Pain pp 36-40 | Cite as

Opiates, Opioids and Their Receptors in the Modulation of Pain

  • Albert Herz
Conference paper
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 38)


The enormous growth of opioid research in the last decade was initiated by the identification of opiate receptors and the detection of their endogenous ligands, the opioid peptides or endorphins. A variety of different types of opioid receptors can now be distinguished and a considerable number of different opioid peptides have been identified. One of the questions arising from this development concerns the relationship between the multiplicity of opioid receptors and ligands, including that of the functions related to the various ligand-receptor interactions. In this context their role in the modulation of pain is of particular interest and will be discussed here.


Opioid Receptor Dorsal Horn Opioid Peptide Opiate Receptor Endogenous Opioid Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Civelli O, Douglass J, Herbert E (1984) Pro-opiomelanocortin: a polyprotein at the interface of the endocrine and nervous systems. In: Udenfriend S, Meienhofer J (eds) The peptides— analysis, synthesis, biology, vol 6. Academic Press, Inc, London, pp 69 - 94Google Scholar
  2. 2.
    Czionkowski A, Costa T, Przewlocki R, Pasi A, Herz A (1983) Opiate receptor binding sites in human spinal cord. Brain Res 267: 392 - 396CrossRefGoogle Scholar
  3. 3.
    Faccini E, Uzumaki M, Gavoni S, Missale C, Spano PF, Covelli V, Trabucci M (1984) Afferent fibers mediate the increase of met- enkephalin elicited in the rat spinal cord by localized pain. Pain 18: 25 - 31PubMedCrossRefGoogle Scholar
  4. 4.
    Fricker LD (1985) Neuropeptide biosysnthesis: focus on carboxy-peptidase processing enzymes. Trends Neurosci: 210— 214CrossRefGoogle Scholar
  5. 5.
    Goldstein A (1984) Biology and chemistry of the dynorphin peptides. In: Udenfriend S, Meienhofer J (eds) The peptides— analyses, synthesis, biology, vol 6. Academic Press, Inc, London, pp 96 - 146Google Scholar
  6. 6.
    Herz A (1984 a) Die Rolle multipler Opioid-Rezeptoren und ihrer Liganden bei der Schmerzmodulation. Arzneim- Forsch/Drug Res 34: 1080-1083Google Scholar
  7. 7.
    Herz A (1984b) Multiple opioid receptors. In: Delitala G et al (eds) Opioid modulation of endocrine function. Raven Press, New York, pp 11 - 19Google Scholar
  8. 8.
    Herz A (1984) Multiple endorphins as natural ligands of multiple opioid receptors. In: Müller EE, Genazzani AR (eds) Central and peripheral endorphins: basic and clinical aspects. Raven Press, New York, pp 43 - 52Google Scholar
  9. 9.
    Höllt V (1983) Multiple endogenous opioid peptides. TINS 6: 24 - 26Google Scholar
  10. 10.
    Höllt V, Sanchez-Blasquez P, Garzón J (1985) Multiple opioid ligands and receptors in the control of nociception. Phil Trans R Soc Lond B 308: 299 - 310CrossRefGoogle Scholar
  11. 11.
    Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517 - 532PubMedGoogle Scholar
  12. 12.
    Millan MH, Millan MJ, Herz A (1985) Midbrain-stimulation produced analgesia in the rat: characterization of the role of brain ß-endorphin. In: Fields HL, Dubner R, Cervero F (eds) Advances in pain research and therapy, vol 9. Raven Press, pp 493 - 498Google Scholar
  13. 13.
    Millan MJ, Millan MH, Pilcher CWT, Czionkowski A, Herz A, Colpaert C (1985) Spinal cord dynorphin may modulate noci¬ception via a K-opioid receptor in chronic arthritic rats. Brain Res, 340: 156 - 159PubMedCrossRefGoogle Scholar
  14. 14.
    Mucha R, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86: 274 - 280PubMedCrossRefGoogle Scholar
  15. 15.
    Numa S (1984) Opioid peptide precursors and their genes. In: Udenfriend S, Meienhofer J (eds) The peptides—analysis, syn¬thesis, biology, vol 6. Academic Press, Inc, London, pp 1 - 23Google Scholar
  16. 16.
    Paterson SJ, Robson LE, Kosterlitz HW (1984) Opioid re-ceptors. In: Udenfriend S, Meienhofer J (eds) The peptides— analysis, synthesis, biology, vol 6. Academic Press, Inc, London pp 147 - 190Google Scholar
  17. 16 a.
    Pfeiffer A, Brantl V, Herz A, Emrich H (1986) Psycholomimesis mediated by K-opiate receptous. Science 233: 774 - 776PubMedCrossRefGoogle Scholar
  18. 17.
    Przewlocki R, Gramsch C, Pasi A, Herz A (1983) Characteriza¬tion and localization of immunoreactive dynorphin, a-neo- endorphin, met-enkephalin and Substance P in human spinal cord. Brain Res 280: 95 - 103PubMedCrossRefGoogle Scholar
  19. 18.
    Schmauss C, Yaksh T (1984) In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral, chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther 228: 1-12Google Scholar
  20. 19.
    Schulz R, Wüster M, Herz A (1984) Receptor preference of dynorphin A fragments in the mouse vas deferens determined by different techniques. J Pharmacol Exp Ther 230: 200 - 204PubMedGoogle Scholar
  21. 20.
    Seizinger BR, Höllt V, Herz A (1984 a) Proenkephalin B (prodynorphin)-derived opioid peptides: evidence for a dif-ferential processing in lobes of the pituitary. Endocrinology 115: 662 - 671Google Scholar
  22. 21.
    Seizinger BR, Grimm C, Höllt V, Herz A (1984 b) Evidence for a selective processing of proenkephalin B into different opioid peptide forms in particular regions of rat brain and pituitary. J Neurochem 42: 447 - 457PubMedCrossRefGoogle Scholar
  23. 22.
    Turner AJ (1984) Neuropeptide processing enzymes. Trends Neurosci: 258 - 260Google Scholar
  24. 23.
    Udenfriend S, Kilpatrick DL (1984) Proenkephalin and the products of its processing: chemistry and biology. In: Uden-friend S, Meienhofer J (eds) The Peptides. Academic Press, Inc, London, pp 25 - 68Google Scholar
  25. 24.
    Watson SJ, Akil H, Khaehatutrian H, Young E, Lewis ME (1984) Opioid systems: anatomical, physiological and clinical perspectives. In: Hughes J, Collier HOJ, Ranee MJ, Tyers MB (eds) The Peptides. Taylor & Francis, London and Philadelphia, pp 145 - 178Google Scholar
  26. 25.
    Wood PL (1982) Multiple opiate receptors: support for unique mu, delta and kappa sites. Neuropharmacology 21: 287 - 297CrossRefGoogle Scholar
  27. 26.
    Yaksh TL, Noueihed R (1985) The physiology and pharma-cology of spinal opiates. Ann Rev Pharmacol Toxicol 25: 433- 462CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Albert Herz
    • 1
  1. 1.Abteilung NeuropharmakologieMax-Planck-Institut für PsychiatriePlanegg-MartinsriedFederal Republic of Germany

Personalised recommendations