From Kinetic to Fluid Dynamical Models

  • Peter A. Markowich
  • Christian A. Ringhofer
  • Christian Schmeiser


Different approaches to the solution of the kinetic transport models discussed in Chapter 1 are possible. Although several promising attempts towards a numerical solution have been undertaken in the recent past (we only mention particle methods [2.10] and spectral methods [2.13]), the application of numerical methods remains to be a formidable task in general. Apart from that, solutions of the kinetic equations contain in many cases (e.g. close to equilibrium) a good deal of redundant information.


Boltzmann Equation Hydrodynamic Model Auger Recombination Valence Band Maximum Conduction Band Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    G. Baccarani, M. R. Wordeman: An Investigation of Steady-State Velocity Overshoot Effects in Si and GaAs Devices. Solid State Electr. 28, 407–416 (1985).CrossRefGoogle Scholar
  2. [2.2]
    K. Bløotekjaer: Transport Equations for Electrons in Two-Valley Semiconductors. IEEE Trans. Electron. Devices ED-17, 38–47 (1970).CrossRefGoogle Scholar
  3. [2.3]
    C. Cercignani: The Boltzmann Equation and Its Applications. Springer-Verlag, New York (1988).MATHGoogle Scholar
  4. [2.4]
    G. Frosali: Functional-Analytic Techniques in the Study of Time-Dependent Electron Swarms in Weakly Ionized Gases. Preprint, Istituto di Matematica, Università di Ancona (1988).Google Scholar
  5. [2.5]
    C. L. Gardner, J. W. Jerome, D. J. Rose: Numerical Methods for the Hydrodynamic Device Model: Subsonic Flow. Presented at the meeting on Mathematische Modellierung und Simulation elektrischer Schaltungen, Oberwolfach (1988).Google Scholar
  6. [2.6]
    R. N. Hall: Electron-Hole Recombination in Germanium. Physical Review 87, 387 (1952).CrossRefGoogle Scholar
  7. [2.7]
    W. Hänsch, M. Miura-Mattausch: The Hot-Electron Problem in Small Semiconductor Devices. J. Appl. Phys. 80, 650–656 (1986).CrossRefGoogle Scholar
  8. [2.8]
    W. Hänsch, C. Schmeiser: Hot Electron Transport in Semiconductors. ΖAMΡ 40, 440–455 (1989).MATHGoogle Scholar
  9. [2.9]
    D. Hubert: Math. Ann. 72, 562 (1912).MathSciNetCrossRefGoogle Scholar
  10. [2.10]
    B. Niclot, P. Degond, F. Poupaud: Deterministic Particle Simulations of the Boltzmann Transport Equation of Semiconductors. J. Comp. Phys. 78, 313–350 (1988).MATHCrossRefGoogle Scholar
  11. [2.11]
    F. Poupaud: Etude Mathematique et Simulations Numeriques de Quelques Equations de Boltzmann. Thesis, Univ. Paris 6 (1988).Google Scholar
  12. [2.12]
    F. Poupaud: Runaway Phenomena and Fluid Approximation Under Strong Electric Field in Semiconductor Theory. Manuscript, Laboratoire de Mathématiques, Université de Nice (1988).Google Scholar
  13. [2.13]
    C. A. Ringhofer: A Spectral Method for Numerical Simulation of Quantum Tunneling Phenomena. SI AM J. Numer. Anal. (1989) (to appear).Google Scholar
  14. [2.14]
    W. Shockley: Problems Related to P-N Junctions in Silicon. Solid State Electr. 2, 35–67 (1961).CrossRefGoogle Scholar
  15. [2.15]
    W. Shockley, W. T. Read: Statistics of the Recombinations of Holes and Electrons. Physical Review 87, 835–842 (1952).MATHCrossRefGoogle Scholar
  16. [2.16]
    S. Selberherr: Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien-New York (1984).Google Scholar
  17. [2.17]
    S. M. Sze: Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons, New York (1981).Google Scholar
  18. [2.18]
    W. V. van Roosbroeck: Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Techn. J. 29, 560–607 (1950).Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • Peter A. Markowich
    • 1
  • Christian A. Ringhofer
    • 2
  • Christian Schmeiser
    • 3
  1. 1.Fachbereich MathematikTechnische Universität BerlinBerlin 12Germany
  2. 2.Department of MathematicsArizona State UniversityTempeUSA
  3. 3.Institut für Angewandte und Numerische MathematikTechnische Universität WienWienAustria

Personalised recommendations