Review of Semiconductor Devices

  • Carlo Jacoboni
  • Paolo Lugli
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In an era which is dominated by an always faster and larger flow of information, microelectronics plays a major role. The building block of today’s microelectronics are semiconductor devices, which are used either as single components in a variety of applications (process controllers, antennas, sensors, radios, etc.,...) as well as in integrated circuits. Since the invention of the bipolar transistor in 1949, many new devices have been proposed and improved performances have been constantly achieved. Before this date, semiconductors were only used as thermistors, photodiodos and rectifiers. The advances in the field of semiconductor devices are the combined results of better understanding of the physical processes that underline the electrical behaviour of devices, of an improved handling of technological processes involved with the fabrication of the devices, of the mature knowledge of the chemical properties of the materials that are used, and of the combination of all these factors. In other words, electronics have been able to make big steps forward in the last few decades thanks to the progress in the physical, chemical and material sciences, as well as the development of new technological tools. The best example is given by the fact that we are currently able to put hundreds of thousands of devices onto a single chip, well into what is called very-large-scale integration (VLSI) [1].


Ohmic Contact Gate Voltage Semiconductor Device Depletion Region Forward Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mead, C. A., Conway, L.: Introduction to VLSI Systems. Reading, Mass.: Addison-Wesley. 1980.Google Scholar
  2. [2]
    Moore, G.: Proc. IEDM 1975, p. 11. New York: IEEE Press. 1975.Google Scholar
  3. [3]
    Ferry, D. K., Akers, L. A., Greeneich, E. W.: Ultra-Large-Scale Integrated Microelectronics. Englewood Cliffs, N.J.: Prentice-Hall. 1988.Google Scholar
  4. [4]
    Sze, M.: Physics of Semiconductor Devices, 2nd edn. New York: Wiley. 1981.Google Scholar
  5. [5]
    Muller, R. S., Kamins, T. I.: Device Electronics for Integrated Circuits. New York: Wiley. 1986.Google Scholar
  6. [6]
    Solomon, P. M.: Proc. IEEE 70, 489 (1982).CrossRefGoogle Scholar
  7. [7]
    Eden, R. C.: Proc. IEEE 70, 5 (1982).CrossRefGoogle Scholar
  8. [8]
    Solomon, P. M., Morkoc, H.: IEEE Trans. El. Devices ED-31, 1015 (1984).CrossRefGoogle Scholar
  9. [9]
    Kroemer, H.: Proc. IEEE 70, 13 (1982).CrossRefGoogle Scholar
  10. [10]
    Scavennee, A.: J. de Physique C4 [Suppl. 9], 115 (1988).Google Scholar
  11. [11]
    Zanoni, E., Lugli, P., Canali, C., Alberigi. Quaranta, A.: Fisica e Tecnologia 9, 75 (1986).Google Scholar
  12. [12]
    Pamlin, B. R. (ed.): Molecular Beam Epitaxy. Oxford: Pergamon Press. 1980;Google Scholar
  13. [12]a
    Ploog, K., Graf, K.: Molecular Beam Epitaxy of III–V Compounds. Berlin-Heidelberg-New York: Springer 1984;Google Scholar
  14. [12]b
    Cho, A. Y.: J. Vac. Sci. Technol. 16, 275 (1979).CrossRefGoogle Scholar
  15. [13]
    Razeghi, M., Duchemin, J. P.: In: Two-Dimensional Systems, Heterostructures and Superlattices (Baver, G., Kuchar, F., Heinrich, H., eds.), p. 100. Berlin-Heidelberg-New York: Springer. 1984;Google Scholar
  16. [13]a
    Jones, M. W.: In: Two-Dimensional Systems, Heterostructures and Superlattices (Baver, G., Kuchar, F., Heinrich, H., eds.), p. 115. Berlin-Heidelberg-New York: Springer. 1984.Google Scholar
