Pain pp 5-15 | Cite as

Cytochemical Studies of the Neural Circuitry Underlying Pain and Pain Control

  • Allan I. Basbaum
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 38)


With the introduction of immunocytochemistry in anatomical studies of the nervous system, significant progress has been made in our understanding of CNS circuitry. By simultaneously performing retrograde tracing studies with immunocytochemistry, it is now possible to identify the cytochemistry of projection systems. When this is combined with a functional analysis of a given pathway, e.g., the spinothalamic tract, it is possible, for the first time, to characterize the likely transmitter content of specific neuronal systems. The importance of such information cannot be overemphasized. For example, if one knows the neurotransmitter that is involved in the central transmission of nociceptive messages, it should be possible to develop receptor antagonists that block the action of that neurotransmitter. That approach could lead to the development of very specific analgesic drugs.


Dorsal Horn Spinal Dorsal Horn Superficial Dorsal Horn Trigeminal Nucleus Caudalis Spinothalamic Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnati LF, Fuxe K, Benefenati F, Zini I, Hokfelt T (1983) On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of 3H-5-HT binding sites. Acta Physiol Scand 117: 299–302PubMedCrossRefGoogle Scholar
  2. 2.
    Akil H, Mayer DJ, Liebeskind JC (1976) Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191: 961–962PubMedCrossRefGoogle Scholar
  3. 3.
    Aronin N, Difiglia M, Liotta AS, Martin JB (1981) Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J Neurosci 1: 561–577PubMedGoogle Scholar
  4. 4.
    Atweh SF, Kuhar M (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124: 53–67PubMedCrossRefGoogle Scholar
  5. 5.
    Barbara NM, Hammond DL, Fields HL (1985) Effects of intrathecally administered methysergide and yohimbine on micro-stimulation-produced antinociception in the rat. Brain Res 343: 223–229CrossRefGoogle Scholar
  6. 6.
    Barber RP, Vaughan JE, Slemmon RJ, Salvaterra PM, Roberts E, Leeman SE (1979) The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J Comp Neurol 184: 331–352PubMedCrossRefGoogle Scholar
  7. 7.
    Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J Comp Neurol 178: 209–224PubMedCrossRefGoogle Scholar
  8. 8.
    Basbaum AI, Cruz L, Weber E (1986) Immunoreactive dynorphin in sacral primary afferent fibers of the cat. J Neurosci 6: 127–133PubMedGoogle Scholar
  9. 9.
    Basbaum AI, Fields HL (1978) Endogenous pain control mechanisms: Review and hypothesis. Ann Neurol 4: 451–62PubMedCrossRefGoogle Scholar
  10. 10.
    Basbaum AI, Fields HL (1984) Endogenous pain control systems: Brain stem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7: 309–338PubMedCrossRefGoogle Scholar
  11. 11.
    Basbaum AI, Glazer EJ (1983) Immunoreactive vasoactive intestinal polypeptide is concentrated in sacral spinal cord: A possible marker for pelvic visceral afferent fibers. Somato-sensory Res 1: 69–82Google Scholar
  12. 12.
    Basbaum AI, Jacknow D, Mulcahy J, Levine J (1983) Studies on the contribution of different endogenous opioid peptides to the control of pain. In: Yokota T, Dubner R (eds) Current topics in pain research and therapy. Elsevier, Amsterdam, pp 118–120Google Scholar
  13. 13.
    Basbaum AI, Moss MS, Glazer EJ (1983) Opiate and stimulation-produced analgesia: The contribution of the monoamines. Adv Pain Res Ther 5: 323–339Google Scholar
  14. 14.
    Bennett GJ, Abdelmoumene M, Hayashi H, Dubner R (1980) Physiology and morphology of substantia gelatinosa neurons intracellulary stained with horseradish peroxidase. J Comp Neurol 194: 809–827PubMedCrossRefGoogle Scholar
  15. 15.
    Botticelli LH, Cox BM, Goldstein A (1981): Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia. Proc Natl Acad Sci USA 78: 7783–7786PubMedCrossRefGoogle Scholar
  16. 16.
    Bowker RM, Steinbusch HWM, Coulter JD (1981): Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. Brain Res 211: 412–417PubMedCrossRefGoogle Scholar
  17. 17.
