• Carlo Jacoboni
  • Paolo Lugli
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The name of the Monte Carlo method is inspired by the gambling casinos at the city of Monte Carlo in Monaco. The mathematical techniques used by this method are in fact based on the selection of random numbers [1–4]. In its present form, the method is attributed to Fermi, Von Neumann, and Ulam, who developed it for the solution of problems related to neutron transport during the secret research at Los Alamos for the construction of the atomic bomb during world war II. There are, however, indications of previous uses of methods based on selections of random numbers. In particular the name of Lord Kelvin is mentioned for a paper of 1901 [5], and Gosset (better known with the pseudonym Student) used experimental sampling to support his well known theoretical studies of statistical distributions. Fermi himself used already Monte Carlo techniques in the 30′s in connection with neutron transport [6].


Monte Carlo Semiconductor Device Direct Simulation Atomic Bomb Monte Carlo Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hammersley, J. M., Handscomb, D. C.: Monte Carlo Methods. London: Methuen. 1964MATHGoogle Scholar
  2. [2]
    Shreider, Yu. A. (ed.): The Monte Carlo Method. Oxford: Pergamon. 1966.MATHGoogle Scholar
  3. [3]
    Rubinstein, R. Y.: Simulation and the Monte Carlo Method. New York: Wiley. 1981.MATHCrossRefGoogle Scholar
  4. [4]
    Spanier, J., Gelbard, M.: Monte Carlo Principles and Neutron Transport Problems. Reading, Mass.: Addison-Wesley. 1969.MATHGoogle Scholar
  5. [5]
    Lord Kelvin: Phil. Mag. (6) 2, 1 (1901).Google Scholar
  6. [6]
    Anderson, H. L.: J. Stat. Phys. 43, 731 (1986).CrossRefGoogle Scholar
  7. [7]
    Kurosawa, T.: Proa, 8th Int. Conf. Phys. Semic., Kyoto. J. Phys. Soc. Japan, Suppl. 24, 424 (1966).Google Scholar
  8. [8]
    Lüthi, B, Wyder, P.: Helv. Phys. Acta 33, 667 (1960).Google Scholar
  9. [9]
    Alberigi-Quaranta, A., Jacoboni, C, Ottaviani, G.: La Rivista del Nuovo Cimento 1, 445 (1971).CrossRefGoogle Scholar
  10. [10]
    Jacoboni, C., Reggiani, L.: Advances in Physics 28, 493 (1979).CrossRefGoogle Scholar
  11. [11]
    Price, P. J.: Semiconductors and Semimetals 14, 249 (1979).CrossRefGoogle Scholar
  12. [12]
    Jacoboni, C, Reggiani, L.: Rev. Mod. Phys. 55, 645 (1983).CrossRefGoogle Scholar
  13. [13]
    Price, P. J.: In: Proa, 9th Int. Conf. Phys. Semic. (Ryukin, S. M., ed.), p. 753. Leningrad: Nauka. 1968.Google Scholar
  14. [14]
    Rees, H. D.: Phys. Lett. a26, 416, (1968).Google Scholar
  15. [15]
    Rees, H. D.: J. Phys. Chem. Solids 30, 643 (1969).CrossRefGoogle Scholar
  16. [16]
    Fawcett, W., Hilsum, G, Rees, H. D.: Solid State Commun. 7, 1257 (1969).CrossRefGoogle Scholar
  17. [17]
    Fawcett, W., Boardman, D. A., Swain, S.: J. Phys. Chem. Solids 31, 1963 (1970).CrossRefGoogle Scholar
  18. [18]
    Fawcett, W., Rees, H. D.: Phys. Lett. 11, 731 (1969).Google Scholar
  19. [19]
    Fawcett, W.: In: Electrons in Crystalline Solids (Salam, A., ed.), p. 531. Vienna: IAEA. 1973.Google Scholar
  20. [20]
    Lebwohl, P. A., Price, P. J.: Solid State Commun. 9, 1221 (1971)CrossRefGoogle Scholar
  21. [20]a
    Lebwohl, P. A., Price, P. J.: Appl. Phys. Lett. 19, 530(1971).CrossRefGoogle Scholar
  22. [21]
    Price, P. J.: IBM J. Res. Dev. 17, 39 (1973).CrossRefGoogle Scholar
  23. [22]
    Bosi, S., Jacoboni, C: J. Phys. C9, 315 (1976).Google Scholar
  24. [23]
    Lugli, P., Ferry, D. K.: IEEE Trans. Electron Dev. ED-32, 2431 (1985).CrossRefGoogle Scholar
  25. [24]
    Hockney, R. W., Warriner, R. A., Reiser, M.: Electron. Lett. 10, 484 (1974).CrossRefGoogle Scholar
  26. [25]
    Baccarani, G., Jacoboni, C, Mazzone, A. M.: Solid State Electr. 20, 5 (1977).CrossRefGoogle Scholar
  27. [26]
    Lugli, P., Jacoboni, C: In: ESSDERC 87, Proa, 17th European Solid State Device Research Conference (Calzolari, P. U., Soncini, G., eds.), p. 97 and references therein. Bologna: Tecnoprint. 1987.Google Scholar
  28. [27]
    Sze, S. M.: Physics of Semiconductor Devices, 2nd edn. New York: Wiley. 1982.Google Scholar
  29. [28]
    Solomon, P.: Proc. IEEE 70, 489 (1982).CrossRefGoogle Scholar
  30. [29]
    IEEE J. Quantum Electronics QE-22, n. 9 (1986), special issue on semiconductor quantum wells and superlattices: physics and applications.Google Scholar
  31. [30]
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Wien-New York: Springer. 1984.Google Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • Carlo Jacoboni
    • 1
  • Paolo Lugli
    • 2
  1. 1.Dipartimento di FisicaUniversità di ModenaItaly
  2. 2.Dipartimento di Ingegneria MeccanicaII Università di Roma “Tor Vergata”Italy

Personalised recommendations