Advertisement

Automatic Result Verification

  • U. Kulisch
  • H. J. Stetter
Conference paper
Part of the Computing Supplementum book series (COMPUTING, volume 6)

Abstract

Automatic Result Verification. As an introduction to the following articles, we explain the meaning of automatic result verification as a tool in Scientific Computation; then we shortly sketch its principal methods and put the papers of the volume into a common perspective.

Keywords

Standard Function Result Verification Floppy Disk Arithmetic Expression Defect Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Automatische Ergebnisverifikation. Als Einführung zu den folgenden Artikeln erklären wir zunächst die Bedeutung der automatischen Ergebnisverifikation als einem Werkzeug für das wissenschaftliche Rechnen; dann skizzieren wir kurz die wichtigsten einschlägigen Methoden und setzen die Arbeiten des Bandes in einen übergeordneten Zusammenhang.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U. Kulisch: Grundlagen des Numerischen Rechnens. Bibliographisches Institut (Reihe Informatik, Nr. 19), Mannheim/Wien/Zürich 1976.MATHGoogle Scholar
  2. [2]
    U. Kulisch, W.L. Miranker: Computer Arithmetic in Theory and Practice. Academic Press, New York, 1981.MATHGoogle Scholar
  3. U. Kulisch, W.L. Miranker: The Arithmetic of the Digital Computer: A New Approach. SIAM Review 28, March 1986, 1–40.MathSciNetMATHCrossRefGoogle Scholar
  4. [3]
    IEEE Standard for Binary Floating-Point Arithmetic, ANSI Standard 754–1985.Google Scholar
  5. [4]
    IBM High–Accuracy Arithmetic Subroutine Library (ACRITH). General Information Manual, GC 33–6163–02, 3rd Edition, April 1986.Google Scholar
  6. IBM High–Accuracy Arithmetic Subroutine Library (ACRITH). Program Description and User’s Guide, SC 33–6164–02, 3rd Edition, April 1986.Google Scholar
  7. IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). Reference Summary, GX 339009–02, 3rd Edition, April 1986.Google Scholar
  8. [5]
    ARITHMOS Benutzerhandbuch. SIEMENS AG, Bestellnummer U2900-J-Z87–1, Sept. 1986.Google Scholar
  9. BS 2000 ARITHMOS, Kurzbeschreibung, Tabellenheft, SIEMENS AG, Sept. 1986.Google Scholar
  10. [6]
    U. Kulisch (ed.): PASCAL-SC: A PASCAL Extension for Scientific Computation; information manual and floppy disks; version IBM PC/AT; operating system DOS. B.G. Teubner Verlag ( Wiley-Teubner series in computer science ), Stuttgart, 1987.Google Scholar
  11. U. Kulisch (ed.): PASCAL-SC: A PASCAL Extension for Scientific Computation; information manual and floppy disks; version ATARI ST. B.G. Teubner Verlag, Stuttgart, 1987.Google Scholar
  12. [7]
    J.H. Bleher, U. Kulisch, M. Metzger, S.M. Rump, Ch. Ullrich, W. Walter: FORTRAN-SC: A Study of a FORTRAN Extension for Engineering/Scientific Computation with Access to ACRITH. Computing 39, 1987, 93–110.MATHCrossRefGoogle Scholar
  13. [8]
    K. Böhmer, P. Hemker, H.J. Stetter: The Defect Correction Approach, in: Defect Correction Methods; Theory and Application, Computing Supplementum, Springer-Verlag, Wien, 1984, 1–32.Google Scholar
  14. [9]
    E. Kaucher, W.L. Miranker: Self-Validating Numerics for Function Space Problems. Academic Press, 1984.Google Scholar
  15. [10]
    H.J. Stetter: Sequential Defect Correction in High-Accuracy Floating-Point Algorithms, in: Numerical Analysis (Proceedings, Dundee 1983), Lecture Notes in Math., vol. 1066 (1984), 186–202.MathSciNetCrossRefGoogle Scholar
  16. W. Auzinger, H.J. Stetter: Accurate Arithmetic Results for Decimal Data on Non-Decimal Computers, Computing 35, 1985, 141–151.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • U. Kulisch
    • 1
  • H. J. Stetter
    • 2
  1. 1.Institut für Angewandte MathematikUniversität KarlsruheKarlsruheFederal Republic of Germany
  2. 2.Institut für Angewandte und Numerische MathematikTechnische Universität WienWienAustria

Personalised recommendations