Skip to main content

Microinjection: An Experimental Tool for Studying and Modifying Plant Cells

  • Chapter
Plant DNA Infectious Agents

Part of the book series: Plant Gene Research ((GENE))

Abstract

The conviction that DNA is the genetic material of cells has its origins in a set of experiments in which purified DNA was transferred and expressed in bacterial cells. It is therefore no surprise that since these initial experiments with bacteria, methods of transferring DNA and other molecules into eukaryotic cells have been explored with varying degrees of success and usefulness. The most direct way of delivering a population of molecules into a cell or cell compartment is to microinject it mechanically (Celis, 1984; Celis et al., 1986). Techniques to accomplish this have been developed for frog oocytes (Gurdon et al., 1971; Kressman et al., 1978; Rusconi and Schaffner, 1981), insect embryos (Rubin and Spradling, 1982), animal egg cells (Brinster et al., 1985; Gordon et al., 1980; Hammer et al., 1985; Wagner et al., 1981) and mammalian somatic cells (Capecchi, 1980; Diacumakos, 1973; Graessman et al., 1980a, b). The anatomical organization of plant cells and the experimental difficulties associated with their manipulation in culture prevented a facile transposition of such techniques from animal to plant cells (Steinbiss et al., 1984). Fortunately, this situation is changing rapidly. It is now possible to microinject some plant cells and various protoplast types successfully (Crossway et al., 1986; Reich et al., 1986 a, b, c). It is the intent of this contribution to review these methodologies so that they can be extended, improved upon and become easily accessible to the community of plant cell and molecular biologists. Through this discussion we hope that the experimental advantages offered by microinjection become apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammirato, P. V., 1983: Embryogenesis. In: Evans, D. A., Sharp, W. R., Ammirato, P. V., Yamada, Y. (eds.), Handbook of plant cell culture (Vol. 1 ), pp. 82–123. New York: Macmillan Publishing Co.

    Google Scholar 

  • Bar-Sagi, D., Feramisco, J. R., 1985: Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 42, 841–848.

    Article  PubMed  CAS  Google Scholar 

  • Berkenstam, A., Ahlberg, J., Glaumann, H., 1986: Lysosomal uptake of isolated cell organelles microinjected into Hela cells. Exp. Cell Res. 163, 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Brinster, R. L., Chen, H. Y., Trumbauer, M. E., Yagle, M. K., Palmiter, R. D., 1985: Factors affecting the efficiency of introducing foreign DNA into mice by mi- croinjecting eggs. Proc. Natl. Acad. Sci., U.S.A. 82, 4438–4442.

    Article  PubMed  CAS  Google Scholar 

  • Capecchi, M. R., 1980: High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Celis, J. E., 1984: Microinjection of somatic cells with micropipettes: comparison with other transfer techniques. Biochem. J. 223, 281–291.

    PubMed  CAS  Google Scholar 

  • Celis, J. E., Graessman, A., Loyter, A., 1986: Microinjection and organelle trans-plantation techniques. London - Orlando: Academic Press.

    Google Scholar 

  • Crossway, A., Oakes, J. V., Irvine, J. M., Ward, B., Knauf, V. C., Shewmaker, C. K, 1986: Integration of foreign DNA following microinjection of tobacco meso- phyll protoplasts. Mol. Gen. Genet. 202, 179–185.

    Article  CAS  Google Scholar 

  • Deshayes, A., Herrera-Estrella, L., Caboche, M., 1985: Liposome-mediated trans-formation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. EMBO J. 4, 2731–2737.

    PubMed  CAS  Google Scholar 

  • Diacumakos, E. G., 1973: Methods for micromanipulation of human somatic cells in culture. Methods Cell Biol. 7, 287–311.

    Article  PubMed  CAS  Google Scholar 

  • Dunwell, J. M., 1985: Anther and ovary culture. In: Bright, S. W. J., Jones, M. G. K. (eds.), Cereal tissue and cell culture (Advances in Agricultural Biotechnology), pp. 1–44. Dordrecht - Boston - Lancaster: Martinus Nijhoff - Dr. W. Junk Publishers.