    Brimijoin S, Lundberg JM, Brodin E, Hokfelt T, Nilsson G (1980) Axonal transport of substance P in the vagus and sciatic nerves of the guinea pig. Brain Res 191: 443–457PubMedCrossRefGoogle Scholar
  18. 18.
    Chavkin D, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the k opioid receptor. Science 215: 413–415PubMedCrossRefGoogle Scholar
  19. 19.
    Colpaert DH, Donnerer J, Lembeck F (1983) Effects of capsaicin on inflammation and on the substance P content of nervous tissues in rats with adjuvant arthritis. Life Sci 32: 1827PubMedCrossRefGoogle Scholar
  20. 20.
    Cruz L, Basbaum AI (1985) Multiple opioid peptides and the modulation of pain. Immunohistochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat. J Comp Neurol 240: 331–348Google Scholar
  21. 21.
    Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. I. Experimental demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl 232] 62: 1–55Google Scholar
  22. 22.
    Dodd J, Jahr CR, Jessel TM (1984) Neurotransmitters and neuronal markers at sensory synapses in the dorsal horn. Adv Pain Res Ther 6: 105–121Google Scholar
  23. 23.
    Fields HL, Emson PC, Leigh BK, Gilbert RFT, Iversen LL (1980) Multiple opiate receptor sites on primary afferent fibres. Nature 284: 351–353PubMedCrossRefGoogle Scholar
  24. 24.
    Gamse R, Holzer P, Lembeck F (1979) Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurons. Naunyn Schmiedeberg’s Arch Pharmacol 308: 281–285CrossRefGoogle Scholar
  25. 25.
    Gamse A, Saria A (1985) Potentiation of tachykinin-induced plasma protein extravasation by calcitonin gene-related peptide. Eur JPharm 114: 61–66CrossRefGoogle Scholar
  26. 26.
    Glazer EJ, Basbaum AI (1981) Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat: Enkephalin-containing marginal neurons and pain modulation. J Comp Neurol 196: 377–389PubMedCrossRefGoogle Scholar
  27. 27.
    Glazer EJ, Basbaum AI (1983) Opioid neurons and pain modulation: An ultra-structural analysis of enkephalin in cat superficial dorsal horn. Neuroscience 10: 357–376PubMedCrossRefGoogle Scholar
  28. 28.
    Glazer EL, Basbaum AI (1984) Axons which take up 3H- serotonin are presynaptic to enkephalin immunoreactive neurons in cat dorsal horn. Brain Res 298: 386–391PubMedCrossRefGoogle Scholar
  29. 29.
    Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(l-13), an extraordinarily potent opioid peptide. Proc Nat Acad Sci USA 76: 6666–6670PubMedCrossRefGoogle Scholar
  30. 30.
    Hammond DL, Levy RA, Proudfit HK (1980) Hypoalgesia induced by microinjection of a norepinephrine antagonist in the raphe magnus: Reversal by intrathecal administration of a serotonin antagonist. Brain Res 201: 475–489PubMedCrossRefGoogle Scholar
  31. 31.
    Han JS, Xie CW (1982) Dynorphin: Potent analgesic effect in spinal cord of the rat. Life Sci 31: 1781–1784CrossRefGoogle Scholar
  32. 32.
    Headley PM, Duggan AW, Griersmith BT (1978): Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res 145: 185–189PubMedCrossRefGoogle Scholar
  33. 33.
    Henry JL (1976) Effects of Substance P on functionally identified units in cat spinal cord. Brain Res 114: 439–452PubMedCrossRefGoogle Scholar
  34. 34.
    Hiller JM, Simon EJ, Crain SM, Peterson ER (1978) Opiate receptors in culture of fetal mouse dorsal root ganglia (DRG) and spinal cord: Predominance in DRG neurites. Brain Res 145: 396–400PubMedCrossRefGoogle Scholar
  35. 35.
    Hoffert MJ, Miletic V, Ruda MA, Dubner R (1983) Immunocytochemical identification of serotonin axonal contacts on characterized neurons in laminae I and II of the cat dorsal horn. Brain Res 267: 361–364PubMedCrossRefGoogle Scholar
  36. 36.
    Hokfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurons. Nature 284: 515–521PubMedCrossRefGoogle Scholar
  37. 37.