  17. [14]
    Esaki, L., Tsu, R.: IBM Res. Rep. RC-2418 (1969).Google Scholar
  18. [15]
    Kroemer, H.: Proc. IRE 45, 1535 (1957).CrossRefGoogle Scholar
  19. [16]
    Lepselter, M. P., Andrews, J. M.: In: Ohmic Contacts in Semiconductors (Schwartz, B., ed.), The Electrochemical Society Symposium Series, p. 159. New York: Electrochemical Society 1969.Google Scholar
  20. [17]
    Rideout, V. L.: Solid State Electron. 18, (541 (1975).CrossRefGoogle Scholar
  21. [18]
    Pickar, K. A.: Ion Implantation in Silicon-Physics, Processing and Microelectronics Devices. In: Applied Solid State Science (Wolfe, R., ed.), Vol. 5. New York: Academic Press. 1975.Google Scholar
  22. [19]
    Dennard, R. H., Gaensslen, F. H., Yu, H., Rideout, V. L., Bassons, E., Blanc, A. R.: IEEE J. Solid State Circuits SC-9, 256 (1974).CrossRefGoogle Scholar
  23. [20]
    Meindl, J. D.: Scientific American 257, 54 (1987).CrossRefGoogle Scholar
  24. [21]
    Keyes, R.: Proc. IEEE, 63, 740 (1975).CrossRefGoogle Scholar
  25. [22]
    Moll, J. L.: Proc. IRE 46, 1076 (1958).CrossRefGoogle Scholar
  26. [23]
    Zanoni, E., Lugli, P., Canali, C., Alberigi-Quaranta, A.: Fisica e Tecnologia 10, 83 (1987).Google Scholar
  27. [24]
    Capasso, F.: In: Semiconductors and Semimetals, Vol. 24, p. 319. New York: Academic Press. 1988.Google Scholar
  28. [25]
    Rhoderick, E. H.: Metal-Semiconductor Contacts. Oxford: Clarendon Press. 1978.Google Scholar
  29. [26]
    Liechti, C. A.: IEEE Trans. Microwave Theory Tech. MTT-24, 279 (1976).CrossRefGoogle Scholar
  30. [27]
    Ferry, D. K.: In: VLSI Electronics: Microstructure Science, Vol. 1, p. 231. New York: Academic Press. 1981.Google Scholar
  31. [28]
    Hill, A. J., Ladbrooke, P. M.: GEC J. Res. 4, 1 (1986).Google Scholar
  32. [29]
    Drummond, T. J., Masselink, W. T., Morkoc, H.: Proc. IEEE 74, 773 (1986).CrossRefGoogle Scholar
  33. [30]
    Mead, C. A.: Proc. IRE 48, 359 (1960).Google Scholar
  34. [31]
    Moll, J. L.: IEEE Trans. El. Dev. ED-10, 299 (1963).CrossRefGoogle Scholar
  35. [32]
    Poate, J. M., Dynes, R. C.: IEEE Spectrum, p. 38. February 1986.Google Scholar
  36. [33]
    Levi, A. F. J., Hayes, J. R., Platzman, P. M., Wiegmann, W.: Phys. Rev. Lett. 55, 2071 (1985).CrossRefGoogle Scholar
  37. [34]
    Heiblum, M., Nathan, M. I., Thomas, D. C., Knodler, C. M.: Phys. Rev. Lett. 55, 2200 (1985).CrossRefGoogle Scholar
  38. [35]
    Malik, R. J., Hollis, M. A., Eastman, L. F., Woodard, D. J., Wood, C. E. C., Aucoins, T. R.: In: Proc, Conf. Active Microwave Devices, Cornell University, Ithaca, N.Y., 1981.Google Scholar
  39. [36]
    Heiblum, M.: Solid-State Electron. 24, 343 (1981).CrossRefGoogle Scholar
  40. [37]
    Heiblum, M., Eastman, L. F.: Scientific American 256, 64 (1987).CrossRefGoogle Scholar
  41. [38]
    Bozler, C. O., Alley, G. D., Murphy, R. A., Flanders, D. C., Lindley, W. T.: IEEE Tech. Dig. Int. Electron. Dev. Meet., p. 384 (1979).Google Scholar
  42. [39]
    Mimura, T., Nishiuchi, N., Abe, M., Shibatomi, A., Kobayanshi, M.: Superlattice and Microstr. 1, 365 (1985).Google Scholar
  43. [40]
    Art, W. H.: Microwellen Magazin 14, 106 (1988).Google Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • Carlo Jacoboni
    • 1
  • Paolo Lugli
    • 2
  1. 1.Dipartimento di FisicaUniversità di ModenaItaly
  2. 2.Dipartimento di Ingegneria MeccanicaII Università di Roma “Tor Vergata”Italy

Personalised recommendations