Regulation of Gene Expression by Ethylene

  • James E. Lincoln
  • Robert L. Fischer
Part of the Plant Gene Research book series (GENE)


In plants, many processes are regulated by a small number of hormones: auxin, abscisic acid, cytokinin, gibberellin, and ethylene (for review, see Wareing and Phillips, 1981). Plant hormones, like animal hormones, are active in extremely small quantities and influence the growth and differentiation of tissues and organs. However, certain important aspects about plant hormone action are unique. That is, each plant hormone is synthesized in many parts of the plant and each regulates a wide variety of different processes depending on the organ or tissue. Furthermore, plants regulate many processes by modulating both hormone concentration and sensitivity to the hormone (Trewavas, 1982; Trewavas et al., 1983). Thus, understanding the mechanism of plant hormone action involves knowing how both hormone concentration and tissue sensitivity regulate cellular differentiation.


Fruit Development Tomato Fruit Ethylene Biosynthesis Ethylene Concentration Unripe Fruit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., 1967: Mechanism of action of abscission accelerators. Physiol. Plan-tarum 20, 442–454.CrossRefGoogle Scholar
  2. Abeles, F. B., 1973: Ethylene in plant biology, pp. 1–302. Academic Press, New York.Google Scholar
  3. Biale, J. B., Young, R. E., 1981: Respiration and ripening in fruits — retrospect and prospect. In: Recent advances in the biochemistry of fruit and vegetables. pp. 1–39. Friend, J., Rhodes, M.J.C. (eds.). Academic Press, London.Google Scholar
  4. Biggs, M.S., Harriman, R. W., Handa, A. K., 1986: Changes in gene expression during tomato fruit ripening. Plant Physiol. 81, 395–403.PubMedCrossRefGoogle Scholar
  5. Boller, T., Gehri, A., Mauch, F., Vogeli, U., 1983: Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157, 22–31.CrossRefGoogle Scholar
  6. Broglie, K. E., Gaynor, J. J., Broglie, R. M., 1986: Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc. Natl. Acad. Sci. U.S.A. 83, 6820–6824.PubMedCrossRefGoogle Scholar
  7. Cameron, C. C., Yang, S. F., 1982: A simple method for the determination of resistance to gas diffusion in plant organs. Plant Physiol. 70, 21–33.PubMedCrossRefGoogle Scholar
  8. Christoffersen, R. E., Laties, G. G., 1982: Ethylene regulation of gene expression in carrots. Proc. Natl. Acad. Sci. U.S.A. 79, 4060–4063.PubMedCrossRefGoogle Scholar
  9. Davis, M. M., Cohen, D. I., Nielsen, E. A., Steinmetz, M., Paul, W. E., Hood, L., 1984: Cell-type-specific cDNA probes and the murine I region: the localization and orientation of Ad. Proc. Natl. Acad. Sci. U.S.A. 81, 2194–2198.PubMedCrossRefGoogle Scholar
  10. Graham, J. S., Pearce, G., Merryweather, J., Titani, K., Ericsson, L., Ryan, C. A., 1985: Wound-induced proteinase inhibitors from tomato leaves. J. Biol. Chem. 260, 6555–6560.PubMedGoogle Scholar
  11. Grierson, D., 1985: Gene expression ripening tomato fruit. CRC Critical Rev. in Plant Sci. 3, 113–132.CrossRefGoogle Scholar
  12. Hagen, G. H., Kleinschmidt, A., Guilfoyle, T., 1984: Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162, 147–153.CrossRefGoogle Scholar
  13. Kende, H., Hanson, A.D., 1976: Relationship between ethylene evolution and senescence in morningglory flower tissue. Plant Physiol. 57, 523–527.PubMedCrossRefGoogle Scholar
  14. Key, J. L., Kroner, P., Walker, J., Hong, J. C., Ulrich, T. H., Ainley, W. M., Nagao, T. H., 1986: Auxin-regulated gene expression. Phil. Trans. R. Soc. Lond. B. 314, 427–440.CrossRefGoogle Scholar
  15. Lieberman, M., 1979: Biosynthesis and action of ethylene. Ann. Rev. Plant Physiol. 30, 533–591.CrossRefGoogle Scholar
  16. Lincoln, J. E., Cordes, S., Read, E., Fischer, R. L., 1987: Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc. Natl. Acad. Sci. U.S.A. 84, 2793–2797.PubMedCrossRefGoogle Scholar
