• Peter A. Markowich
  • Christian A. Ringhofer
  • Christian Schmeiser


Depending on the semiconductor material, the doping profile and on the geometry, semiconductor devices show a variety of different kinds of electrical behaviour. This Chapter is concerned with an analysis of the performance of the practically most important devices.


Carrier Density Homoclinic Orbit Depletion Region Inversion Layer Bipolar Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [4.1]
    W. Eckhaus: Asymptotic Analysis of Singular Perturbations. North-Holland, Amsterdam (1979).MATHGoogle Scholar
  2. [4.2]
    A. Friedman: Variational Principles and Free-Boundary Problems. John Wiley & Sons, New York (1982).MATHGoogle Scholar
  3. [4.3]
    P. Grandits, C. Schmeiser: A Mixed BVP for Flow in Strongly Anisotropic Media. Applicable Analysis (to appear).Google Scholar
  4. [4.4]
    J. B. Gunn: Microwave Oscillations of Current in III-V Semiconductors. Solid State Comm. 1, 88 (1963).CrossRefGoogle Scholar
  5. [4.5]
    J. Kevorkian, J. D. Cole: Perturbation Methods in Applied Mathematics. Springer, New York (1981).MATHGoogle Scholar
  6. [4.6]
    D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980).MATHGoogle Scholar
  7. [4.7]
    C. C. Lin, L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences. Macmillan, New York (1974).MATHGoogle Scholar
  8. [4.8]
    P. A. Markowich: A Nonlinear Eigenvalue Problem Modelling the Avalanche Effect in Semiconductor Diodes. SIAM J. Math. Anal. 16, 1268–1283 (1985).MathSciNetMATHCrossRefGoogle Scholar
  9. [4.9]
    P. A. Markowich, C. A. Ringhofer, C. Schmeiser: An Asymptotic Analysis of One-Dimensional Semiconductor Device Models. IMA J. Appl. Math. 37, 1–24 (1986).MathSciNetMATHCrossRefGoogle Scholar
  10. [4.10]
    P. A. Markowich, C. Schmeiser: Uniform Asymptotic Representation of Solutions of the Basic Semiconductor Device Equations. IMA J. Appl. Math. 36, 43–57 (1986).MathSciNetMATHCrossRefGoogle Scholar
  11. [4.11]
    C. P. Please: An Analysis of Semiconductor P-N Junctions. IMA J. Appl. Math. 28, 301–318 (1982).CrossRefGoogle Scholar
  12. [4.12]
    A. Porst: Halbleiter. Siemens AG, Berlin-München (1973).Google Scholar
  13. [4.13]
    M. H. Protter, H. F. Weinberger: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, NJ (1967).Google Scholar
  14. [4.14]
    I. Rubinstein: Multiple Steady States in One-Dimensional Electrodiffusion with Local Electroneutrality. SIAM J. Appl. Math. 47, 1076–1093 (1987).MathSciNetCrossRefGoogle Scholar
  15. [4.15]
    C. Schmeiser: A Singular Perturbation Analysis of Reverse Biased PN Junctions. SIAM J. Math. Anal. 21 (1990).Google Scholar
  16. [4.16]
    E. Schöll: Nonequilibrium Phase Transitions in Semiconductors. Springer, Berlin (1987).Google Scholar
  17. [4.17]
    S. Selberherr: Analysis and Simulation of Semiconductor Devices. Springer, Wien-New York (1984).Google Scholar
  18. [4.18]
    W. Shockley: The Theory of P-N Junctions in Semiconductors and P-N Junction Transistors. Bell Syst. Tech. J. 28, 435 (1949).Google Scholar
  19. [4.19]
    J. W. Slotboom: Iterative Scheme for 1- and 2-Dimensional D.C.-Transistor Simulation. Electron. Lett. 5, 677–678 (1969).CrossRefGoogle Scholar
  20. [4.20]
    H. Steinrück: A Bifurcation Analysis of the Steady State Semiconductor Device Equations. SIAM J. Appl. Math. 49, 1102–1121 (1989).MathSciNetMATHCrossRefGoogle Scholar
  21. [4.21]
    H. Steinrück: Asymptotic Analysis of the Current-Voltage Curve of a PNPN Semiconductor Device. IMA J. Appl. Math. (1989) (to appear).Google Scholar
  22. [4.22]
    S. M. Sze: Physics of Semiconductor Devices. John Wiley & Sons, New York (1969).Google Scholar
  23. [4.23]
    P. Szmolyan: Traveling Waves in GaAs-Semiconductors. Physica D (1989) (to appear).Google Scholar
  24. [4.24]
    P. Szmolyan: An Asymptotic Analysis of the Gunn Effect. Preprint, IMA, Univ. of Minnesota (1989).Google Scholar
  25. [4.25]
    M. J. Ward: Asymptotic Methods in Semiconductor Device Modeling. Thesis, California Inst, of Techn. (1988).Google Scholar
  26. [4.26]
    M. J. Ward, D. S. Cohen, F. M. Odeh: Asymptotic Methods for MOSFET Modeling. Preprint, California Inst, of Techn. (1988).Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • Peter A. Markowich
    • 1
  • Christian A. Ringhofer
    • 2
  • Christian Schmeiser
    • 3
  1. 1.Fachbereich MathematikTechnische Universität BerlinBerlin 12Germany
  2. 2.Department of MathematicsArizona State UniversityTempeUSA
  3. 3.Institut für Angewandte und Numerische MathematikTechnische Universität WienWienAustria

Personalised recommendations