    Google Scholar 

  • Evans, D. A., Bravo, J. E., 1983: Protoplast isolation and culture. In: Evans, D. A., Sharp, W. R., Ammirato, P. V., Yamada, Y. (eds.), Handbook of plant cell culture, pp. 124–176. New York: Macmillan Publishing Co.

    Google Scholar 

  • Firoozabady, E., Galbraith, D. W., 1984: Presence of a plant cell wall is not required for transformation of Nicotiana by Agrobacterium tumefaciens. Plant Cell Tissue Organ Culture 3, 175–188.

    Article  Google Scholar 

  • Flavell, R., Mathias, R., 1984: Prospects for transforming monocot crop plants. Nature (London) 307, 108–109.

    Article  Google Scholar 

  • Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz, D. A., Flick, J. S., Fink, C. L., Hoffman, N. L., Sanders, P. R., 1985: The SEV system: A new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3, 629–635.

    Article  CAS  Google Scholar 

  • Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Gallupi, G. R., Goldberg, S. B., Hoffmann, N. L., Woo, S. C., 1983: Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci., U.S.A. 80, 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, P. B., Erwee, 1984: Intercellular transport studied by microinjection methods. In: Robards, A. W. (ed.), Botanical Microscopy. 1985, pp. 335–358.,Oxford - New York - Tokyo: Oxford University Press.

    Google Scholar 

  • Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., Ruddle, F. H., 1980: Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. U.S.A. 77, 7380–7384.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, W. J., Bushnell, W. R., 1985: Intranuclear microinjection of isolated protoplasts using differential interference contrast microscopy. (Abstracts of the first international congress of plant molecular biology, Savannah 1985), pp. 109. Athens: The University of Georgia Center for Continuing Education.

    Google Scholar 

  • Gould, A. R., Ashmore, S. E., 1982: Interaction of purified DNA with plant proto-plasts of different cell cycle stage: The concept of a competent phase for plant cell transformation. Theor. Appl. Genet. 64, 7–12.

    Article  Google Scholar 

  • Graessman, A., Graessman, M., Mueller, C., 1980a: Microinjection of early SV40 DNA fragments and T antigen. Methods Enzymol. 65, 816–825.

    Article  Google Scholar 

  • Graessmann, A., Wolf, H., Bornkamm, G. W., 1980b: Expression of Epstein-Barr viral genes in different cell types after microinjection of viral DNA. Proc. Natl. Acad. Sci., U.S.A. 77, 433–436.

    Article  CAS  Google Scholar 

  • Gurdon, J. B., Lane, C. D., Woodland, H. R., Marbaix, G., 1971: Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature (London) 233, 177–182.

    Article  CAS  Google Scholar 

  • Halliwell, R. S., Gazaway, W. S., 1975: Quantity of microinjected tobacco mosaic virus required for infection of single cultured tobacco cells. Virology 65, 583–587.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, R. E., Pursel, V. G., Rexroad, C. E., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D., Brinster, R. L., 1985: Production of transgenic rabbits, sheep and pigs by microinjection. Nature (London) 315, 680–683.

    Article  CAS  Google Scholar 

  • Heberle-Bors, E., 1985: In vitro haploid formation from pollen: a critical review. Theor. Appl. Genet. 71, 361–374.

    Article  Google Scholar 

  • Herrera-Estrella, L., DeBlock, M., Messens, E., Hernalsteens, J.-P., Van Montagu, M., Schell, J., 1983: Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987–995.

    PubMed  CAS  Google Scholar 

  • Holbrook, L. A., Reich, T. J., Iyer, V. N., Haffner, M., Miki, B. L., 1985: Induction of efficient cell division in alfalfa protoplasts. Plant Cell Rep. 4, 229–232.

    Article  CAS  Google Scholar 

  • Jones, M. G. K., 1985: Cereal protoplasts. In: Bright, S. W. J., Jones, M. G. K. (eds.), Cereal tissue and cell culture (Advances in Agricultural biotechnology), pp. 204–230. Dordrecht - Boston - Lancaster: Martinus Nijhoff - Dr. W. Junk Publishers.

    Google Scholar 

  • Kreis, T. E., Birchmeier, W., 1982: Microinjection of fluorescently labelled proteins into living cells with emphasis on cytoskeletal proteins. Int. Rev. Cytol. 75, 209–227.

    Article  PubMed  CAS  Google Scholar 

  • Krens, F. A., Mans, R. M. W., van Slogteren, T. M. S., Hoge, J. H. C., Wullems, G. J., Schilperoort, R. A., 1985: Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti plasmids DNA: co-transfer of T-DNA and non T-DNA sequences. Plant Mol. Biol. 5, 223–234.

    CAS  Google Scholar 

  • Krens, F. A., Molendijk, L., Wullems, G. J., Schilperoort, R. A., 1982: In vitro trans-formation of plant protoplasts with Ti-plasmid DNA. Nature (London) 296, 72–74.

    Article  CAS  Google Scholar 

  • Kressmann, A. Clarkson, S. G., Telford, J. L., Birnstiel, M. L., 1978: Transcription of Xenopus tDNA1 met and sea urchin histone DNA injected into the Xenopus oocyte nucleus. Cold Spring Harbor Symp. Quant. Biol. 42, 1077–1082.

    PubMed  CAS  Google Scholar 

  • Lawrence, W. A., Davies, D. R., 1985: A method for the microinjection and culture of protoplasts at very low densities. Plant Cell Rep. 4, 33–35.

    Article  Google Scholar 

  • Lin, P.-F., Ruddle, F. H., 1981: Photoengraving of coverslips and slides to facilitate monitoring of micromanipulated cells or chromosome spreads. Exp. Cell Res. 134, 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Maddock, S. E., 1985: Cell culture, somatic embryogenesis and plant regeneration in wheat, barley, oats, rye and triticale. In: Bright, S. W. J., Jones, M. G. K. (eds.), Cereal tissue and cell culture (Advances in agricultural biotechnology), pp. 131–174. Dordrecht - Boston - Lancaster: Martinus Nijhoff - Dr. W. Junk Publishers.

    Google Scholar 

  • Mangeat, P. H., Burridge, K., 1985: Microinjection and immunofluorescence microscopy as tools to study cytoskeletal organization in tissue culture cells. Techn. Immunocytochem. 3, 79–96.

    Google Scholar 

  • Mariotti, D., Davey, M. R., Draper, J., Freeman, J. P., Cocking, E. C., 1984: Crown gall tumorigenesis in the forage legume Medicago sativa L. Plant Cell Physiol. 25, 473–482.

    CAS  Google Scholar 

  • Matthews, J. A., Brown, J. W. S., Hall, T. C., 1981: Phaseolin mRNA is translated to yield glycosylated polypeptides in Xenopus oocytes. Nature (London) 294, 175–176.

    Article  CAS  Google Scholar 

  • Meyer, P., Walgenbach, E., Bussmann, K., Hombrecher, G., Saedler, H., 1985: Syn-chronized tobacco protoplasts are efficiently transformed by DNA. Mol. Gen. Genet. 201, 513–518.

    Article  CAS  Google Scholar 

  • Morikawa, H., Yamada, Y., 1985: Capillary microinjection into protoplasts and intranuclear localization of injected materials. Plant Cell Physiol. 26, 229–236.

    CAS  Google Scholar 

  • Nims, R. C., Halliwell, R. S., Rosberg, D. W., 1967a: Disease development in cultured cells of Nicotiana tabacum L. var. Samsun NN injected with tobacco mosaic virus. Cytologia 32, 224–235.

    Google Scholar 

  • Nims, R. C., Halliwell, R. S., Rosberg, D. W., 1967b: Wound healing in cultured tobacco cells following microinjection. Protoplasma 64, 305–314.

    Article  Google Scholar 

  • Palevitz, B. A., Hepler, P. K., 1985: Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164, 473–479.

    Article  Google Scholar 

  • Paszkowski, J., Shillito, R. D., Saul, M., Mandäk, V., Hohn, T., Hohn, B., Potrykus, I., 1984: Direct gene transfer to plants. EMBO J. 3, 2717–2722.

    PubMed  CAS  Google Scholar 

  • Reich, T. J., Iyer, V. N., Haffner, M., Holbrook, L. A., Miki, B. L., 1986a: The use of fluorescent dyes in the microinjection of alfalfa protoplasts. Can. J. Bot. 64, 1259–1267.

    Article  CAS  Google Scholar 

  • Reich, T. J., Iyer, V. N., Miki, B. L., 1986b: Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti plasmids. Bio/Technology 4, 1001–1004.

    Article  CAS  Google Scholar 

  • Reich, T. J., Iyer, V. N., Scobie, B., Miki, B. L., 1986c: A detailed procedure for the intranuclear microinjection of plant protoplasts. Can. J. Bot. 64, 1255–1258.

    Article  Google Scholar 

  • Rubin, G. M., Spradling, A. C., 1982: Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353.

    Article  PubMed  CAS  Google Scholar 

  • Rusconi, A., Schaffner, W., 1981: Transformation of frog embryos with a rabbit ß- globin gene. Proc. Natl. Acad. Sei., U.S.A. 78, 5051–5055.

    Article  CAS  Google Scholar 

  • Shillito, R. D., Paszkowski, J., Potrykus, I., 1983: Agarose plating and a bead type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep. 2, 244–247.

    Article  CAS  Google Scholar 

  • Shillito, R. D., Saul, M. W., Paszkowski, J., Müller, M., Potrykus, I., 1986: High efficiency direct gene transfer to plants. Bio/Technology 3, 1099–1103.

    Article  Google Scholar 

  • Steinbiss, H.-H., Stabel, P., 1983: Protoplast derived tobacco cells can survive capillary microinjection of the fluorescent dye Lucifer yellow. Protoplasma 116, 223–227.

    Article  Google Scholar 

  • Steinbiss, H.-H., Stabel, P., Töpfer, R., Hirtz, R. D., Schell, J., 1984: Transformation of plant cells by microinjection of DNA. In: Experimental manipulation of ovule tissue: their manipulation, tissue culture and physiology (Proceedings of the 1984 Wye International Symposium, Wye College, University of London, 1984), pp. 64–75. London: England.

    Google Scholar 

  • Van Lijsebettens, M., Inze, D., Schell, J., Van Montagu, M., 1986: Transformed cell clones as a tool to study T-DNA integration mediated by Agrobacterium tumefadens. J. Mol. Biol. 188, 129–145.

    Article  PubMed  Google Scholar 

  • Wagner, T. E., Hoppe, P. C., Jollick, J. D., Scholl, D. R., Hodinka, R. L., Gault, J. B., 1981: Microinjection of a rabbit ß-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc. Natl. Acad. Sei., U.S.A. 78, 6376–6380.

    Article  CAS  Google Scholar 

  • Wehland, J., Osborn, M., Weber, K., 1980: Phalloidin associates with microfilaments after microinjection into tissue culture cells. Eur. J. Cell Biol. 21, 188–194.

    PubMed  CAS  Google Scholar 

  • Wehland, J., Weber, K., 1981: Actin rearrangement in living cells revealed by mi-croinjection of a fluorescent phalloidin derivative. Eur. J. Cell Biol. 24, 176–183.

    PubMed  CAS  Google Scholar 

  • Zhou, G.-Y., Weng, J., Zeng, Y., Huang, J., Qian, S., Liu, G., 1983: Introduction of exogenous DNA into cotton embryos. Methods Enzymol. 101, 433–481.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag/Wien

About this chapter

Cite this chapter

Miki, B.L.A., Reich, T.J., Iyer, V.N. (1987). Microinjection: An Experimental Tool for Studying and Modifying Plant Cells. In: Hohn, T., Schell, J. (eds) Plant DNA Infectious Agents. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6977-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6977-3_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7458-6

  • Online ISBN: 978-3-7091-6977-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics