., Harris, E. H., Boynton, J. E., Gillham, N. W., 1982: Mutants of Chlamydomonas reinhardtii with physical alterations in their chloroplast DNA. Plasmid 7, 133–151.PubMedCrossRefGoogle Scholar
  38. Newlon, C. S., Burke, W., 1980: Replication of small chromosomal DNAs in yeast. In: Alberts, B., Fox, C. C. (eds.), ICN-UCLA Symposia on Molecular Cellular Biology 19B; pp. 339–409, Academic Press, N. Y.Google Scholar
  39. Newlon, C. S., Devenish, R. J., Suci, P. A., Roffis, C. J., 1981: Replication origins used in Vivo in yeast. In: Rays, D. S., Fox, C. C. (eds.), ICN-UCLA Symposia on Molecular and Cellular Biology 22, pp. 501–506, Academic Press, N. Y.Google Scholar
  40. Rochaix, J.-D., 1978: Restriction Endonuclease Map of the Chloroplast DNA of Chlamydomonas reinhardtii. J. Mol. Biol. 126, 597–617.PubMedCrossRefGoogle Scholar
  41. Rochaix, J.-D., 1981: Organization, function and expression of the chloroplast DNA of Chlamydomonas reinhardtii. Experientia 37, 323–332.CrossRefGoogle Scholar
  42. Rochaix, J.-D ., 1983: Transformation in the green Alga Chlamydomonas reinhardtii. In: Genetic Engineering Vol. 6. Setlow, J. K. and Hollaender, A. (eds.), Plenum Press, New York - London.Google Scholar
  43. Rochaix, J.-D., Malnoe, P. M., 1978: Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardtii. Cell 15, 661–670.PubMedCrossRefGoogle Scholar
  44. Rochaix, J.-D., van Dillewijn, J., 1982: Transformation of the green alga Chlamy¬domonas reinhardtii with yeast DNA. Nature 296, 70–72.PubMedCrossRefGoogle Scholar
  45. Rochaix, J.-D., Dron, M., Schneider, M., Vallet, J. M., Erickson, J., 1983: Chlamy¬domonas reinhardtii: A model system for studying the biosynthesis of the photo- synthetic apparatus. Downey etal. (eds.). In: Advances in Gene Technology: Molecular Genetics of Plants and Animals, Miami Winter Symposia, vol. 20, pp. 81–100, Academic Press.Google Scholar
  46. Rochaix, J.-D., van Dillewijn, J., Rahire, M., 1984: Construction and Characteri¬zation of Autonomously Replicating Plasmids in the Green Unicellular Alga Chlamydomonas reinhardtii. Cell 36, 925–931.PubMedCrossRefGoogle Scholar
  47. Sheperd, H. S., Ledoigt, G., Howell, S. H., 1983: Regulation of light-harvesting chlorophyll-binding protein (LHCP) mRNA accumulation during the cell cycle in Chlamydomonas reinhardtii. Cell 32, 99–107.CrossRefGoogle Scholar
  48. Silflow, C. D., Rosenbaum, J. L., 1981f: Multiple a and ß tubulin genes in Chlamy-domonas and regulation of tubulin mRNS levels after deflagellation. Cell 24, 81–88.CrossRefGoogle Scholar
  49. Spreitzer, R. J., Mets, L., 1980: Non-Mendelian mutation affecting ribulose 1,5-bis- phosphate carboxylase structure and activity. Nature 285, 114–115.CrossRefGoogle Scholar
  50. Spreitzer, R. J., Ogren, W. L., 1983: Rapid recovery of chloroplast mutations affecting ribulosebisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci., U.S.A. 80, 6293–6297.PubMedCrossRefGoogle Scholar
  51. Spreitzer, R. J., Goldschmidt-Clermont, M., Rahire, M., Rochaix, J.-D., 1985: Non-sense mutations in the Chlamydomonas chloroplast gene that codes for the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc. Natl. Acad. Sci., U.S.A. 82, 5460 - 5464.PubMedCrossRefGoogle Scholar
  52. Stern, D. B., Lonsdale, D. M., 1982: Mitochondrial and chloroplast genomes of maize have a 12 kb DNA sequence in common. Nature 299, 698–702.PubMedCrossRefGoogle Scholar
  53. Stinchcomb, D. T., Struhl, K., Davis, R. W., 1979: Isolation and characterization of a yeast chromosomal replicator. Nature 282, 39–43.PubMedCrossRefGoogle Scholar
  54. Struhl, K., Stinchcomb, D. T., Scherer, S., Davis, R. W., 1979: High frequency trans-formation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci., U.S.A. 76, 1035–1079.PubMedCrossRefGoogle Scholar
  55. Timmis, J. N., Scott, N. S., 1983: Sequence homology between spinach nuclear and chloroplast genomes. Nature 305, 65–67.CrossRefGoogle Scholar
  56. Tudzynski, P., Esser, K., 1983: Nuclear Association in Yeast of a Hybrid Vector Containing Mitochondrial DNA. Curr. Genet. 7, 165–166.CrossRefGoogle Scholar
  57. Turmel, M., Bellemare, G., Lee, R. W., Lemieux, C., 1986: A linear DNA molecule of 5.9 kb is highly homologous to the chloroplast DNA in the green alga Chlamydomonas moewusii. Plant Molec. Biol. 6, 313–319.Google Scholar
  58. Vallet, J. M., Rahire, M., Rochaix, J.-D., 1984: Localization and sequence analysis of chloroplast DNA sequences of Chlamydomonas reinhardtii that promote autonomous replication in yeast. EMBO J. 3, 415–421.PubMedGoogle Scholar
  59. Vallet, J. M., Rochaix, J.-D., 1985: Chloroplast origins of DNA replications are dis¬tinct from chloroplast ARS sequences in two green algae. Curr. Genet. 9, 321–324.CrossRefGoogle Scholar
  60. Waddell, J., Wang, X.-M., Wu, M., 1984: Electron microscopic localization of the chloroplast DNA replicative origins in Chlamydomonas reinhardtii. Nucl. Acids Res. 12, 3842–3856.CrossRefGoogle Scholar
  61. Wang, X.-M., Chang, C. H., Waddell, J., Wu, M., 1984: Cloning and delimiting one chloroplast DNA replicative origin of Chlamydomonas.Google Scholar
  62. Watson, J. C., Surzycki, S. J., 1982: Extensive sequence homolgy in the DNA coding for elongation factor Tu from Escherichia coli and the Chlamydomonas reinhardtii chloroplast. Proc. Natl. Acad. Sci., U.S.A. 79, 2264–2267.PubMedCrossRefGoogle Scholar
  63. Watson, J., Surzycki, S. J., 1983: Both the chloroplast and Nuclear genomes of Chlamydomonas reinhardtii share Homology with Escherichia coli Genes for Transcription and Translational components/Current Genet. 7, 201–210.CrossRefGoogle Scholar
  64. Woessner, J. P., Masson, A., Harris, E. H., Bennoun, P., Gillham, N. W., Boynton, J. E., 1984: Molecular and genetic analysis of the chloroplast ATPase of Chlamydomonas. Plant Molec. Biol. 3, 177–190.CrossRefGoogle Scholar
  65. Youngblom, J., Schloss, J. A., Silflow, C. D., 1984: The two ß tubulin genes of Chlamydomonas reinhardtii Code for identical Proteins. Mol. Cell Biol. 4, 2682–2696.Google Scholar
  66. Zakian, V., 1981: Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequency transformation of yeast. Proc. Natl. Acad. Sci., U.S.A. 78, 3128–3132. Zakian, V., Kupfer, D. M., 1982: Replication and Segregation of an Unstable Plasmid in Yeast. Plasmid 8, 15–28.Google Scholar
  67. Zakian, V., Kupler, D. M., 1982: Replication and Segregation of an Unstable Plasmid in Yeast. Plasmid 8, 15–28.Google Scholar

Copyright information

© Springer-Verlag/Wien 1987

Authors and Affiliations

  • J.-D. Rochaix
    • 1
  1. 1.Departments of Molecular Biology and Plant BiologyUniversity of GenevaSwitzerland

Personalised recommendations