    Hokfelt T, Ljungdahl A, Steinbusch H, Verhofstad AN, Nilsson G, Brodin E, Pernow B, Goldstein M (1978) Immunohistochemical evidence of substance P-like immunoreactivity in some 5- hydroxytryptamine containing neurons in the rat central nervous system. Neuroscience 3: 517–538PubMedCrossRefGoogle Scholar
  38. 38.
    Hokfelt T, Ljungdahl A, Terenius L, Elde R, Nilsson G (1977) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and Substance P. Proc Nat Acad Sci USA 74: 3081–3085PubMedCrossRefGoogle Scholar
  39. 39.
    Hokfelt T, Elde R, Johansson O, Luft R, Nilsson G, Arimura A (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and Substance P-containing primary afferent neurons. Neurosci 1: 131–136CrossRefGoogle Scholar
  40. 40.
    Honda CN, Rethelyi M, Petrusz P (1983) Preferential immunohistochemical localization of vasoactive intestinal poly-peptide (VIP) in the sacral spinal cord of the cat: Light and electron microscopic observations. J Neurosci 3: 2183–2196PubMedGoogle Scholar
  41. 41.
    Hosobuchi Y, Adams JE, Linchitz R (1977) Pain relief by electrical stimulation of the central gray matter in human and its reversal by naloxone. Science 197: 183–186PubMedCrossRefGoogle Scholar
  42. 42.
    Hosobuchi Y, Lamb S, Bascomb D (1980) Tryptophan loading may reverse tolerance to opiate analgesics in humans. A preliminary report. Pain 9: 161–170Google Scholar
  43. 43.
    Hunt SP, Kelly JS, Emson PC (1980) The electron microscopic localization of methionine-enkephalin within the superficial layers ( I and II) of the spinal cord. Neuroscience 5: 1871–1890Google Scholar
  44. 44.
    Hylden JLK, Wilcox GL (1983) Pharmacological characterization of substance P-induced nociception in mice: Modulation by opioid and noradrenergic agonists at the spinal level. J Pharmacol Exp Ther 226: 398–404PubMedGoogle Scholar
  45. 45.
    Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglion of the frog. J Physiol (Lond) 324: 219–246Google Scholar
  46. 46.
    Jansco N, Jansco-Gabor A, Szolcsanyi J (1968) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol 31: 138Google Scholar
  47. 47.
    Jessel T, Tsunoo A, Kanawa I, Otsuka M (1979) Substance P: Depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res 168: 247–259CrossRefGoogle Scholar
  48. 48.
    Jessel TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268: 549–551CrossRefGoogle Scholar
  49. 49.
    Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcineneoendorphin/dynorphin precursor. Nature 298: 245–249PubMedCrossRefGoogle Scholar
  50. 50.
    Kawatani M, Erdman SL, de Groat WC (1985) Vasoactive intestinal polypeptide and substance P in primary afferent pathways to the sacral spinal cord of the cat. J Comp Neurol 241: 327–347PubMedCrossRefGoogle Scholar
  51. 51.
    Khachaturian H, Watson SJ, Lewis ME, Coy D, Goldstein A, Akil H (1982) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3: 941–954PubMedCrossRefGoogle Scholar
  52. 52.
    La Motte CC, de Lanerolle NC (1983) Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. II Methionine-enkephalin immunoreactivity. Brain Res 274: 51–63CrossRefGoogle Scholar
  53. 53.
    La Motte C, Pert CB, Snyder SH (1976) Opiate receptor binding in primate spinal cord. Distribution and changes after dorsal root section. Brain Res 112: 407–412CrossRefGoogle Scholar
  54. 54.
    Light AR, Trevino DL, Perl ER (1979) Morphological features of functionally identified neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 186: 151–171PubMedCrossRefGoogle Scholar
  55. 55.
    Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedeberg’s Arch Pharm 310: 175–183CrossRefGoogle Scholar
  56. 56.
    Levine JD, Clark R, Helms C, Moskowitz MA, Basbaum AI (1984) Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226: 547PubMedCrossRefGoogle Scholar
  57. 57.
    Morgan C, Nadelhaft I, de Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201: 415–440Google Scholar
  58. 58.
    Olgart L, Gazelius B, Brodin E, Nisson G (1977) Release of substance P-like immunoreactivity from the dental pulp. Acta Physiol Scand 101: 510–512PubMedCrossRefGoogle Scholar
  59. 59.
    Oliveras AL, Hosobuchi Y, Guilbaud G, Besson JM (1978) Analgesic electrical stimulation of the feline nucleus raphe magnus: Development of tolerance and its reversal by 5-HTP. Brain Res 146: 404–409PubMedCrossRefGoogle Scholar
  60. 60.
    Reddy SVR, Maderdrut JL, Yaksh TL (1980) Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther 213: 525–533PubMedGoogle Scholar
  61. 61.
    Rosenfeld MG, Mermod J-J, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304: 129–135PubMedCrossRefGoogle Scholar
  62. 62.
    Ruda MA (1982) Opiates and pain pathways. Demonstration of enkephalin synapses on dorsal horn projection neurons. Science 215: 1523–1524PubMedCrossRefGoogle Scholar
  63. 63.
    Ruda MA, Coffield J, Dubner R (1984) Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry. J Neurosci 4: 2117–2132PubMedGoogle Scholar
  64. 64.
    Schmauss C, Yaksh TL (1984) In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of Mu, Delta, and Kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharm Exper Ther 228: 1Google Scholar
  65. 65.
    Sumal KK, Pickel VM, Miller RJ, Reis DJ (1982) Enkephalin— containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructural and synaptic interaction with primary sensory afferents. Brain Res 248: 223–236PubMedCrossRefGoogle Scholar
  66. 66.
    Sweetnam PM, Neale JH, Barker JL, Goldstein A (1982) Localization of immunoreactive dynorphin in neurons cultured 15 Allan I. Basbaum: Cytochemical Studies of the Neural Circuitry from spinal cord and dorsal root ganglia. Proc Nat Acad Sci USA 79: 6742–6746PubMedCrossRefGoogle Scholar
  67. 67.
    Tulunay FC, Jen MF, Chang JK, Loh HH, Lee HM (1981) Possible regulatory role of dynorphin on morphine and P- endorphin-induced analgesia. J Pharmacol Exp Ther 219: 296PubMedGoogle Scholar
  68. 68.
    Tung AS, Yaksh TL (1982) In vivo evidence for multiple opiate receptors mediating analgesia in the rat spinal cord. Brain Res 247: 75–83PubMedCrossRefGoogle Scholar
  69. 69.
    Vincent SR, Hokfelt T, Christensson I, Terenius L (1982) Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci Lett 33: 185–190PubMedCrossRefGoogle Scholar
  70. 70.
    Walker JM, Tucker DE, Coy DH, Walker BB, Akil H (1982) Des-tyrosine-dynorphin antagonizes morphine analgesia. Eur J Pharm 85: 121–122CrossRefGoogle Scholar
  71. 71.
    Wiesenfeld-Hallin Z, Hokfelt T, Lundberg JM, Forssmann WG, Reinecke M, Tschopp FA, Fischer JA (1984) Immunoreactive calcitonin gene-related peptide and substance P co-exist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett 52: 199–204PubMedCrossRefGoogle Scholar
  72. 72.
    Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 4: 732–740PubMedGoogle Scholar
  73. 73.
    Wilcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released peptides on primate spinothalamic tract cells. J Neurosci 4: 741–750Google Scholar
  74. 74.
    Yaksh TL (1979) Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal grey. Brain Res 160: 180–185PubMedCrossRefGoogle Scholar
  75. 75.
    Yaksh TL, Jessell TM, Gamse R, Mudge AW, Leeman SE (1980) Intrathecal morphine inhibits substance P release from mam¬malian spinal cord in vivo. Nature 286: 155–157PubMedCrossRefGoogle Scholar
  76. 76.
    Yoshimura M, North RA (1983) Substantia gelatinosa neurons hyperpolarized in vitro by enkephalin. Nature 305: 529–530PubMedCrossRefGoogle Scholar
  77. 77.
    Zieglgansberger W, Tulloch IF (1979) The effects of methionine- and leucine-enkephalin on spinal neurones of the cat. Brain Res 167: 53–64PubMedCrossRefGoogle Scholar
  78. 78.
    Zorman G, Belcher G, Adams JE, Fields HL (1982) Lumbar intrathecal naloxone blocks analgesia produced by micro stimulation of the ventromedial medulla in the rat. Brain Res 236: 77–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Allan I. Basbaum
    • 1
  1. 1.Department of Anatomy and PhysiologyUniversity of California, School of MedicineSan FranciscoUSA

Personalised recommendations