  17. Lyons, J. M., Pratt, H. K., 1964: Effect of stage of maturity and ethylene treatment on respiration and ripening of tomato fruits. Proc. Amer. Soc. Hort. Sci. 84, 491–500.Google Scholar
  18. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., Fraley, R., 1986: Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobac-terium tumefaciens. Plant Cell Reports 5, 81–84.CrossRefGoogle Scholar
  19. McGlassen, W. B., 1985: Ethylene and fruit ripening. Hort. Sci. 20, 51–54.Google Scholar
  20. McGlassen, W. B., Wade, N. L., Adato, I., 1978: Phytohormones and fruit ripening. In: Phytohormones and related Compounds — a comprehensive treatise. Vol. 2, pp. 447–493. Letham, D. S., Goodwin, P. B., Higgins, T. J. V. (eds.). Elsevier, Amsterdam.Google Scholar
  21. Nichols, S. E., Laties, G. G., 1984: Ethylene-regulated gene transcription in carrot roots. Plant Mol. Biol. 3, 393–401.CrossRefGoogle Scholar
  22. Rhodes, M.J. C., 1980: The maturation and ripening of fruits: In: Senescene in plants, pp. 157–205. Thimann, K. V. (ed.) CRC Press, Boca Raton.Google Scholar
  23. Smith, J. W. M., Ritchie, D. B., 1983: A collection of near-isogenic lines of tomato: research tool of the future. Plant Mol. Biol. Reporter 1, 41–45.CrossRefGoogle Scholar
  24. Speirs, J., Brady, C. J., Grierson, D., Lee, E., 1984: Changes in ribosome organization and messenger RNA abundance in ripening tomato fruits. Aust. J. Plant Physiol. 11, 225–233.CrossRefGoogle Scholar
  25. Su, L.-Y., McKeon, T., Grierson, D., Cantwell, M., Yang, S. F., 1984: Development of 1-aminocyclopropane-1-carboxylic acid synthase and polygalacturonase activities during the maturation and ripening of tomato fruit. Hort. Science 19, 576–578.Google Scholar
  26. Theologis, A., Huynh, T., Davis, R. W., 1985: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J. Mol. Biol. 153, 53–68.CrossRefGoogle Scholar
  27. Trewavas, A. J., 1982: Growth substance sensitivity: the limiting factor in plant development. Physiol. Plant. 55, 60–72.CrossRefGoogle Scholar
  28. Trewavas, A. J., 1983: Is plant development regulated by changes in the concentration of growth substances or by changes in the sensitivity to growth substances? Sensitivity is the regulating factor. Trends in Biochemical Sciences 8, 354–357.CrossRefGoogle Scholar
  29. Tucker, M. L., Christoffersen, R. E., Woll, L., Laties, G.G., 1985: Induction of cellulase by ethylene in avocado fruit. In: Ethylene and plant development. pp. 163–175. Roberts, J. A., Tucker, G. A. (eds.). Butterworths, London.Google Scholar
  30. Walling, L., Drews, G. N., Goldberg, R. B., 1986: Transcriptional and post-tran-scriptional regulation of soybean seed protein mRNA levels. Proc. Natl. Acad. Sci. U.S.A. 83, 2123–2127.PubMedCrossRefGoogle Scholar
  31. Wareing, P. G., Phillips, I. D. J., 1981: Mechanisms of action of plant growth hormones. In: Growth and differentiation in plants, pp. 75–104. Pergamon Press, Oxford.Google Scholar
  32. Yang, S. F., 1985: Biosynthesis and action of ethylene. Hort. Sci. 20, 41–45.Google Scholar
  33. Yang, S. F., Pratt, H. K., 1978: The physiology of ethylene in wounded plant tissues. In: The biochemistry of wounded plant tissues. pp. 595–622. Kahl, G. (ed.). Walter de Gruyter & Co., Berlin.Google Scholar
  34. Yang, S. F., Liu, Y., Lau, O. L., 1986: Regulation of ethylene biosynthesis in ripening apple fruits. Acta Horticulturae 179, 711–720.Google Scholar
  35. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., Schell, J., 1983: Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2, 2143–2150.PubMedGoogle Scholar
  36. Zurfluh, L. L., Guilfoyle, T. J., 1982: Auxin-and ethylene-induced changes in the population of translatable messenger RNA in basal sections and intact soybean hypocotyl. Plant Physiol. 69, 338–340.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • James E. Lincoln
    • 1
  • Robert L. Fischer
    • 1
  1. 1.Division of Molecular Plant BiologyUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations